DC MACHINES

1. A dc machine (6 kW, 120 V, 1200 rpm) has the following magnetization characteristics at 1200 rpm.

$I_{\rm f}[{\rm A}]$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.8	1.0	1.2
$E_{a}[V]$	5	20	40	60	79	93	102	114	120	125

The machine parameters are $R_a=0.2 \Omega$, $R_{fw}=100 \Omega$. The machine is driven at 800 rpm and is separately excited. The field current is adjusted at $I_f=0.8$ A. A load resistance $R_L=2\Omega$ is connected to the armature terminals. Neglect armature reaction fields.

- a) Determine the quantity $K_a \Phi$ for the machine.
- b) Determine E_a and I_a .
- c) Determine the torque T and load power $P_{\rm L}$.
- 2. The dc machine in the previous problem has a field control resistance whose value can be changed from 0 to 150 Ω . The machine is driven at 1200 rpm. The machine is separately excited and the field winding is supplied from a 120 V supply.
 - a) Determine the maximum and minimum values of the no-load terminal voltage.
 - b) The field control resistance ($R_{\rm fc}$) is adjusted to provide a noload terminal voltage of 120V. Determine the value of $R_{\rm fc}$. Determine the terminal voltage at full load for no armature reaction an also if $I_{\rm f(AR)}$ =0.1 A.
- 3. The dc machine in the first problem is separately excited. The machine is driven at 1200 rpm and operates as a generator. The rotational loss 400 W at 1200 rpm and the rotational loss is proportional to speed.
 - a) For field current of 1.0A, with the generator delivering rated current, determine the terminal voltage, the output power and the efficiency.
 - b) Repeat part a) if the generator is driven at 1500 rpm.

DC MACHINES (2)

4. A dc shunt generator (20kW, 200V, 1800rpm) has $R_a=0.1\Omega$, $R_{\rm fw}=150 \ \Omega$. Assume that $E_a=U_{\rm t}$ at no load. The machine is self-excited. Data for the magnetization curve at 1800 rpm are:

$I_{\rm f}[{\rm A}]$	0.0	0.125	0.25	0.5	0.625	0.75	0.875	1.0	1.25	1.5
$E_{a}[V]$	5	33.5	67	134	160	175	190	200	214	223

- a) At full-load condition, $U_t=U_t$ (rated), $I_a=I_a$ (rated), $I_f=1.25$ A. Determine the value of the field control resistance (R_{fc}).
- b) Determine the electromagnetic power and torque developed at full-load condition.
- c) Determine the armature reaction effect in equivalent field amperes $(I_{f(AR)})$ at full load.
- d) Determine the maximum value of the armature current assuming that $I_{f(AR)}$ is proportional to I_a .
- 5. A dc shunt motor is connected to a 230V supply and delivers power to a load drawing an armature current of 200A and running at a speed of 1200rpm. The armature resistance is $R_a=0.2\Omega$.
 - a) Determine the value of the generated voltage at this load condition.
 - b) Determine the value of the load torque. The rotational losses are 500W.
 - c) Determine the efficiency of the motor if the field circuit resistance is 115Ω .
- 6. A dc shunt machine (10kW, 250 V, 1200 rpm) has $R_a=0.25\Omega$. The machine is connected to a 250V dc supply, draws rated armature current and rotates at 1200rpm.
 - a) Determine the generated voltage, the electromagnetic power developed and the torque developed.
 - b) The mechanical load on the motor shaft is thrown off and the motor draws 4A armature current. Determine the rotational loss and the speed assuming no armature reaction.