Shapes in Action Sept

 21stOrbifolds and topology

Program schedule for Sept 21st

13:15 Where are we?
13:30 Orbifolds: How to relate topology to patterns ?
14:00 Magic theorem consequences
14:30 Break
14:50 Textile analysis in groups
15:30 Find orbifolds of your patterns

Where are we?

Goal : Understanding

Signature/Orbifold notation due to
B. Thurston and J.H. Conway (90')

Done:

- Basic ideas on symmetries and signatures for planar patterns
- Miracle theorem stated: All planar patterns
 cost 2 euros (free to choose your favorite unit !)
Next: Based on Miracle theorem, what are the possible symmetries? Towards the proof for the 'Miracle Theorem' and its applicability, more topology

Pattern analysis steps

1. Draw all mirror lines (=lines of reflection)
2. Find the fundamental domain of the kaleidoscope
3. How many lines meet on each vertex? => Local symmetries of form *N
4. Find rotationally symmetric points (non-kaleidoscopic)
5. Are there mirror images without mirrors ? Then there must be at least one miracle x.
6. Helpful to look at the price list during the analysis and take the miracle theorem into account (Be patient: the proof will come a bit later...)
7. If there is there is only repletion into two directions (nothing from above) then the pattern is 'wandering' 0

Signatures for plane patterns through local symmetries: *632 Cost $=1+1 / 2(5 / 6+2 / 3+1 / 2)=2$ euro
6 lines of reflection
3 lines of reflection

- 2 lines of reflection

Only one type of kaleidoscopic vertex (*2) and one type of rotational vertex (4) => signature $4^{*} 2$

Cost $=3 / 4+1+1 / 4=2$ euro

- One reflection line
- Two rotation points

22x

- No reflection lines
- Two different rotation points of order 2 (price $1 / 2 €$ each)
- One miracle (mirror image without a mirror, $\mathbf{x} 1 €$)
- => Total cost $1+1 / 2+1 / 2=2 €$

2222 vs. 22x

Cannot split a fundamental domain in 2222 into two in 22x

- Which two rotation points to choose instead of 4?

- On the left NOT rotation points
- contradicting info on the red edges

Aatto University • Note: horizontal reflection (+ translation) in the middle does not induce a global glide reflection!

Every property has its cost (in euros)

Symbol	Price	Symbol	Price
0	2	* or x	1
2	$1 / 2$	2	$1 / 4$
3	$2 / 3$	3	$1 / 3$
4	$3 / 4$	4	$3 / 8$
5	$4 / 5$	5	$2 / 5$
6	$(n-1) / n$	6	$5 / 12$
n		n	$(n-1) / 2 n$

Star * Cost =1euro

Star * (in the signature notation) denotes a mirror or kaleidoscopic symmetry = reflection wit respect to a line.

Star alone means: there is one (and only one) single line of mirror symmetry.

What kind of fundamental domains have we found?

Triangle with no identifications on the boundary (different parts coming from reflection lines)

Topologically (= deformations that do not produce new holes are allowed): Disk

Signatures for plane patterns through local symmetries: *632

Cost=1+1/2(5/6 $\left.+^{2 / 3}+1 / 2\right)=2$ euro

Note: reflections equate same type of points (orbits) whose representatives in the chosen triangle give the orbifold (after identification)

Orbifold:

Topological disk
 reflection of reflection 3 lines of reflection

2 lines of

Combination of rotation points and reflection lines Ex: 4*2

Fundamental domain: A triangle with some identifications on the boundary (red arrows due to the presence of a rotation point in the middle)

What is the topological shape of the piece after the identification (= gluing the red boundary arrows) ?

22*

Disk orbifold again?
Are there other types ?

Aalto University

Cost of a miracle $(x)=1$ euro

Signature ** Annulus orbifold

$1+1=2$ euro

Signature *x Möbius band orbifold

1+1=2euro

Wanderings \mathbf{O}

Torus orbifold !

Rotation points only

Ex 2222

What is this shape after the boundary identifications?

Ex: Brick walls/pavements

- 2 rotation points
- Mirror images without a reflection line
- => $22 x$

A
Aalto University

What is the orbifold of $22 x$ symmetry?

What shape do you get when you do the identifications on the boundary ?

Real projective plane!

What about xx?

- Two miracles (mirror images without reflection lines) no rotation points

A
Aalto University

Klein bottle !

Surfaces via identifying boundary components of polyhedrons

(no boundary after gluing)

(non-empty boundary)

How many different signatures exist for plane patterns?

Assuming Magic Theorem to hold, this is similar question as asking:

How many different ways can I make change for one euro if I can use only 50, 20, 10 and 5 cents?

- Find all blue types
- Find all red types
- Find all hybrids

Blue types (orientation preserving)

Price for one n-fold rotational point is $(n-1) / n<1=>$ need more than Two to cost 2 euros:

- 333, 442, 632
- 2222
- Wonder O

What is the orbifold of the given signatures?

Red types without miracles

Observation: If no miracles x then *AB....N corresponds to ABC...N since
$1+(\mathrm{A}-1) / 2 \mathrm{~A}+(\mathrm{B}-1) / 2 \mathrm{~B}+\ldots+(\mathrm{N}-1) / 2 \mathrm{~N}=2 \Leftrightarrow$
$(\mathrm{A}-1) / \mathrm{A}+(\mathrm{B}-1) / \mathrm{B}+\ldots+(\mathrm{N}-1) / \mathrm{N}=2$
=> Only types *333, *442, *632, *2222
can occur in addition to ** .

What is the orbifold of these?

Hybrids: mixture of blue and red or involve x

Observations :

- switching between n^{*} and *nn does not change the total cost
- replacing x with *
- replacing final * with x
- =>
- cannot be changed to a hybrid: *632
- *442 => $4 * 2$
- *333 => $3 * 3$
- *2222 => 2*22 => 22* => 22x
- ** => *x => xx

Orbifolds of the above?
A

Conclusions

Only 17 possible signatures $=17$ symmetry types for repeating patterns in the plane:

632	${ }^{} 442$	${ }^{*} 333$	${ }^{*} 2222$	${ }^{* *}$
			$2^{*} 22$	${ }^{*} \mathrm{x}$
	$4{ }^{*} 2$	$3^{*} 3$	22^{*}	xx
			$22 x$	
632	442	333	2222	O

Possible orbifolds for planar patterns

Orientable

Non-orientable
Sphere (6324423332222)
Torus O
Annulus **
Disk (*632 *442 *333 *2222
2*22 4*2 3*3 22*) Möbius band *x

Groupwork with textiles

1) Choose 6 different patterns in your group to be presented for Laura next Fri
2) Take pictures and upload (as a group) to MyCourses asap or latest next Tue
3) Presentations on Fri only 5min/group
4) Give criteria/justification (either artistic or mathematical) for your choice.
5) For the repeated patterns, find the signature and orbifold (ignore 'mistakes' and minor details in the prints)

Q: How to benefit from the classification in (flat) surface design in practise?

