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Schedule

Lectures:
Thursdays 16-18, M1 and Fridays 10-12, Y405.

Exercise sessions:
Mondays 10-12, Y307 or Zoom.
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Grading

Five homework sheets, due Mondays 19.9., 26.9., 3.10., 10.10.,
and Wednesday 19.10.

Returned in the Assignments folder on MyCourses.

Graded by two of your peers (randomly selected). Grades are
due one week after the assignment deadline.

Each homework sheet gives a maximum of 5 · 2 for exercises +
2 · 5 for problems + 5 for grading = 25 points.

The four best homeworks count towards the final grade.
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Literature

Reinhard Diestel: Graph Theory.

Matthias Beck and Rayman Sanyal: Combinatorial
Reciprocity Theorems.

Slides Updated on course homepage after every lecture.
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Course content

You will learn about:

the twelve topics mentioned in the left hand menu.

combinatorial, geometrical, algorithmic, probabilistic, and
algebraic aspects of graph theory.

You will learn to:

Solve combinatorial problems of different kinds.

Relate different mathematical topics to each other.
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Discuss in small groups (10-15 minutes):

What is your name?

What is your quest?

What is your favourite colour?

Select a chairman! Preferably one who can share their screen
and draw on it.

How would you define what a graph is?
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Definitions

A graph is a pair G = (V ,E ).
V is a set of vertices or nodes

E ⊆ {{x , y} : x , y ∈ V } is a set of edges (undirected graph).
or
E ⊆ {(x , y) : x , y ∈ V } is a set of directed edges (digraph).

y is the head and x is the tail of the directed edge (x , y).

|G | = |V | = n and ‖G‖ = |E | = m
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Definitions

If G = (V ,E ), then we also write (abusing notation) V = V (G )
and E = E (G ).

If we allow E (G ) to be a multiset (i.e. repeated elements
allowed), then G is a multigraph.

A loop is an edge {x , x} (or a directed edge (x , x)).

If G is not a multigraph, and x 6= y for all edges {x , y} ∈ E (G ),
then G is a simple graph.
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Definitions

G is finite if V (G ) and E (G ) are finite sets (or multisets).
In this course, unless explicitly mentioned, all graphs are simple
and finite and undirected.

G is bipartite if V (G ) = A ∪ B where A ∩ B = ∅ and

E (G ) ⊆ {xy : x ∈ A, y ∈ B}.
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Discuss in small groups (10-15 minutes):

What are some use cases (examples from science or real life) of
bipartite graphs?

Does any (or all) of you know what a cycle in a graph is?
Explain to the others!

What can you say about the cycles in a bipartite graph?

For a graph without an explicit bipartition of its vertices, can
you think of an efficient way to see if it is bipartite or not?
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Bipartite graphs
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Complete graphs

Example

The complete graph Kn = (V ,E ) where

|V | = n and E =

(
V

2

)
= {e ⊆ V : |e| = 2}.

The complete bipartite graph Km,n = (A ∪ B,E ), where

|A| = m, |B| = n,A ∩ B = ∅ and E = {{a, b} : a ∈ A, b ∈ B}.

The empty graph Kn = (V , ∅) where |V | = n.
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Substructures

A clique in G is a set Q ⊆ V (G ) of pairwise adjacent nodes (so
G [Q] is complete).

An independent (or stable) set in G is a set S ⊆ V (G ) of
pairwise non-adjacent nodes (so G [S ] is empty).

The size of the largest clique in G is ω(G ).

The size of the largest independent in G is α(G ) = ω(G ).
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Definitions

A (proper) k-colouring of G = (V ,E ) is a map
γ : V → {1, 2, . . . , k} such that γ(v) 6= γ(u) whenever uv ∈ E .

The chromatic number of G = (V ,E ) is the smallest k ∈ N
such that there exists a k-colouring of G .

In other words, χ(G ) = k is the smallest number of independent
sets into which V (G ) can be partitioned.
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Examples

χ(Kn) = n.

