Aalto University

Fractal Geometry

Phenomena that cannot be explained by classical geometry
Shapes in Action Tue 16 ${ }^{\text {th }}$ Oct

Contents

1. An introduction to Fractal Geometry
2. Times before computers
3. Benoit Mandelbrot
4. Indra's pearl
5. Fractals and Nature
6. Self similarity in architecture
7. Self similar wave origami

'Natural' vs. ‘man-made’ objects

What do these pictures present?

What happened ? Why does the trick work?

Many objects look the same in different scales.

How can one distinguish the correct size?

Who invented 'fractal geometry' in the sense of 'new geometry of nature'?

Many fundamental examples

 due to classical mathematics!George Ferdinand Ludwig Philipp Cantor 1845-1918

- the crisis of the dimension
- exceptional objects
- 'mathematical monsters'
- limits of fundamental notions
('curve’, ‘continuous')
 Typical Nature?

Cantor's middle third set (1883)

- are there any points left in the limit?
- subintervals left $(2 / 3)^{n} \rightarrow 0$ as $n \rightarrow \infty$
- endpoints never removed!
- infinite decimal presentation of 0's and 2 's in a base 3 ($1 / 3=0.0222 \ldots$!)
- is it possible to numerate them ?
- size of the limit set vs $[0,1]$?
- dimension of the limit set?
- connectedness of the limit set?
- a self-similar set
- a prototype of a fractal set

Giuseppe Peano, 1858-1932

What is a curve?

What is the dimension of a curve?
Can a curve fill a square/cube/hypercube/...?

A Peano curve by David Hilbert (1862-1943)

 תূת
 [๘ை

 जn

 "

园

Ueber die stetige Abbildung einer Linie auf ein Flăchenstück.*)

David Hubert in Königsberg i. Pr.

Peano nat kürzlich in den Mathematischen Anualen**) durch eine arithmetische Betrachtung gezeigt, wie die Punkte einer Linie stetig auf die Punkte eines Flächenstilckes abgebildet werden könuen. Die für eine solche Abbildung erforderlichen Functionen lassen sich in übersichtlicherer Weise herstellen, wenn man sich der folgenden geometrischen Anschauung bedient. Die abzubildende Linie - etwa eine Gerade von der Länge 1 - theilen wir zunächst in 4 gleiche Theile $1,2,3,4$ und das Flächenstück, welches wir in der Gestalt eines Quadrates von der Seitenänge 1 annehmen, theilen wir durch $z \mathrm{we}$ zu einander senkrechte Gerade in 4 gleiche Quadrate 1, 2, 3, 4 (Fig. 1) Zweitens theilen wir jede der Theilstrecken $1,2,3,4$ wiederum in 4 gleiche Theile, so dass wir auf der Geraden die 16 Theilstrecken $1,2,3, \ldots, 16$ erhalten; gleichzeitig werde jedes der 4 Quadrate 1,2 3,4 in 4 gleiche Quadrate getheilt und den so entstehenden 16 Quadraten $\stackrel{1}{2}+ \pm, 4, \quad 12$
\qquad $\xrightarrow{40}$

Fig. 1.

Fig. 2

Fig. 3.
werden dann die Zahlen 1,2.. 16 eingeschricben, wobei jedoch die Reihenfolge der Quadrate so zu wählen ist, dass jedes folgende Quadrat sich mit einer Seite an das vorhergehende anlehnt (Fig. 2). Denken wir uns dieses Verfahren fortgesetat - Fig. 3 veranschaulicht den
-) Vergl. eine Mittheilung über deneelben Gegenetand in den Verbandlongen der Gesellichaft deutscher Naturforscher and Aerzte. Bremen 1890.
${ }^{* *}$) Bd. 36, S. 157 .

A 3D generalisation of Hilbert's construction by W. Gilbert (Mathematical Intelligencer 6(3) (1984), page 78)

Space filling structures in Nature

Wacław Franciszek Sierpiński 1882-1969

A self similar process in Sierpiński gasket (1916)

The Chaos Game (Barnsley)

Aalto University

Cathedral Anagni (Italy) 1104

Fig. 6 SS. Giovanni e Paolo (13 $3^{\text {th }}$ century), Rome

Santa Maria in Cosmedin, Rome

Escher's studies of Sierpinski gasket-type patterns

On twelfth-century pulpit of Ravello Cathedral, 1923

Aalto University

Sierpiński Carpet and generalisations

Karl Menger 1902-1985 and his sponge 1926

Menger sponge via business card origami

Three interlinked Level One Menger Sponges, by Margaret Wertheim.

