

Shapes in Action Sept 25th

Spherical patterns

Program schedule for Sept 25th

- **15:15 Spherical symmetries**
- **15:45 Folding activity**
- 16:30 Break
- **16:50 Symmetries of Archimedean solids**
- 17:45 Ideas for essays

Possible orbifolds for planar patterns

Orientable

Sphere (632 442 333 2222)

Torus O

Annulus **

Disk (*632 *442 *333 *2222 2*22 4*2 3*3 22*) Non-orientable

Projective plane 22x

Klein bottle xx

Möbius band *x

Orbifolds (of planar patterns) through boundary identifications

Note: Two Klein bottles give a torus

Two projective spaces give a Klein bottle

Every property has its cost (in euros)

Symbol	Price	Symbol	Price
0	2	* or x	1
2	1/2	2	1/4
3	2/3	3	1/3
4	3⁄4	4	3⁄8
5	4⁄5	5	2⁄5
6	5⁄6	6	5/12
n	(n-1)/n	n	(n-1)/2n

Aalto University **Note**: Blue symbols refer to operations that preserve orientation, red ones reverse orientation

What about spherical symmetries?

Rotation lines (vs points) and reflection planes (vs lines)

Spherical patterns are *cheaper* than planar patterns. (Will see....)

Ex: Bilateral symmetry = * interpreted as a reflection wrt to plane cost only 1 euro

Price of a rectangular table

Two intersecting reflection planes give signature *22, which cost 1+1/4+1/4=3/2 euro => spherical patterns can have different total prices.

An important quantity ch=change (in euros)

Change from signature Q: **ch**(Q) = 2-**cost**(Q) euro

Above:

- For the chair: ch(*)=2-cost(*)=2-1=1 euro
- For the table: ch(*22)=2-cost(*22)=2-3/2=1/2 euro

The Magic Theorem for spherical patterns

The signature of a spherical pattern costs exactly 2-2/d euros, where d is the total number of symmetries of the pattern.

Note:

- ch = 2/d
- for the chair d=2, for the table d=4
- In the plane case: d=∞ => only one Magic Theorem

Lets produce some objects for analysis via folding ...

Business card modules (T. Hull, J. Mosely, K. Kawamura)

Are triangles equilateral ? Why ?

 Make one left handed and one right handed module and try to **lock** them to a tetrahedron

- Mark the reflection lines on your module
- What is the fundamental domain/orbifold ?
- How many reflection lines (=reflection plane intersection with the module) meet on the vertices of the fundamental domain?
- What is the number of symmetries ?
- <u>Check that the Magic theorem holds</u>

2) Construct an octahedron from 4 units

- Same questions as for the tetrahedron above
- Calculate V-E+F, V=number of vertices, E=number of edges, F= number of faces (also for the tetrahedron)

Possible to construct also an icosahedron from these modules

Hint: Use tape in construction What other polyhedrons can be constructed from these modules ?

Same questions as for previous polyhedrons

Johnson solids with triangular faces

pentagonal dipyramid

triaugmented triangular prism

gyroelongated square dipyramid

14 different spherical symmetry classes

- **N=** 1,2,3... **but** digits 1 are omitted
- 1*=*11=*

Note:

• **However:** For example 11 11 = two rotation points of order 11

Business card cube

6 modules (one/face) constitute a ('unpaneled') cube, that can be joined together with flaps that remain outside.

How do you 'panel' a cube ?

26.9.2018 20

Same questions as for earlier polyhedrons !

Building idea: Menger's Sponge

Jeannine Mosely 66048 business cards

Three interlinked Level One Menger Sponges, by Margaret Wertheim.