χ(G ) = 2 if and only if G is bipartite.
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Discuss in small groups (10-15 minutes):

Each colour class in a graph colouring is an independence set.

The vertices of a clique have to all get different colours.

Using this: Bound the chromatic number χ(G ) from above in
two different ways, in terms of α(G ), ω(G ), and n?

Can you think of graphs for which these bounds are not tight?

Do you think the bounds are tight for “most” graphs? And what
does that even mean?
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Chromatic numbers
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Discuss in small groups (10-15 minutes):

At any party, some pairs of people are friends, and others are
not. Test your intuition. Are the following true or false?

At a party with 5 guests, there are always either three mutual
friends, or three mutual non-friends.

What about a party with 6 guests?

At a party with a + b guests, there are always either a mutual
friends or b mutual non-friends.

At any large enough party, there are always either a mutual
friends or b mutual non-friends.

How many guests R(a, b) are needed, so that this holds for all
parties?
How many guests are needed, so that this holds for most
parties? And what does that even mean?
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Ramsey Theory
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Conclusion

Today we have discussed some basic types of questions in graph
theory.

Some of these can be solved from first principles by clever high
school students.

Other questions require some sort of “theory”.

Starting Thursday, we will develop combinatorial, probabilistic
and algebraic tools to study graphs, and use those to solve
problems.
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When are two graphs the same?

A homomorphism G → G ′ is a map ϕ : V (G )→ V (G ′) such
that

{u, v} ∈ E (G )⇒ {ϕ(u), ϕ(v)} ∈ E (G ′).

An isomorphism G → G ′ is a bijection ϕ : V (G )→ V (G ′) such
that

{u, v} ∈ E (G )⇔ {ϕ(u), ϕ(v)} ∈ E (G ′).

Ragnar Freij-Hollanti MS-E1050



MS-E1050

Ragnar
Freij-Hollanti

0: Introductions

1–2: Basics

3: Matchings

4: Connectivity

5: Planarity

6: Colourings

7: Perfection

8: Randomness

9: Extremality

10: Ramsey

When are two graphs the same?

An isomorphism G → G ′ is a bijection ϕ : V (G )→ V (G ′) such
that

{u, v} ∈ E (G )⇔ {ϕ(u), ϕ(v)} ∈ E (G ′).

If there is an isomorphism G → G ′, then G and G ′ are
isomorphic.

This is an equivalence relation on graphs.

An “unlabelled graph” is an equivalence class of graphs under
this isomorphism relation.
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Terminology

Vertices x and y are adjacent if {e, y} ∈ E .

The vertex x is incident to the edge e if x ∈ e.

The edges e and e′ are adjacent if e ∩ e′ 6= ∅.
The (open) neighbourhood N(v) = {u ∈ V : {v , u} ∈ E}.
The degree d(v) = |N(v)| is the number of neighbours of v (in
a simple graph).

Ragnar Freij-Hollanti MS-E1050



MS-E1050

Ragnar
Freij-Hollanti

0: Introductions

1–2: Basics

3: Matchings

4: Connectivity

5: Planarity

6: Colourings

7: Perfection

8: Randomness

9: Extremality

10: Ramsey

Degrees

Minimal degree δ(G ) = minv∈V (G) d(v).

Maximal degree ∆(G ) = maxv∈V (G) d(v).

Average degree

d(G ) =
1

|V (G )|
∑

v∈V (G)

d(v) =
2‖G‖
|G |

.

If all vertices have the same degree k , so δ(G ) = ∆(G ) , then G
is k-regular.
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Degrees

Proposition

In any graph G , the number of vertices with odd degree is even.

Proof.

Blackboard
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Degrees

The integer sequence (d1, . . . , dn) ∈ Nn is graphical if there
exists a graph G with V (G ) = {v1, . . . , vn} and d(vi ) = di .

Theorem (Havel, Hakimi 1955)

Assume d1 ≥ d2 ≥ · · · ≥ dn ≥ 0. Then the sequence (d1, . . . , dn) is
graphical if and only if

n = 1 and d1 = 0, or

(d2 − 1, d3 − 1, dd1+1 − 1, dd1+2, . . . , dn) is a graphical sequence.

