Aalto University

Shapes in Action Sept 25th

Spherical patterns

Program schedule for Sept $25^{\text {th }}$

15:15 Spherical symmetries
15:45 Folding activity
16:30 Break
16:50 Symmetries of Archimedean solids
17:45 Ideas for essays

Possible orbifolds for planar patterns

Orientable

Sphere (6324423332222)

Torus O

Annulus **
Disk (*632 *442 *333 *2222
2*22 4*2 3*3 22*)

Non-orientable
Projective plane 22x
Klein bottle $x x$

Möbius band *x

Orbifolds (of planar patterns) through boundary identifications

 boundary after gluing)

(non-empty boundary)

Note: Two Klein bottles give a torus

Two projective spaces give a Klein bottle

Every property has its cost (in euros)

Symbol	Price	Symbol	Price
0	2	* or x	1
2	$1 / 2$	2	$1 / 4$
3	$2 / 3$	3	$1 / 3$
4	$3 / 4$	4	$3 / 8$
5	$4 / 5$	5	$2 / 5$
6	$(n-1) / n$	6	$5 / 12$
n		n	$(n-1) / 2 n$

What about spherical symmetries?

Rotation lines (vs points) and reflection planes (vs lines)

Aalto University
Temari balls, Bathsheba sculptures,

Spherical patterns are cheaper than planar patterns. (Will see....)

Ex: Bilateral symmetry $=$ * interpreted as a reflection wrt to plane cost only 1 euro

Price of a rectangular table

Two intersecting reflection planes give signature *22, which cost 1+1/4+1/4=3/2 euro => spherical patterns can have different total prices.

An important quantity ch=change (in euros)

Change from signature Q : $\boldsymbol{c h}(Q)=2-\operatorname{cost}(Q)$ euro

Above:

- For the chair: $\operatorname{ch}\left({ }^{*}\right)=2-\operatorname{cost}(*)=2-1=1$ euro
- For the table: $\operatorname{ch}(* 22)=2-\operatorname{cost}(* 22)=2-3 / 2=1 / 2$ euro

The Magic Theorem for spherical patterns

The signature of a spherical pattern costs exactly 2-2/d euros, where d is the total number of symmetries of the pattern.

Note:

- ch = 2/d
- for the chair $d=2$, for the table $d=4$
- In the plane case: $d=\infty=>$ only one Magic Theorem

Lets produce some objects for analysis via folding ...

Business card modulles (T. Hull, J. Mosely, K. Kawamura)

Left Handed Unit

Right Handed Unit

Are triangles equilateral ? Why?

1) Make one left handed and one right handed module and try to lock them to a tetrahedron

- Mark the reflection lines on your module
- What is the fundamental domain/orbifold?
- How many reflection lines (=reflection plane intersection with the module) meet on the vertices of the fundamental domain?
- What is the number of symmetries ?
- Check that the Magic theorem holds

2) Construct an octahedron from 4 units

- Same questions as for the tetrahedron above
- Calculate V-E+F, V=number of vertices, $E=n u m b e r ~ o f ~$ edges, $\mathrm{F}=$ number of faces (also for the tetrahedron)

Possible to construct also an icosahedron from these modules

Hint: Use tape in construction
What other polyhedrons can be constructed from these modules ?

Same questions as for previous polyhedrons

Johnson solids with triangular faces

triangular dipyramid

snub disphenoid

pentagonal dipyramid

triaugmented triangular prism

gyroelongated square dipyramid

Aalto University

14 different spherical symmetry classes

*532	*432	*332	*22N	*NN
				N*
		3*2	2*N	
				Nx
532	432	332	22N	NN

Note:

- $\mathbf{N}=1,2,3 \ldots$ but digits 1 are omitted
- 1*=*11=*
- However: For example 1111 = two rotation points of order 11

Business card cube

6 modules (one/face) constitute a ('unpaneled') cube, that can be joined together with flaps that remain outside.

How do you 'panel' a cube ?

Building idea: Menger's Sponge

Jeannine Mosely 66048 business cards

Three interlinked Level One Menger Sponges, by Margaret Wertheim.

