Exercise Session 4: Power Electronics

EX 1 Bipolar Transistor

A bipolar transistor is used in the circuit below, V_{CC} = 40 V and the load resistance R_L = 10 Ω . In the saturated region, the collector-emitter voltage V_{CE} = 0,1 V and the current gain of the base β = 5. Calculate the following numerical values

- a) The current and power of the load.
- b) The losses in the collector circuit.
- c) The losses in the base circuit, when the base-emitter junction is a diode with a voltage drop V_{BE}=0,7 V
- d) The efficiency of the whole circuit.

EX 2 Bipolar Transistor

In the previous circuit the system is working in an operating point where the collector current $I_c = 2$ A. Calculate the power of the load resistance and the efficiency of the system.

EX 3 Diode Bridge

A single-phase diode bridge is supplied from 50 Hz ac system where the rms value of the voltage is 230 V and its peak value $\sqrt{2}*230$ V. The load of the rectifier is a 10 Ω resistance.

- a) Draw the waveforms of the dc voltage and current and calculate their average values.
- b) Calculate the power delivered to the resistance.

EX 4 Diode Bridge

A single-phase diode bridge is supplied from 50 Hz ac system where the rms value of the voltage is 230 V. The load of the rectifier is a 10 Ω resistance. However, now we are assuming that the dc side has a large filtering inductance and therefore the dc side current is ideal dc. With this assumption, repeat the questions in EX 3, i.e.

- a) Draw the waveforms of the dc voltage and current and calculate their average values.
- b) Calculate the power delivered to the resistance.