

Shapes in Action Sept 21st

Orbifolds and topology

Program schedule for Sept 21st

- 13:15 Where are we?
- 13:30 Orbifolds: How to relate topology to patterns ?
- **14:00 Magic theorem consequences**
- 14:30 Break
- 14:50 Textile analysis in groups
- 15:30 Find orbifolds of your patterns

Where are we?

Goal : Understanding

Signature/Orbifold notation due to B. Thurston and J.H. Conway (90 [^])

Done:

- Basic ideas on symmetries and signatures for planar patterns
- Miracle theorem stated: All planar patterns cost 2 euros (free to choose your favorite unit !)
 Next: Based on Miracle theorem, what are the possible symmetries? Towards the proof for the 'Miracle Theorem' and its applicability, more topology

Pattern analysis steps

- 1. Draw all mirror lines (=lines of reflection)
- 2. Find the fundamental domain of the kaleidoscope
- 3. How many lines meet on each vertex? => Local symmetries of form *N
- 4. Find rotationally symmetric points (non-kaleidoscopic)

5. Are there mirror images without mirrors ? Then there must be at least one miracle **x**.

6. Helpful to look at the price list during the analysis and take the miracle theorem into account (Be patient: the proof will come a bit later...)

7. If there is there is only repletion into two directions (nothing from above) then the pattern is 'wandering' **O**

Signatures for plane patterns through *local* symmetries: *632 Cost=1+ $\frac{1}{2}(\frac{5}{6}+\frac{2}{3}+\frac{1}{2})=2euro$

- 6 lines
 of reflection
 3 lines of
 reflection
- 2 lines of reflection

Only one type of kaleidoscopic vertex (*2) and one type of rotational vertex (4) => signature 4*2

Cost = $\frac{3}{4} + 1 + \frac{1}{4} = 2euro$

- One reflection line
- Two rotation points

- No reflection lines
- Two different rotation points of order 2 (price ½ € each)
- One miracle (mirror image without a mirror, x 1€)
- => Total cost 1+ ½ + ½ = 2 €

Cannot split a fundamental domain in 2222 into two in 22x

• Which two rotation points to choose instead of 4?

- On the left
 NOT rotation
- points
- contradicting info on the red edges

Note: horizontal reflection (+ translation) in the middle does
 not induce a global glide reflection !

Every property has its cost (in euros)

Symbol	Price	Symbol	Price
0	2	* or x	1
2	1/2	2	1/4
3	2/3	3	1/3
4	3/4	4	3/8
5	4⁄5	5	2⁄5
6	5⁄6	6	5/12
n	(n-1)/n	n	(n-1)/2n

Aalto University **Note**: Blue symbols refer to operations that preserve orientation, red ones reverse orientation

Star * Cost =1euro

Star * (in the signature notation) denotes a *mirror* or *kaleidoscopic symmetry* = reflection wit respect to a line.

Star alone means: there is one (and only one) single line of mirror symmetry.

What kind of fundamental domains have we found ?

Triangle with no identifications on the boundary (different parts coming from reflection lines)

Topologically (= deformations that do not produce new holes are allowed): **Disk**

Signatures for plane patterns through *local* symmetries: *632 $Cost=1+\frac{1}{2}(\frac{5}{6}+\frac{2}{3}+\frac{1}{2})=2euro$ Note: reflection

- 6 lines
 of reflection
 3 lines of
 reflection
- 2 lines of reflection

Orbifold: Topological disk

Note: reflections equate same type of points (orbits) whose representatives in the chosen triangle give the orbifold (after identification)

Combination of rotation points and reflection lines Ex: 4*2

Fundamental domain: A triangle with some identifications on the boundary (red arrows due to the presence of a rotation point in the middle)

What is the **topological shape** of the piece **after the identification** (= gluing the red boundary arrows) ?

Disk orbifold again ?

Are there other types ?

Cost of a miracle (x) = 1euro

Signature *x Möbius band orbifold

1+1=2euro

Wanderings O

Torus orbifold !

Rotation points only Ex 2222

What is this shape after the boundary identifications ?

Ex: Brick walls/pavements

- 2 rotation points
- Mirror images without a reflection line
- => 22x

What is the orbifold of 22x symmetry?

What shape do you get when you do the identifications on the boundary ?

Real projective plane !

What about xx ?

 Two miracles (mirror images without reflection lines) no rotation points

Aalto University

Klein bottle !

Surfaces via identifying boundary components of polyhedrons

How many different signatures exist for plane patterns?

Assuming Magic Theorem to hold, this is similar question as asking:

How many different ways can I make change for one euro if I can use only 50, 20, 10 and 5 cents?

- Find all blue types
- Find all red types
- Find all hybrids

Blue types (orientation preserving)

Price for one n-fold rotational point is (n-1)/n <1 => need more than Two to cost 2 euros:

- 333, 442, 632
- 2222
- Wonder O

What is the orbifold of the given signatures?

Red types without miracles

Observation: If no miracles x then *AB....N corresponds to ABC...N since $1+(A-1)/2A+(B-1)/2B+...+(N-1)/2N = 2 \Leftrightarrow$

(A-1)/A+(B-1)/B+...+(N-1)/N = 2

=> Only types *333, *442, *632, *2222

can occur in addition to ** .

What is the orbifold of these?

Hybrids: mixture of blue and red or involve x

Observations :

- switching between n* and *nn does not change the total cost
- replacing x with * -"-
- replacing final * with x -"-
- =>
- cannot be changed to a hybrid: *632
- *442 => 4*2
- *333 => 3*3
- *2222 => 2*22 => 22* => 22x
- ** => *x => xx

Orbifolds of the above?

Conclusions

Only 17 possible signatures = 17 symmetry types for repeating patterns in the plane:

*632	*442	*333	*2222	**
			2*22	*X
	4*2	<mark>3*3</mark>	22*	XX
			22x	
632	442	333	2222	0

Possible orbifolds for planar patterns

Orientable

Sphere (632 442 333 2222)

Torus O

Annulus **

Disk (*632 *442 *333 *2222 2*22 4*2 3*3 22*)

Non-orientable

Projective plane 22x

Klein bottle xx

Möbius band *x

Groupwork with textiles

1) Choose 6 different patterns in your group to be presented for Laura next Fri

2) Take pictures and upload (as a group) to MyCourses asap or latest next Tue

3) Presentations on Fri only 5min/group

4) Give criteria/justification (either artistic or mathematical) for your choice.

5) For the repeated patterns, find the signature and orbifold (ignore 'mistakes' and minor details in the prints)

Q: How to benefit from the classification in (flat) surface design in practise?

