SHAPES IN ACTION
 12.10.2018
 Projective Geometry cont.
 \& Rotation Around a Plane
 Taneli Luotoniemi

Boy's Surface (Mathematical Research Institute of Oberwolfach, 1991)

Pole-polar duality
 Apollonius of Perga (circa 260-190 B.C.)

Exercise:

Does the construction work for other conics?

Hyperbolic geometry

More parallels to a line through a point Sum of triangle angles < 180 degrees
Circumference of a circle $>2 \mathrm{x}$ pi x radius

Beltrami-Klein disk model

Hyperbolic geometry

parallels
ultraparallels
perpendicularity
reflection with respect to a point

THE DESARGUES CONFIGURATION AS A GNOMONIC PROJECTION

```
TETRAHEDRON
(3-SIMPLEX)
4 vertices
6 \text { edges}
4 faces (triangles)
```

TETRAHEDRON	CUBOCTAHEDRON
(3-SIMPLEX)	(EXPANDED
4 vertices	TETRAHEDRON)
6 edges	12 vertices
4 faces (triangles)	24 edges
	14 faces (8 triangles \& 6 squares)

TETRAHEDRON	CUBOCTAHEDRON	
(3-SIMPLEX) (EXPANDED		
4 vertices	TETRAHEDRON)	GNOMONIC
6 edges	faces (triangles)	12 vertices 24 edges 14 faces (8 triangles $\& 6$ squares)

TETRAHEDRON	CUBOCTAHEDRON	
(3-SIMPLEX)	(EXPANDED	
4 vertices	TETRAHEDRON)	GNOMONIC
6 edges		
4 faces (triangles)	12 vertices	PROJECTION
	24 edges	
	14 faces (8 triangles \& 6 squares)	

THE COMPLETE QUADRILATERAL 6 points
4 lines
(2 lines per point 3 points per line)

PENTACHORON

5 vertices
10 edges
10 faces (triangles)
5 cells (tetrahedra)

Constructing the pentachoron

-

-

PENTACHORON

5 vertices
10 edges
10 faces (triangles)
5 cells (tetrahedra)

EXPANDED PENTACHORON
20 vertices
60 edges
70 faces (40 triangles +30 squares)
30 cells (10 tetrahedra +20 triangular prisms)

GNOMONIC PROJECTION OF THE EXPANDED PENTACHORON
 THE DESARGUES CONFIGURATION
 10 points
 10 lines
 5 planes
 (3 lines and 3 planes per point 3 points and 2 planes per line 6 points and 4 lines per plane)

5-SIMPLEX

6 vertices
15 edges
20 faces (triangles)
15 cells (tetrahedra)
6 hypercells (pentachora)

5-SIMPLEX \longrightarrow EXPANDED 5-SIMPLEX

6 vertices

15 edges
20 faces (triangles)
15 cells (tetrahedra)
6 hypercells (pentachora)

30 vertices
120 edges
210 faces (120 triangles +90 squares)
180 cells (60 tetrahedra +120 triangular prisms)
62 hypercells (12 pentachora +30 tetrahedral prisms +20 three-by-three duoprisms)

GNOMONIC PROJECTION

 OF THE EXPANDED 5-SIMPLEX
=

'THE LARGE DESARGUES

 CONFIGURATION'15 points
20 lines
15 planes
6 hyperplanes
(4 lines, 6 planes, and 4 hyperplanes per point 3 points, 3 planes, and 3 hyperplanes per line 6 points, 4 lines, and 2 hyperplanes per plane 10 points, 10 lines, and 5 planes per hyperplane)

SIX DESARGUES
CONFIGURATIONS
IN THE LARGE
DESARGUES
CONFIGURATION

PHYSICAL MODEL

20 acrylic tubes \& 38 painted wooden rods

CONSTRUCTION OF THE DESARGUES
 CONFIGURATION

Take 5 random points floating in 4-dimensional space, and connect them with 10 lines and 10 planes (white). If the lines and planes are cut with a hyperplane that neither contains nor is parallel to any of them, the intersections of the lines and planes will be 10 points and 10 lines forming an instance of Desargues configuration (black).

PERSPECTIVITY BETWEEN TWO TETRAHEDRA

If two tetrahedra are in perspective from a point (white), then the intersections of the extensions of the corresponding edges are coplanar (black).

PERSPECTIVITY BETWEEN THREE TRIANGLES

If the three centers of perspectivity (orange, green, purple) determined by three triangles (blue, pink, yellow) are collinear (black), then the intersections of the extensions of corresponding edges are collinear (white) as well.

$$
\begin{gathered}
\text { x } 3 \\
\text { x } 1 \\
\text { x } 1
\end{gathered}
$$

TIC-TAC-TOE

Game for two players (black \& white), who take turns inserting wooden rods into the tubes of the configuration.
The first player to occupy an entire plane or an entire point wins.