Proof.

Blackboard
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Definitions

The complement graph of G is

G =

(
V (G ),

(
V (G )

2

)
r E (G )

)
.

The line graph of G is

L(G ) = (E (G ), {{e, e′} : e ∩ e′ 6= ∅}) .
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Definitions

The disjoint union of two graphs G and H is

G t H = (V (G ) t V (H),E (G ) t E (H)).

The join of G and H has G t H as a subgraph, and in addition
an edge xy for all x ∈ V (G ), y ∈ V (H).
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Definitions

The disjoint union of two non-empty graphs is always
disconnected.

The join of two non-empty graphs is always connected.

Kn ? Km
∼= Kn+m and Kn ? Km

∼= Kn,m

Ragnar Freij-Hollanti MS-E1050
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Substructures

H is a subgraph of G if V (H) ⊆ V (G ) and E (H) ⊆ E (G ).

H is an induced subgraph of G if V (H) ⊆ V (G ) and

E (H) = E (G ) ∩
(
V (H)

2

)
.

If H is an induced subgraph of G , with V (H) = U, then we say
that H is induced on U, and write H = G [U].
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Walks and paths

A walk of length n in G = (V ,E ) is a sequence (v0, v1, . . . , vn)
of nodes vi ∈ V where {vi−1, vi} ∈ E (G ) for i = 1, . . . , n.

A walk (v0, v1, . . . , vn) is closed if v0 = vn.

A path of length n in G is a subgraph

({v1, v2, . . . , vn}, {v1v2, . . . , vn−1, vn}) ⊆ G

with all vertices distinct.

So (v1, v2, . . . , vn) is a non-revisiting walk of length n − 1.

A path (x , v1, . . . , vn−1, y) is an x-y -path, often denoted x—y .
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Closed walks and cycles

A walk (v0, v1, . . . , vn) is closed if v0 = vn.

A cycle of length n in G is a subgraph

({v1, v2, . . . , vn}, {v1v2, . . . , vn−1vn, vnv0}) ⊆ G

with all vertices distinct.

So (v1, v2, . . . , vn, v1) is a minimal closed walk of length n.

Ragnar Freij-Hollanti MS-E1050
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Paths

Let A,B ⊆ V (G ), and let H be a subgraph of G .

An A−−B-path is a path

({v1, v2, . . . , vn}, {v1v2, . . . , vn−1, vn}) ⊆ G

where {v1, v2, . . . , vn} ∩ A = {v1} and
{v1, v2, . . . , vn} ∩ B = {vn}
Note: If A ∩ B 6= ∅, then there exist A−−B-paths of length 1.

A H-path is a path

({v1, v2, . . . , vn}, {v1v2, . . . , vn−1, vn}) ⊆ G

where {v1, v2, . . . , vn} ∩ V (H) = {v1, vn}.
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Paths and cycles

The girth g(G ) is the minimum length of a cycle in G .

The circumference of G is the maximum length of a cycle in G .

The distance dG (x , y) is the length of the shortest x − y -path in
G

This notion of distance is a metric:

dG (x , y) = 0⇔ x = y

dG (x , z) ≤ dG (x , y) + dG (y , z)
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Paths and cycles

The diameter of G is

max
x,y∈V (G)

dG (x , y).

The radius of G is

min
x∈V (G)

max
y∈V (G)

d(x , y).

A vertex x ∈ V (G ) that minimizes

max
y∈V (G)

d(x , y)

is called a central vertex.
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Exercise during the break

Compute the girth, circumference, diameter and radius of the
Petersen graph.
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Paths and cycles

Proposition

Every graph G with δ(G ) ≥ 2 contains a cycle of length at least
δ(G ) + 1.

Proof.

Blackboard
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Euler tours

An Euler tour in a graph is a closed walk that traverses every
edge in G exactly once.