Union Station 2014, Worcester more thand 60000 business cards,
Mosely snowflake sponge 2012 49000 business cards

A
Aalto University

James Lucas 2011, periodic table 1414 business cards

The five 'true blue’ types (first one)

Total cost = 2-2/d <2 for every $\mathbf{d = 1 , 2 , 3}, \ldots$ =>

- no wonder rings
- no more than 3 digits (distinct to 1): $(N-1) / N \geq 1 / 2$ for all, $N=2,3, \ldots$
- if three digits, then at least one must be $2(2 / 3+2 / 3+2 / 3=2,(N-1) / N \geq 2 / 3$ for all $\mathrm{N} \geq 3$)

Two digit case: MN

(In fact only case $M=N$ occurs)

Case two 2's: 22N (second)

$1+(\mathrm{N}-1) / \mathrm{N}<2$ for all $\mathrm{N}=2,3,4,5, \ldots$

Last 3 of the five "true blue' types

Three digits, one 2:

- one digit must be $3(1 / 2+3 / 4+3 / 4=2)$
- the remaining digit must be 3,4 or $5(1 / 2+2 / 3+5 / 6=2)$
$\Rightarrow 332,432,532$
Note: $\operatorname{ch}(332)=2-(2 / 3+2 / 3+1 / 2)=1 / 6=2 / 12$
$\operatorname{ch}(432)=2 / 24$
$\operatorname{ch}(532)=2 / 60$

The five 'true red' types

No **, *x, xx signatures, all of type *AB...N

$$
\begin{aligned}
& \operatorname{ch}\left({ }^{*} \mathrm{AB} \ldots \mathrm{~N}\right)=2-1-((\mathrm{A}-1) / 2 \mathrm{~A}+\ldots+(\mathrm{N}-1) / 2 \mathrm{~N}), \\
& \operatorname{ch}(\mathrm{AB} \ldots \mathrm{~N})=2-((\mathrm{A}-1) / \mathrm{A}+\ldots+(\mathrm{N}-1) / \mathrm{N}),
\end{aligned}
$$

=>

$$
\operatorname{ch}\left({ }^{*} \mathrm{AB} \ldots \mathrm{~N}\right)=1 / 2 \operatorname{ch}(\mathrm{AB} \ldots \mathrm{~N})
$$

Note: only *NN is possible with two digits !

*22N

*MN2
 *432, *532, *332
 ch(*332) $=2-(1+1 / 4+1 / 3+1 / 3)=1 / 12$

Compare with orientation reversing symmetries of five platonic solids.

The four Hybrid types

All possible variants (as in the plane case)

- *532
- *432
- *332 -> 3*2
- *22N -> 2*N
- *NN -> N* -> Nx

3*2 and N^{*}

$-N$

2*N and Nx

Build an Archimedean solid (or its dual)

- Study its symmetries
- What is the number of vertices (V) ?
- What is the number of edges (E) ?
- What is the number of faces (F) ?
- Calculate V-E+F for each polyhedron

1) Truncated tetrahedron

Truncated Tetrahedron

(Dual Catalan solid: Triakis truncated tetrahedron)

2) Truncated cube

Dual Catalan solid: triakis octahedron

3) Truncated octahedron

Truncated Octahedron

Dual Catalan solid: tetrakis hexahedron

4) Truncated cuboctahedron

Dual Catalan solid:
 disdyakis dodecahedron

5) Icosidodecahedron

5b) Dual Catalan solid: Rhombic triacontahedron

6) Truncated icosahedron

Dual Catalan solid: pentakis dodecahedron

7) Rhombicuboctaherirnn

Dual Catalan solid:
 Deltoidal icositetrahedron

8) Rhombicosidodecahedron

Dual Catalan solid:

Deltoidal hexacontahedron

9) Truncated dodecahedron

Dual Catalan solid:

Triakis icosahedron

10) Icosidodecahedron

Dual Catalan solid: Disdyakis triacontahedron

Exercise to be returned on $2^{\text {nd }}$ Oct

1) Find fundamental domain and signature of Platonic solids and check the validity of Miracle theorem:
Prize(symmetry)=2-2/d, d=number of symmetries (Make use of the models you built)
2) Find signature of at least four Archimedean/Catalan solids
3) What is the value of V-E+F in each case?

The Octahedron

Some ideas for an essay

- Nanoscale symmetries (scanning electronic microscope available, own samples + support from Aalto Junior)
- 3D printing (or other method) to produce examples of spherical symmetries (Henry Segerman)
- Programs, other methods to produce planar tilings in practice
- Continue processing textiles
- Patterns from specific cultures, traditions etc.