Union Station 2014, Worcester more thand 60 000 business cards, 500 assistants

Mosely snowflake sponge 2012 49 000 business cards

James Lucas 2011, periodic table 1414 business cards¹⁸ ²³

The five 'true blue' types (first one)

Total cost = 2-2/d <2 for every d= 1, 2, 3, =>

- no wonder rings
- no more than 3 digits (distinct to 1): $(N-1)/N \ge \frac{1}{2}$ for all, N=2,3,...
- if three digits, then at least one must be 2 (²/₃+²/₃+²/₃=2, (N-1)/N≥²/₃
 for all N≥3)

Two digit case: MN

(In fact only case M = N occurs)

Case two 2's: 22N (second)

1+(N-1)/N<2 for all N=2,3,4,5,...

Last 3 of the five 'true blue' types

Three digits, one 2:

- one digit must be $3(\frac{1}{2}+\frac{3}{4}+\frac{3}{4}=2)$
- the remaining digit must be 3, 4 or 5 ($\frac{1}{2}+\frac{2}{3}+\frac{5}{6}=2$) \Rightarrow 332, 432, 532
- Note: $ch(332)=2-(\frac{2}{3}+\frac{2}{3}+\frac{1}{2})=\frac{1}{6}=\frac{2}{12}$ $ch(432)=\frac{2}{24}$ $ch(532)=\frac{2}{60}$

Cianatura 200

The five 'true red' types

No **, *x, xx signatures, all of type *AB...N

ch(*AB...N)=2-1-((A-1)/2A+...+(N-1)/2N),ch(AB...N)=2-((A-1)/A+...+(N-1)/N),

=>

ch(*AB...N)=1/2ch(AB...N)

Note: only *NN is possible with two digits !

C1

*432, *532, *332 **ch(*332) =** $2-(1+\frac{1}{4}+\frac{1}{3}+\frac{1}{3})= 1/12$

Compare with orientation reversing symmetries of five platonic solids.

The four Hybrid types

All possible variants (as in the plane case)

- *532
- *432
- *332 -> 3*2
- *22N -> 2*N
- *NN -> N* -> Nx

3*2 and N*

Build an Archimedean solid (or its dual)

- Study its symmetries
- What is the number of vertices (V) ?
- What is the number of edges (E) ?
- What is the number of faces (F) ?
- Calculate V-E+F for each polyhedron

1) Truncated tetrahedron

Truncated Tetrahedron

(Dual Catalan solid: Triakis truncated tetrahedron)

3.4

Dual Catalan solid: triakis octahedron

3) Truncated octahedron

Truncated Octahedron

Dual Catalan solid: tetrakis hexahedron

3.4

4) Truncated cuboctahedron

Dual Catalan solid: disdyakis dodecahedron

5) Icosidodecahedron

5b) Dual Catalan solid: Rhombic triacontahedron

6) Truncated icosahedron

Dual Catalan solid: pentakis dodecahedron

7) Rhombicuboctahedron

Dual Catalan solid:

Deltoidal icositetrahedron

8) Rhombicosidodecahedron

Dual Catalan solid: Deltoidal hexacontahedron

9) Truncated dodecahedron

Dual Catalan solid: Triakis icosahedron

10) Icosidodecahedron

Dual Catalan solid: Disdyakis triacontahedron

Aalto University

Exercise to be returned on 2nd Oct

- 1) Find fundamental domain and signature of Platonic solids and check the validity of Miracle theorem:
- **Prize(symmetry)=2-2/d, d=number of symmetries (***Make use of the models you built*)
- 2) Find signature of at least four Archimedean/Catalan solids

The Tetrahedron The Cube

3) What is the value of V-E+F in each

The Octahedron

The Dodecahedron

The Icosahedron

case?

Ex: tetrahedron *332 1+2/6+2/6+1/4= 1+11/12 =2-2/24, d=24=4x6

2

E

в

Some ideas for an essay

- Nanoscale symmetries (scanning electronic microscope available, own samples + support from Aalto Junior)
- 3D printing (or other method) to produce examples of spherical symmetries (Henry Segerman)
- Programs, other methods to produce planar tilings in practice
- Continue processing textiles
- Patterns from specific cultures, traditions etc.

. . . .