“Motivation”: Can one take a walk across all the bridges in
Königsberg without going over any bridge more than once?
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Euler tours

Proposition

A connected graph G has an Euler tour if and only if every vertex in
G has even degree.

Proof.

⇒: Orient each edge according to which direction the Euler tour
traverses it.

Then every node has the same indegree as outdegree, so even
total degree.

⇐: Induction on the number of edges. (Blackboard.)
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Bipartite graphs

Lemma

G is bipartite if and only if G has no odd cycles.

Proof.

⇒: Proved in an exercise last time.

⇐: Suffices to prove it for connected graphs. Assume for a
contradiction G is connected and has no odd cycles.

A minimal odd length closed path is a cycle, so G has no odd
length closed paths.
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Bipartite graphs

Lemma

G is bipartite if and only if G has no odd cycles.

Proof.

⇐: We assumed for a contradiction G is connected and has no
odd length closed paths.

Fix v ∈ V (G ), and define

A = {y ∈ V (G ) : dG (x , y) is even}
B = {y ∈ V (G ) : dG (x , y) is odd}.

If there were an edge xy between two nodes in the same part,
then v—x-y—v would be a closed walk of odd length.

Contradiction, so (A,B) is a bipartition of V (G ).
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Bipartite graphs

Lemma

G is bipartite if and only if G has no induced odd cycles.

Proof.

⇒: Follows from the previous lemma.

⇐: Assume G is not bipartite, yet has no induced odd cycle.

Consider a minimal odd cycle C in G . (Exists because G is not
bipartite.) Let e = {x , y} be an edge in G [V (C )] \ C .

The cycle C contains two x-y -paths P and Q.

The cycles P + e and Q + e are shorter than C , and one of
them is odd. Contradiction!
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Connectivity

A graph is connected if there is a path between any pair of
nodes.

The maximal connected subgraphs are the connected
components of the graph.

The connected components form a partition of the graph.
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Trees

A connected graph without cycles is a tree.

A node is a leaf if it only has one neighbour.

Every tree with |T | ≥ 2 has at least two leaves. (endpoints on a
maximal path).
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Trees

A connected graph without cycles is a tree.

A graph without cycles is a forest

Every forest is a disjoint union of trees. These are the connected
components of the forest.
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Trees

Theorem

The following are equivalent:

T = (V ,E ) is a tree.

For any u, v ∈ V , there s a unique u-v -path in T .

T contains no cycle, and for any E ( F ⊆
(
V
2

)
, the graph

(V ,F ) contains a cycle.

T is connected, and for any F ( E , the graph (V ,F ) is
disconnected.

Proof.

Exercise
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Spanning trees

A spanning tree in the connected graph (V ,E ) is a tree (V ,E ′)
that contains all the nodes and some of the edges E ′ ⊆ E of the
graph.

A spanning tree exists in any connected graph:

Start from one node. Add one edge at a time between a node in
the tree and a node not yet in the tree.

Notice: the spanning tree is not unique.
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Trees

Lemma

A tree with n nodes has exactly n − 1 edges.

Proof.

By induction on n. Trivial base case n = 1.

Assume |V | ≥ 2, and let v ∈ V (T ) be a leaf, with only outgoing
edge e ∈ E (T ).

Then (V r {v},E r {e}) is a tree with n − 1 vertices and (by
induction hypothesis) n − 2 edges.

So |E | = n − 1.
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Rooted trees

A rooted tree is a tree T with a distinguished node r . Then:

The level of the node v is the length of the unique path
(r , . . . , v).

The tree order associated to (T , r) is the partial order on V (T )
given by v ≤ u if the unique path from r to u goes through v .

r is the unique minimal element in the tree order.
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Normal trees

A rooted spanning tree (T , r) in G is called a normal tree if all
edges in G go between comparable elements in the tree order.

Normal trees are also called depth first search trees.

Normal trees exist in every connected graph for any prescribed
root.

Constructed via depth first search.
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Edge spaces

Consider F2 = {0, 1} with addition 1 + 1 = 0.

