
Shapes in Action
Sept 25th

Spherical patterns



Program schedule  for Sept 25th

15:15 Spherical symmetries
15:45 Folding activity
16:30 Break
16:50 Symmetries of Archimedean solids
17:45 Ideas for essays



Possible orbifolds for planar patterns

Orientable
Sphere ( 632  442   333   2222 )
Torus ¢
Annulus **
Disk ( *632  *442 *333   *2222 
2*22    4*2 3*3 22*  )

Non-orientable

Projective plane  22x

Klein bottle   xx

Möbius band *x
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Orbifolds (of planar patterns) through 
boundary identifications
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Torus Klein bottle Projective 
plane

(no 
boundary 
after 
gluing)

Annulus Möbius band
(non-empty 
boundary)

Sphere

Disk



Note: Two Klein bottles give a torus
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Two projective spaces give a Klein bottle
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Every property has its cost (in euros)
Symbol Price Symbol Price

¢ 2 * or x 1

2 ½ 2 ¼

3 ⅔ 3 ⅓

4 ¾ 4 ⅜

5 ⅘ 5 ⅖
6 ⅚ 6 5/12

n (n-1)/n n (n-1)/2n
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Note: Blue symbols refer to operations that preserve 
orientation, red ones reverse orientation



What about spherical symmetries?
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Rotation lines (vs points) and reflection 
planes (vs lines)
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Spherical patterns are cheaper than planar patterns.
(Will see….)
Ex: Bilateral symmetry =  * interpreted as a reflection wrt to 
plane cost only 1 euro
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Price of a rectangular table
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Two intersecting reflection planes give signature *22, which cost
1+1/4+1/4=3/2 euro => spherical patterns can have different total prices.



An important quantity ch=change (in euros)
Change from signature Q: ch(Q) = 2-cost(Q) euro

Above:

• For the chair: ch(*)=2-cost(*)=2-1=1 euro
• For the table: ch(*22)=2-cost(*22)=2-3/2=1/2 euro
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The Magic Theorem for spherical patterns

The signature of a spherical pattern costs exactly 2-2/d euros,
where d is the total number of symmetries of the pattern.

Note: 
• ch = 2/d
• for the chair d=2, for the table d=4
• In the plane case: d=∞ => only one Magic Theorem
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Lets produce some objects for analysis via folding …
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Business card modules (T. Hull, J. Mosely, K. Kawamura)



Are triangles equilateral ? Why ?
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1) Make one left handed and one right 
handed module and try to lock them to  
a tetrahedron

• Mark  the reflection lines on your module
• What is the fundamental domain/orbifold ?
• How many reflection lines (=reflection plane intersection with the module) 

meet on the vertices of the fundamental domain?
• What is the number of symmetries ?
• Check that the Magic theorem holds
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2)  Construct an octahedron from 4 units

• Same questions as for the tetrahedron above
• Calculate V-E+F, V=number of  vertices, E=number of 

edges, F= number of faces (also for the tetrahedron)



Possible to construct also an 
icosahedron from these modules 
S
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Hint: Use tape in construction
What other polyhedrons can be constructed
from these modules ?

Same questions as for previous polyhedrons 



Johnson 
solids with 
triangular 
faces
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14 different spherical symmetry classes

*532 *432 *332 *22N *NN
N*

3*2 2*N
Nx

532 432 332 22N NN
Note:
• N= 1,2,3… but digits 1 are omitted
• 1*=*11=*
• However: For example 11 11 = two rotation points of order 11
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Business card cube
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6 modules (one/face) constitute a 
(‘unpaneled’)  cube, that can be joined 
together with flaps that remain outside.

How do you  ‘panel’ a cube ?