Jeannine Mosely 66048 business cards

Niels Fabian Helge von Koch (1870-1924) and his snowflake (1904)

Evolution à la Mandelbrot

Canopy, by Craig Harris 2008

Similarity mapping

A plane transformation f is a similarity if there exists a positive number k such that for every point A and $B, d(f(A), f(B))=k d(A, B)$. The number k Is a stretching factor of the similarity. Case $\mathrm{k}=1$ gives a symmetry.

Similarities here are central similarities or dilations

Classification of similarities in the plane

Spiral symmetry: rotation composed with a central similarity (w.r.t same point)
Dilative reflection: central similarity w.r.t. point O composed with a reflection w.r.t. a line going through O.

Can show: Every similarity is a symmetry, a spiral similarity or a dilative reflection.

Gaston Maurice Julia 1893-1978

Iteration of planar rational functions

Squaring transformation: $s: s(r, \alpha)=\left(r^{2}, 2 \alpha\right)$ Power n: pn: pn(r, α)=($r^{n}, n \alpha$)

Preserves angles outside the origin!

... and (geometric) inversion in a circle

Planar rational maps are compositions of similarities, powers and inversions.

Pierre Joseph Louis Fatou 1878-1929

- 'Fatou set'
- Holomorphic dynamics

Benoit Mandelbrot 1924-2010

Mandelbrot coined (70's) the word 'fractal' to

 explain self similar objectsFractus= fractured, broken

Mandelbrot set

Parameter space for C=($\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{y}}$) under $f: f(r, \alpha)=\left(r^{2}, 2 \alpha\right)+C$

Look at $\mathbf{C =}=0$ once more!

C=-1, Julia/Fatou set

Douady rabbit (Adrien Douady 1935-2006)

Aalto University

$$
C=-0.12256+0.74486 i .
$$

Dragon c=0.360284+0.100376i

Dendrite and Cantor dust

Higher dimensional analogues of complex polynomials (joint work in progress with G . Martin)

Aalto University

Kleinian groups

Ex: pairing of circles under
 Möbius transformations

An artistic interpretation by Jos Leys

Fractals in approximating natural forms

Change from
mechanical/geometrical to organic by using mathematical algorithm

Aristid Lindenmayer 1925-1989 (L-systems) in plant biology

Artistic inventions of fractals a bit earlier and its reproduction by a process called Iterated Function System IFS.

'Driving Rain' by Ando Hiroshige (1797-1858)

Aalto University

'A Thousand Pictures of the Sea' by Katsushika Hokusai (1817-1859) and IFS again

Frank Lloyd Wright (1867-1959)

Palmer house in Michigan (1950-51)

Fallingwater, Pennsylvania (1937) and Li Cheng (960-1127): Solitary Temple

African fractals: Ron Eglash

http//www.ted.com/talks/ron_eglash_on_african_fractals.html

The self similar wave by Tom Hull

Is the outcome a fractal?

Aalto University

Question 1

Suppose we started with a square paper with side length 1 and folded the wave with an infinite number of levels, what would the coordinates of the limit point P of the spiral be ?

Geometric transformation solution

- Find affine mapping (scaling+ translation) taking $(1,0)$ to $(1, y)$ (and hence unit square to a square of side length y
- $y=\sqrt{ } 2-1$ from the picture=> scaling factor $=1-y=2-\sqrt{ } 2$

Self similarity in the folded wave pattern

- $(1,0)$ mapped $(1, y)$ again
- $(0,0)$ mapped to $(x, 0) x=1-y=2-\sqrt{ } 2$
- P will become a fixed point of the mapping
\Rightarrow Rotation of 45° counter clockwise wrt to the origin + scaling by factor $2-\sqrt{ } 2$ + translation from origin to point ($\mathrm{x}, 0$)
$\Rightarrow \mathrm{P}=(2 / 3, \sqrt{ } 2 / 3)$

Solution through complex (= nature's) numbers

$$
\begin{aligned}
& P_{0}=0, P_{1}=a=2-\sqrt{ } 2 \\
& P_{2}=P_{1}+a^{2} e^{i \theta}, \theta=\frac{\pi}{4} \\
& P_{3}=P_{2}+a^{3} e^{i 2 \theta} \\
& P_{n}=P_{n-1}+a^{n} e^{i(n-1) \theta} \\
& \Rightarrow P=a \sum\left(a e^{i \theta}\right)^{n}=2 / 3+\sqrt{ } 2 / 3 i
\end{aligned}
$$

The spiral is logarithmic: $\left|P-P_{n}\right|=\sqrt{ } 6 / 3(2-\sqrt{ } 2)^{n+1}$

Some other self similar origami patterns

Sometimes called 'fractal origami' but are they fractals really?

Aalto University

Why is Lorenz attractor called 'fractal'?

Crocheting the Lorenz manifold

Aalto University
Hinke M. Osinga \& Bernd Krauskopf
The Mathematical Intelligencer $26(4)$ (2004) 25-37

