
Outcome of this lecture

At the end of this lecture you will be able to:

• Calculate the field energy and co-energy

• Calculate magnetic forces and force densities

• Calculate the torque of an electrical machine

• Understand how the torque is produced in different machines

You will enhance your understanding of the energy conversion process in electrical machines.



Electric Motors

Alternating Current (AC)
Direct Current (DC)
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Cage Induction Wound Rotor Field Excitation Reluctance

Self excitedSeparately excited

Series CompoundShunt

Classification of Electric Motors
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Conservation of energy

Energy Conversion Process

• Continuous and discrete energy conversion

• Motors

• Generators

• Actuators

• Losses RI2, Pc
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Type of loss Percentage of
total loss (100%)

Fixed loss or core 25
Variable loss: stator RI2 34
Variable loss: rotor RI2 21
Friction & rewinding loss 15
Stray load loss 5

Typical values for induction motors P < 100 kW

Energy conversion and losses



Pump out
100 kW

Pump losses
33 kW (eff 75 %)

Motor and
chocking valve
200 kW (eff 40 %)

Distribution
losses 37 kW
(eff 90 %)

Condensate
power station
556 kW (eff 40 %)

Fuel in
925 kW

Pump out
100 kW

Pump losses
25 kW (eff 80 %)

Motor and
inverter 31 kW
(eff 80 %)

Distribution
losses 18 kW
(eff 90 %)

Condensate
power station
260 kW (eff 40 %)

Fuel in
434 kW

Example: losses in pump drives
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Field Energy
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Characteristic depends on the air gap length

Energy
Co energy

Energy – Co energy



Movable part moves slowly
from x1 to x2

Constant current
Why ?

Mechanical Force – Scenario 1
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Movable part moves
quickly from x1 to x2

Mechanical Force – Scenario 2
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Force in a Linear System



g
g

0
2 2

B
Ni H g g

λ
< <

λ λ

2 2
g g

f g g
0 02

B B
W V A g< <

λ λ

2 2
g g

m g g
0 0

B B
f A g A

g

∑ ⌡∝  < <
 ∝  

2
g

m
02

B
F

λ
<

c 0H <
cλ < ⁄

Force pressure

Energy confined
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Linear System (Rc << Rg)
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Rotating Machines
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First two terms represent reluctance torque; variation of self-inductance
Third term represents the torque produced due to the variation of mutual inductance

Torque

For linear systems the energy
is equal to the co-energy
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• No reluctance torque

• Mutual inductance

• Currents

• Rotor position

Cylindrical Machines



• Torque in general varies sinusoidally with time
• Average value of each term is zero unless the coefficient of t is zero
• Nonzero average torque exists only if
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Basis for Synchronous and Asynchronous Machines
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• Single-phase machines, 1  winding at the stator
• Pulsating Torque : NOT OK for  larger machines!
• Poly-phase machines to minimize pulsating torque

• ωm=0 Tavg=0 ⇓ Not self starting

Synchronous Machines
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• Single-phase machines
• Pulsating Instantaneous Torque
• Not self-starting

• Poly-phase machines minimize pulsating torque and self starting
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Asynchronous Machines


