SHAPES IN ACTION

9.10.2018

Symmetry in Projective Geometry

Taneli Luotoniemi

Axioms of geometry:

Two points define a line
Two lines define a point
unless their 'parallel' $:$

$$
\begin{gathered}
\text { Point at Infinity } \\
\rightarrow \text { projective line } \\
\text { =the 'space' of lines through a point }
\end{gathered}
$$

Segments in the projective line

Line at Infinity

\rightarrow projective plane
$=$ the 'space' of planes through a point

Polygons in the projective plane

Incidence structure

the meet of two lines is a point
the join of two points is a line

Projective duality:

Points \& Lines \longleftrightarrow Lines \& Points

Point-wise world vs. Line-wise world

Exercise:

What is the dual of translation?

Pappus' Theorem

Pappus of Alexandria (circa 290-350 AD)

Exercises:

What if the two ranges of points are in perspective?
What if two lines are parallel?

Exercise:

What is the dual of Pappus' theorem?

Projective Configurations

Pascal's theorem:

Blaise Pascal (1623-1662)

Exercise:

What is the dual of Pascal's theorem?

Brianchon's theorem

Charles Julien Brianchon (1783-1864)

Filippo Brunelleschi (1377-1446)

Leon Battista Alberti (1404-1472)

Perspective

Alberti's distance point method from "Della Pittura", 1435

Exercise:

How to tile the plane with a given rectangle in perspective?

Cross ratio

most important invariant in the subject not just points, but of lines as well
Special case: Chasles' theorem
(related to inscribed angle theorem on the circle,
but works on any conics too)

Harmonic conjugates / harmonic range of points

dividing internally \& externally

Exercise:
 Construct a harmonic range

if one point is the midpoint of the two others, where is its harmonic conjugate?

Harmonic pencils of lines
e.g. angle bisectors, quadrilateral diagonals

Perspectivity \& Projectivity

Projective view on conic sections

Circle

Ellipse

Parabola

Hyperbola

Euclidean geometry in the context of projective geometry?

Euclidean plane = projective plane with 'one line removed'

Hierarcy of geometries:

Euclidean geometry (notion of 'perpendicular')
\uparrow
affine geometry (notion of 'parallel')
\uparrow
projective geometry

Exercise:
 Desargues' Theorem

Girard Desargues (1591-1661)

THE DESARGUES CONFIGURATION

10 points
10 lines
5 planes
(3 lines and 3 planes per point 3 points and 2 planes per line 6 points and 4 lines per plane)

DESARGUES'

THEOREM
if two triangles are in perspective from a point (point of perspectivity), they are also in perspective from a line (axis of perspectivity)