Exercise: Play few rounds of 'projective' tic-tac-toe with your classmate

Win by an occupation of a plane

THE "PRISMARY": A MODEL OF THE 3-3 DUOPRISM

FOUR-DIMENSIONAL HYPERCELLS IN THE EXPANDED 5-SIMPLEX

PENTACHORON
5 vertices
10 edges
10 faces (triangles)
5 cells (tetrahedra)

TETRAHEDRAL PRISM

8 vertices
16 edges
14 faces (8 triangles +6 squares)
6 cells (2 tetrahedra +4 triangular prisms)

3-3 DUOPRISM

9 vertices
18 edges
15 faces (9 triangles +6 squares)
6 cells (triangular prisms)

The 'Prismary'

The parallel edges of the 3-3 duoprism converge towards the vanishing points on the horizon lines, of which there are two - one for both of the cycles of prisms

Illustration of the triangular prism with all nine edges having the same length:
the contour $=$ triangle $\&$ square meeting along an edge, as if unfolded down to the same plane
the interior $=$ one triangle (undistorted) \& two distorted squares, all meet at a vertex in the middle.

The undistorted triangle and square are in 'front', and the other polygons are in the 'back'.

One third rotation along the plane parallel to the pair of triangles makes one square from the back to appear in the front, and one square in the front disappears to the back.

If the prism does a half-turn around the plane parallel to the front square, one of the triangular faces in the back appears in the front, and one triangle in the front disappears to the back.
the graph-like structure of this map itself appears like a triangular prism, as the six possible states correspond to the six vertices of the solid.

A map the nine different stages the 'Prismary'
they are connected by one third rotations along either of the cycles.
the nine possible states correspond to the nine vertices
-> the graph like structure of this map itself appears like a 3-3 duoprism

CROOKED HOUSES:

 VISUALIZING THE POLYCHORA WITH HYPERBOLIC PATCHWORKS
Constructing the hypercube

Robert A. Heinlein:

"...And He Built a Crooked House"
in Astounding Science Fiction, February 1941

(Illustrations by Charles Schneeman)

Flattening a soft tetrahedron

Truncation of the cube

Cube

Truncated Cube

Cuboctahedron
(Rectified Cube)

Truncated
Octahedron (Bitruncated Cube)

Octahedron
(Birectified
Cube)

Truncation of the tetrahedron

Tetrahedron

Truncated
Tetrahedron

Octahedron (Rectified Tetrahedron)

Truncated Tetrahedron Tetrahedron (Birectified (Bitruncated Tetrahedron) Tetrahedron)

Truncation of the hypercube

Hypercube

16 vertices

32 edges
24 faces (squares)
8 cells (cubes)

Truncated Hypercube

64 vertices
128 edges
88 faces (64 triangles \& 24 octagons)
24 cells (8 truncated cubes \& 16 tetrahedra)

Rectified Hypercube

32 vertices
96 edges
88 faces (64 triangles \& 24 squares)
24 cells (8 cuboctahedra \& 16 tetrahedra)

Bitruncated Hypercube

96 vertices
192 edges
120 faces (32 triangles \& 24 squares \& 64 hexagons)
24 cells (8 truncated octahedra \& 16 truncated tetrahedra)

Truncation of a tesseract edge

64 hexagons, 8 colors, 8 of each

Connections

"Crooked House II":
Hyperbolic Patchwork Model of the Bitruncated Hypercube

The appearance of quarter rotations of a cube along three perpendicular planes

The appearance of rotations of the bitruncated hypercube along six perpendicular planes

Determining the Topology

Euler characteristic $(X)=V-E+F$

$$
\begin{gathered}
\text { \#faces }=64 \\
\text { \#edges }=(64 \times 6) / 2=192 \\
\text { \#vertices }=(64 \times 6) / 4=96 \\
V-E+F=96-192+64=-32
\end{gathered}
$$

For a closed orientable surface: $x=2-2 g$
Genus: 17
Topology: a torus with 17 handles

Bitruncations of other regular polychora?

Bitruncated Hexadecachoron
(Bitruncated 16-cell)?

Bitruncated Pentachoron

$5+5$ truncated tetrahedra
Hyperbolic surface of 20 hexagons, meeting 4 at a vertex
Topology: a torus with 6 handles
"Crooked House I":
Hyperbolic Patchwork Model of the Bitruncated Pentachoron

Bitruncated Icositetrachoron (Bitruncated 24-cell)

$24+24$ truncated cubes
Hyperbolic surface of 144 octagons, meeting 4 at a vertex Topology: a torus with 73 handles

Bitruncated Hecatonicosachoron (Bitruncated 120-cell) \& Bitruncated Hexacosichoron (Bitruncated 600-cell)

600 truncated tetrahedra + 120 truncated icosahedra
Hyperbolic surface of 1200 hexagons, meeting 4 at a vertex Topology: a torus with 299 handles

Crocheted version of the 'Crooked House I' by Kirsi Peltonen with a constant negative curvature

THE "KINOCHORON": MANIPULABLE WIRE MODEL OF THE 16-CELL

Dimensions by Aurélien Alvarez, Étienne Ghys, and Jos Leys

http://www.dimensions-math.org/

Stereographic projection of the octahedron

Dimensions by Aurélien Alvarez, Étienne Ghys, and Jos Leys

http://www.dimensions-math.org/

3D prints by Henry Segerman

http://www.shapeways.com/designer/henryseg

Constructing the 16-cell

The 16-cell

App: Jenn 3d" by Fritz Obermeyer (http://jenn3d.org/)

The Kinochoron

洮

The Kinochoron: the tetrahedral cells

Type:	A	B	C	D	E
Layer:	1	2	3	4	5
Quantity:	1	4	6	4	1
Convex faces:	4	3	2	1	0
Concave faces:	0	1	2	3	4

The Kinochoron: the 'hyper-rotation'