Define the edge space (over F2) E(G ) = {f : E (G )→ F2}.
Identify the elements in E(G ) with subsets of E (G ).

〈f , f ′〉 =
∑
e∈E

f (e)f ′(e) = |f ∩ f ′| mod 2.

f + f ′ corresponds to the symmetric difference of the sets f and
f ′.
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Cycle spaces

The edge set of a cycle is called a circuit.

The cycle space C(G ) ⊆ E(G ) is generated (over F2) by the
circuits in G .

F ∈ C(G ) iff and only if F is a disjoint union of circuits.

F ∈ C(G ) iff and only if every v ∈ V (G ) has even degree in F .

Proofs of these equivalences: Exercise.
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Cut spaces

If A ⊆ V (G ), the set of edges between A and A is a cut.

The cut space B(G ) ⊆ E(G ) is generated (over F2) by the cuts
in G .

The symmetric difference of two cuts is a cut.

So F ∈ C(G ) iff and only if F is itself a cut.
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Cut and cycle spaces

Example

c = {1, 2, 3, 4} ∈ C(G ).

b = {1, 4, 7} ∈ B(G ).

〈b, c〉 = |b ∩ c | mod 2 = |{1, 4}| mod 2 = 0
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Cut and cycle spaces

A closed walk enters A equally many times as it leaves A.

So a circuit c contains an even number of edges from every cut.

So B(G ) ⊥ C(B) as vector spaces over F2.

Standard linear algebra gives

dimB(G ) + dim C(G ) ≤ dim E(G ) = m.

We will show that equality holds, so B(G ) = C(G )⊥.
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Cut and cycle spaces

A closed walk enters A equally many times as it leaves A.

So a circuit c contains an even number of edges from every cut.

So B(G ) ⊥ C(B) as vector spaces over F2.

Standard linear algebra gives

dimB(G ) + dim C(G ) ≤ dim E(G ) = m.

We will show that equality holds, so B(G ) = C(G )⊥.
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Cycle space dimension

Easy to check:

C(G t H) = C(G )⊕ C(H) and B(G t H) = B(G )⊕ B(H).

So assume G connected. Fix a spanning tree T ⊆ G .

For each e = {u, v} ∈ E − T , consider the fundamental cycle

Ce = {e} ∪ Puv ,

where Puv is the unique u − v -path in T .

For every e ∈ E , the collection {Ci : i ∈ E −T} contains exactly
one vector C = Ce for which C (e) = 1.

Therefore, the vectors {Ci : i ∈ E − T} are linearly independent.

So dim(C(G )) ≥ |E − T | = m − (n − 1).
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Cut space dimension

Assume G connected. Fix a rooted spanning tree T ⊆ G .

For each e = {u, v} ∈ T , with v > u in the tree order, define
Ae = {w ∈ V : w ≥ v}.
The cut Be associated to Ae contains onely one edge from T ,
namely e.

Therefore, the vectors {Bi : i ∈ T} are linearly independent.

So dim(B(G )) ≥ |T | = n − 1 = m − dim(C(G )).

It follows that B(G )⊥ = dim(C(G )).
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Matchings in bipartite graphs

Example

Six students have to do a group task, where they have to read
five different books.

Nobody has time to read more than one book.

Moreover, not all students have access to all of the books.

Can they divide the task so that all the books get read?
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Matchings in general graphs

Example

In a collection of people, some pairs of people are willing to live
happily ever after together, while some other pairs are not.

Can we pair the population up so that everyone is together with
someone they want to live with?
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Matchings

Definition

A matching in G is a collection M ⊆ E (G ) of pairwise disjoint
edges.

A matching M is maximal if it is not contained in any other
matching on G

A matching M is complete on A ⊆ V (G ) if every vertex in A is
in some edge of M.

A matching M is perfect (or complete) if it is complete on V (G ).
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k-factors

Definition

A perfect matching on G is also called a 1-factor.

More generally, a k-factor on G is a spanning k-regular subgraph
of G .