Same questions as for earlier polyhedrons !
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Building idea: Menger’s Sponge

Jeannine Mosely
66048 business cards
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Three interlinked Level One Menger Sponges, 
by Margaret Wertheim.
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Mosely snowflake  sponge 2012
49 000 business cards

Union  Station 2014, Worcester 
more thand 60 000 business cards, 
500 assistants

James Lucas 2011, 
periodic table
1414 business cards



The five ‘true blue’ types (first one) 
Total cost = 2-2/d <2 for every d= 1, 2, 3, …. =>
• no wonder rings  ¢
• no more than 3 digits (distinct to 1):  (N-1)/N ≥ ½ for all, N=2,3,…
• if three digits, then at least one must be 2 (⅔+⅔+⅔=2, (N-1)/N≥⅔ 

for all N≥3)
Two digit case: MN 
(In fact only case M = N occurs)
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Case two 2’s: 22N (second)
1+(N-1)/N<2 for all N=2,3,4,5,…
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Last 3 of the five ‘true blue’ types
Three digits, one 2:
• one digit must be 3 (½+¾+¾=2)
• the remaining digit must be 3, 4 or 5 (½+⅔+⅚=2) 
Þ 332, 432, 532 
Note: ch(332)=2-(⅔+⅔+½)=⅙=2/12 
ch(432)= 2/24 
ch(532)=2/60
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The five ‘true red’ types
No **, *x, xx signatures, all of type *AB…N

ch(*AB…N)=2-1-((A-1)/2A+…+(N-1)/2N),
ch(AB…N)=2-((A-1)/A+…+(N-1)/N),

=> 
ch(*AB…N)=½ch(AB…N)

Note: only *NN is possible with two digits !
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*22N
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*MN2
*432, *532, *332
ch(*332) = 2-(1+¼+⅓+⅓)= 1/12

Compare with orientation reversing symmetries of five platonic solids.
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The four Hybrid types
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All possible variants (as in the plane case)
• *532
• *432
• *332 -> 3*2
• *22N -> 2*N
• *NN -> N* -> Nx



3*2 and N*
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2*N and Nx
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Build an Archimedean solid (or its dual)

• Study its symmetries
• What is the number of vertices (V) ?
• What is the number of edges (E) ?
• What is the number of faces (F) ?

• Calculate V-E+F for each polyhedron
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1) Truncated tetrahedron
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(Dual Catalan solid: Triakis truncated tetrahedron)



2) Truncated cube
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Dual Catalan solid: triakis octahedron



3) Truncated octahedron
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Dual Catalan solid: tetrakis hexahedron 



4) Truncated cuboctahedron
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Dual Catalan solid:
disdyakis dodecahedron



5) Icosidodecahedron
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5b) Dual Catalan solid: Rhombic 
triacontahedron 
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6) Truncated icosahedron
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Dual Catalan solid: pentakis
dodecahedron



7)  Rhombicuboctahedron
Dual Catalan solid:
Deltoidal icositetrahedron
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8) Rhombicosidodecahedron

26.9.2018
42

Dual Catalan solid:
Deltoidal hexacontahedron



9) Truncated dodecahedron
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Dual Catalan solid: 
Triakis icosahedron



10) Icosidodecahedron
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Dual Catalan solid: Disdyakis
triacontahedron



Exercise to be returned on 2nd Oct
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1) Find fundamental domain and 
signature of Platonic solids and 
check the validity of Miracle 
theorem:
Prize(symmetry)=2-2/d, d=number of 
symmetries (Make use of the models 
you built)
2) Find signature of at least four 

Archimedean/Catalan solids
3) What is the value of V-E+F in each       
case?

Ex: tetrahedron *332
1+2/6+2/6+1/4= 1+11/12 =2-2/24,
d=24=4x6



Some ideas for an essay

• Nanoscale symmetries (scanning electronic microscope 
available, own samples + support from Aalto Junior)

• 3D printing (or other method) to produce examples of 
spherical symmetries (Henry Segerman)

• Programs, other methods to produce planar tilings in practice
• Continue processing textiles
• Patterns from specific cultures, traditions etc.
• ….
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