ELEC-E8422 An Introduction to Electric Energy

Exercise Session 1: AC Circuits

EX 1 AC Circuits

The 230 V voltage source in the figure is connected in parallel with a resistance, inductance and capacitance. The frequency of the source is 50 Hz, the resistance is 5 Ω , the reactance of the inductance is 10 Ω , and the reactance of the capacitance is 2 Ω .

- 1. Calculate the load total impedance
- 2. Calculate the frequency at which the load is seen as a resistance of 5 Ω .

EX 2 Phasors and Power

The voltage over a load and the current through are:

$$v = 150\sin(314.14t + 0.2) \text{ V}$$

 $i = 25\sin(314.14t - 0.5) \text{ A}$

Calculate:

- 1. The frequency of the source
- 2. The source voltage phasor
- 3. The load current phasor
- 4. The active power drawn by the load
- 5. The reactive power drawn by the load

EX 3 Power and Energy

An electric load is connected to a 230 V voltage source. The load impedance changes durring a 24 hours period according to the table below. Calculate the electric energy consumed by the load during the 24 hours period. You can use a spreadsheet calculation program.

Time period	Impedance Ω	Power angle (°)
8.00 – 10. 30	10	30
11.00 – 13.00	20	0
15.00 – 17.00	15	60
17.00 – 20.00	5	45

ELEC-E8422 An Introduction to Electric Energy

Exercise Session 1: AC Circuits

EX 1 AC Circuits

1. The load admittance:

$$\overline{Y} = G + (B_C + B_L)j$$

$$= \frac{1}{5} + (\frac{1}{2} - \frac{1}{10})j$$

$$= 0.2 + 0.4j$$

Fromwhich we calculate the impedance:

$$\overline{Z} = \frac{1}{\overline{Y}}$$

$$= \frac{1}{0.2 + 0.4 j} = 1.0 - 2.0 j \text{ W}$$

2. The reactance depends on the frequency but the inductance and the capacitance do not. Let's first calculate these quantities:

Inductance:

$$L = \frac{X_L}{2\rho f}$$
$$= \frac{10}{2\rho * 50} = 31.8 \,\text{mH}$$

Capacitance:

$$C = \frac{1}{2p \, fX_C}$$
$$= \frac{1}{2p * 50 * 2} = 1.6 \,\text{mF}$$

If the load is seen as a resistance, then $B_L = B_C$ (absolute values), i.e.

$$\frac{1}{2\rho f_0 L} = 2\rho f_0 C$$

i.e.

$$f_0 = \frac{1}{2\rho\sqrt{CL}}$$
$$= \frac{10^3}{2\rho\sqrt{31.8*1.6}} = 22.31 \text{ Hz}$$

EX 2: Phasors and Power

1. Frequency (read from the wave form)

$$w = 2pf = 314.14$$

$$f = \frac{314.14}{2p} = 50 \text{ Hz}$$

2. Voltage phasor

$$\overline{V} = \frac{V_{\text{max}}}{\sqrt{2}} \mathbf{D} q_{v}$$

$$= \frac{150}{\sqrt{2}} \mathbf{D} (0.2 \frac{180}{p})$$

$$= 106.07 \mathbf{D} 11.46^{\circ} \text{ V}$$

3. Current phasor

$$\bar{I} = \frac{I_{\text{max}}}{\sqrt{2}} \, \mathbf{D} \, q_i$$

$$= \frac{25}{\sqrt{2}} \, \mathbf{D} (-0.5 \frac{180}{p})$$

$$= 17.68 \, \mathbf{D} - 28.65^{\circ} \, \mathbf{A}$$

4. Active power

The phase angle between the current and the voltage is

$$q = q_v - q_i = 0.2 + 0.5 = 0.7$$
 rad

The active power is calculated as:

$$P = VI \cos(q)$$

= 106.07 *17.68 * cos(0.7)
= 1.434 kW

5. Reactive power

$$P = VI \sin(q)$$

$$=106.07*17.68*\sin(0.7)$$

=1.208 kVAr

EX 3 Power and Energy

The energy is computed as:

$$E = \mathbf{\check{Q}}^T P dt$$

Because the power is constant over some periods, we can we can calculate it as:

$$E = \mathop{\rm a}_i T_i P_i$$

For this purpose, we can make the following spreadsheet (Excel)

			Power				
Period		Impedance	angle	Current	Power	Period	Energy
start	End	Ω	deg.	V/Z A	VIcos(Θ)	t:min	Wh
8:00	10:30	10	30	23,0	4581,27	2:30	11453
11:00	13:00	20	0	11,5	2645,00	2:00	5290
15:00	17:00	15	60	15,3	1763,33	2:00	3527
17:00	20:00	5	45	46,0	7481,19	3:00	22444
•							42713