In particular, a 2-factor is a collection of pairwise disjoint cycles
that cover the vertices of G .
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Vertex cover

Definition

A vertex cover is a collection A ⊆ V (G ) such that every edge in
E (G ) contains at least one vertex in A.

A vertex cover is minimal if it does not contain any other vertex
cover.
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Alternating paths

Definition

Consider a bipartite graph G = (A t B,E ) with a matching M.

An alternating path with respect to M is a path

P = a0, b1, a1, b2, · · · v

in G such that:

a0 is not matched in M.
{ai , bi} ∈ M for all i ≥ 1.

If the final vertex v of the path is unmatched, then P is an
augmenting path with respect to M.
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Augmenting paths

Definition

An augmenting path with respect to M is a path

P = a0, b1, a1, b2, · · · ak , bk+1

in G such that:

a0 6∈ e for every e ∈ M.
{ai , bi} ∈ M for all i ≥ 1.
bk 6∈ e for every e ∈ M.

Lemma

If P is an augmenting path with respect to a matching M, then

M ′ = M \ {aibi : 1 ≤ i ≤ k} ∪ {aibi+1 : 0 ≤ i ≤ k}

is a matching with |M ′| = |M|+ 1.
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König’s Theorem

Theorem

In any bipartite graph (A t B,E ), the size of the largest
matching equals the size of the smallest vertex cover.

Proof.

≤: Every vertex cover contains at least one end of each edge in
the matching.

These ends must all be different.

≥: Proof by alternating paths. (blackboard)
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Another necessary condition

Assume there is a set S ∈ V (G ) such that |N(S)| < |S |.
Then there clearly can not be a complete matching on S , so not
on G either.
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Hall’s Marriage Theorem

Theorem

A bipartite graph (A t B,E ) with |A| ≤ |B| contains a complete
matching if and only if |N(S)| ≥ |S | for all S ⊆ A.

Proof.

⇒: Trivial.

⇐: By induction on |A|. Obvious if |A| = 1.

If |N(S)| > |S | for all S ( A, ab ∈ E (G ) be an arbitrary edge.

Hall’s condition holds for the smaller graph G ′ = G − {a, b}, so
there is a complete matching M ′ on G ′.

Then M ′ ∪ {ab} is a complete matching on G .
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Hall’s Marriage Theorem

⇐ continued.

Remains to assume |N(A′)| = |A′| for some A′ ( A.

By induction, there is a complete matcing on
G ′ = G [A′ t N(A′)].

Now if S ⊆ A \ A′, then

|N(S) \ N(A′)| ≥ |N(S ∪ A′)| − N(A′)

= |N(S ∪ A′)| − |A′| ≥ |S ∪ A′| − |A′| = |S |.

So G − G ′ also satisfies Hall’s condition and has a complete
matching.

These two matchings together form a complete matching
on G .
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1-factors

Corollary

Every non-empty bipartite regular graph has a 1-factor.

Proof.

(A t B,E ) regular ⇒ |A| = |B|.
For any S ⊆ A,

k |S | = |E (S)| ≤ |E (N(S))| = k|N(S)|,

so S satisfies Hall’s criterion.
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2-factors

Corollary

Every regular graph of positive even degree has a 2-factor.

Proof.

Assume WLOG G connected.

Positive even degree ⇒ exists an Euler tour
v0, v1, v2, . . . , vm = v0 with

E = {vivi+1 : 0 ≤ i < m}.

Construct a bipartite graph G ′ = (V+ t V−,E ), where

V+ = {v+ : v ∈ V (G )},V ′ = {v− : v ∈ V (G )}

and
E = {{v+

i , v
−
i+1} : 0 ≤ i < m}.
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2-factors

Corollary

Every regular graph of positive even degree has a 2-factor.

Continued.

Construct a bipartite graph G ′ = (V+ t V−,E ), where

V+ = {v+ : v ∈ V (G )},V ′ = {v− : v ∈ V (G )}

and
E = {{v+

i , v
−
i+1} : 0 ≤ i < m}.

