Outcome of this lecture

At the end of this lecture you will be able to:

- calculate the magnetomotive force
- model simple magnetic circuits
- calculate magnetic flux densities
- calculate inductances and losses
- apply the above for permanent magnet materials
- you will enhance your understanding of magnetic materials, phenomena and circuits.

Magnetic Circuits

Ampere's circuit law (i-H relation)

$$\oint \vec{H} \cdot d\vec{l} = \int_{A} \vec{J} \cdot d\vec{A} = \sum_{k} i_{k}$$

Permeability (B-H relation)

$$B = \mu H = \mu_r \mu_0 H$$

Ferromagnetic materials $\mu_r \approx 2000...6000$

Permeability of free space $\mu_0 = 4\pi 10^{-7} \ henry \ / \ meter$

Magnetic Equivalent Circuits

Example: toroid with leakage flux neglected

$$\oint \vec{H} \cdot d\vec{l} = Ni$$

Magnetomotive force (mmf)

$$F = Ni = Hl$$

Magnetic flux

$$\Phi = \int B \, dA$$

$$\Phi = \frac{F}{\Re}$$

$$\mathfrak{R} = \frac{l}{\mu A} = \frac{1}{P}$$

Permeance

analogy
$$i = \frac{E}{R}$$

Characteristics of electrical steel: Magnetization Curve

Epstein frame for magnetic material characterization

- Near the origin almost linear
- Strong nonlinearity at the knee
- Saturation after the knee

Characteristics of electrical steel: Hysteresis

- B-H relation is nonlinear and multi-valued
- B lags behind H

- B_r residual flux density (H=0)
- H_c coercitive magnetic field strength (B=0)

 The locus of the tip of the hysteresis loop is the magnetization curve

Magnetic Circuit with Air Gap

Air gap requires more mmf than

$$R_c = \frac{l_c}{\mu_c A_c}$$

$$R_g = \frac{l_g}{\mu_0 A_g}$$

$$Ni = H_c l_c + H_g l_g$$

$$B_{c} = \frac{\Phi_{c}}{A_{c}}$$

$$\mu_c = \mu_r \mu_0$$

$$B_g = \frac{\Phi_g}{A_g}$$

$$\mu_r\approx 2000...6000$$

Fringing

No fringing

$$A_g = A_c$$
 \Longrightarrow $B_g = B_c$

Inductance

A coil is represented by an ideal circuit element

- Flux linkage
 - Inductance $L = \frac{\lambda}{L}$

 $\lambda = N\Phi$

- What problems the inductance concept presents?
 - Saturation
 - Leakage
 - Motion

Hysteresis Loss

Energy transfer: varying magnetic field

Hysteresis Loss

Energy loss during a period

What is the relation between energy and Power?

$$W|_{cycle} = V_{core} \oint H \, dB$$

Loss density in the core

$$W_h = \oint H dB$$
 Ws/m³ = J/m³

Power loss

$$P_h = V_{core} W_h f$$
 W

Many ways of computing the power losses in electrical steel

$$P_{FeH} = \int_{V_c} \left(\sum_{n=1}^{N} C_{Hn}(n\omega_s) B_n^2 \right) dV$$

$$P_{FeE} = \int_{V_c} \left(\sum_{n=1}^{N} C_{En} (n\omega_s)^2 B_n^2 \right) dV$$

$$P_{h} = \int_{\Omega} \left[\frac{\mathbf{k_{h}} |\mathbf{B}|}{|\mathbf{k_{h}}|} |\mathbf{B}| \left| \frac{\partial |\mathbf{B}|}{\partial t} \right| + \frac{1 - \frac{|\mathbf{B}|}{B_{s}}}{1 + b(1 - \frac{|\mathbf{B}|}{B_{s}})^{2}} |\mathbf{B}| \left| \frac{\partial \theta}{\partial t} \right| \right] d\Omega$$

$$P_{e} = \int_{\Omega} \mathbf{k}_{e} \left| \frac{\partial |\mathbf{B}|}{\partial t} \right|^{\frac{3}{2}} d\Omega \qquad P_{c} = \int_{\Omega} \mathbf{k}_{c} \left| \frac{\partial \mathbf{B}}{\partial t} \right|^{2} d\Omega$$

Eddy Current Loss

Time varying magnetic field induces eddy currents in conducting material

$$i_e \propto e = \frac{dB}{dt}$$

Power loss proportional to Ri² will be caused

$$B = B_{\text{max}} \sin(2\pi ft) \implies P_e = K_e B_{\text{max}}^2 f^2$$

$$P_c = \int_{\Omega} \mathbf{k}_c \left| \frac{\partial \mathbf{B}}{\partial t} \right|^2 d\Omega$$

- Eddy current loss can be reduced by
 - increasing the resistivity of the core material
 - using laminated cores

Core Loss

hysteresis and eddy current loss are lumped together

$$P_c = P_h + P_e$$

- Slow variations
 - eddy current loss negligible
 - static loop
- Rapid variations
 - hysteresis loop becomes broader
 - dynamic loop
- The loss appears as heat in the core

$$P_c = V_{core} f \oint_{\text{dynamic loop}} H dB$$

Sinusoidal Excitation

sinusoidal flux

 $\Phi(t) = \Phi_{\max} \sin \omega t$

sinusoidal voltage

 $e(t) = N \frac{d\Phi}{dt} = E_{\text{max}} \cos \omega t$ $E_{rms} = 4,44Nf\Phi_{\text{max}}$

root-mean-square value

Excitation Current

sinusoidal voltage source

- Exciting current flows in the coil to establish the flux
- Nonlinear *B-H* characteristic

Exciting current will be non sinusoidal

In a toroid

$$\Phi = BA$$
 $i = \frac{Hi}{N}$

in general

$$\Phi \propto B$$
 $i \propto H$

The B-H curve can be rescaled to Φ -i curve

Circuit representation 1: Nonlinear Material - no Hysteresis

Sinusoidal flux Non sinusoidal exciting current

- Current wave form obtained from Φ-i curve
- Current in phase with flux and symmetric
- Fundamental component lags the voltage by 90°
- No power loss
- Coil can be represented by a pure inductance

What we mean by

What we mean by the fundamental component of

Circuit representation 2: Nonlinear Material and Hysteresis

- Sinusoidal flux Non sinusoidal non symmetrical Current
 - Current can be split into two components:
 - I_c in phase with the voltage e
 - I_m in phase with flux Φ
 - Coil can be represented by a resistance and an inductance in parallel

How the core losses are seen in the circuit?

Permanent Magnets

Magnetization:

Application of large mmf

On its removal flux density will remain at residual value

Normal operation:

Reversed magnetic field intensity Operating point b

Field removed and reapplied Minor loop recoil line b-c

Demagnetization

Large reversed field New operating point d recoil line d-e

Example of Permanent Magnet characteristic

NEOREM 400a

В,	1.28 T	12.8 kG
Coercivity		
_B H _c	970 kA/m	12.2 kOe
JH _e	1000 kA/m	12.6 kOe
(BH) _{max}	310 kJ/m³	39 MGOe

Nominal Values at 20°C

Approximate design of Permanent Magnets

- no leakage or fringing flux
- no mmf required for soft iron

$$H_m l_m + H_g l_g = 0$$

$$\Phi = B_m A_m = B_g A_g$$

shear line

$$B_m = \mu_0 \frac{A_g}{A_m} \frac{l_m}{l_g} H_m$$

• Find the minimum volume of PM that gives $\max(B_m H_m)$

$$V_m = \frac{B_g^2 V_g}{\mu_0 B_m H_m}$$

Permanent Magnet Materials

- AlNiCo-alloys
 - high residual flux density
 - rather low coersive force

- ferrite-alloys
 - lower residual flux density
 - very high coersitivity force

- rare-earth alloys
 - high residual flux density
 - very high coersitivity force