This graph is bipartite and regular, so has a perfect matching.

This perfect matching projects to a 2-factor in G under the map
G ′ → G , v+ 7→ v , v− 7→ v .
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Preference orders

A preference order of a vertex v ∈ V (G ) is a linear order ≤v

on N(v).

We say that v prefers u to w if u ≥v w .

A preference ordered graph is a graph G together with a
preference order for every vertex v ∈ V (G ).
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Preference orders

Let M be a matching on a preference ordered graph.

We say that a desires b ∈ N(a) if b ≥a x for any x with
{a, x} ∈ M.

An edge {a, b} 6∈ M is critical with respect to the matching M if
a desires b and b desires a.

A matching is stable if there is no critical pair with respect to M.

We say that a is satisfied if a is unmatched or a is not contained
in any critical edge.
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Preference orders

For some preference ordered graphs, there exist no stable
matchings.

Example: Consider the cyclic graph Cn with the preferences

i + 1 ≥i i − 1

for all i ∈ V (Cn) = {0, 1, . . . , n − 1}, (addition mod n).

If i is unmatched, then {i , i − 1} is always a critical edge.

If n is odd, then some vertex is always unmatched, so no stable
matching exists.
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Gale’s Marriage Theorem

Theorem

For any set of preferences {≤x : x ∈ V (G )} on a bipartite graph
G , there exists a stable matching.

Proof.

We will find such a matching by an algorithm that will terminate
on a stable matching.

The algorithm is (controversially?) not symmetric on the sets A
and B.
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Gale’s Marriage Theorem

Continued.

WHILE there exist desired unmatched a ∈ A:

Choose arbitrary desired unmatched a ∈ A.
Every element in B that desires a proposes to her.
a selects her favourite among the admirers (who leaves his
previous partner if he was already matched).

By construction, matched elements in A are never in a critical
pair.

The algorithm ends after at most
∑

b∈B d(b) iterations.

When the algorithm terminates, unmatched elements in A are
also not in any critical pair.

Ragnar Freij-Hollanti MS-E1050



MS-E1050

Ragnar
Freij-Hollanti

0: Introductions

1–2: Basics

3: Matchings

4: Connectivity

5: Planarity

6: Colourings

7: Perfection

8: Randomness

9: Extremality

10: Ramsey

Gale’s Marriage Theorem

Theorem

On a given graph G with given preference orders, all stable
matchings have the same size.

Proof.

Exercise
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Tutte’s condition

If |G | is odd, then G has no 1-factor. (duh!)

Let q(H) denote the number of odd components in the graph H.

Assume S is a separator on G , A is a component of G r S , and
M is a 1-factor on G .

Either M is a 1-factor on A, or M contains an AS-edge.

So if G has a 1-factor, then q(G r S) ≤ |S |.
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Tutte’s condition

Let q(H) denote the number of odd components in the graph H.

Theorem

The graph G has a 1-factor if and only if q(G r S) ≤ |S | for all
S ⊆ V (G ).

Proof.

⇒: Trivial.

⇐: Say that a set S is bad if q(G r S) > |S |.
If G ′ ⊆ G is a spanning subgraph, and S is bad in G , then S is
bad in G ′.

Assume G edge-maximal with no 1-factor. We want to find a
bad set S .
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Tutte’s condition

Theorem

The graph G has a 1-factor if and only if q(G r S) ≤ |S | for all
S ⊆ V (G ).

Continued.

Assume G edge-maximal with no 1-factor.

Consider
S = {v ∈ V : ∀u ∈ V : vu ∈ E}.

Every component in G r S is complete by edge-maximality
(technical lemma).

If |G | is even, then we would get a 1-factor unless if S is bad.

If |G | is odd, then ∅ is bad.
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3-regular graphs

Theorem

Every 3-regular bridgeless graph G has a 1-factor.

Proof.

We will show that G satisfies Tutte’s criterion.

Fix S ⊆ V (G ), and an odd component C of G r S .∑
c∈C d(c) is odd, so there is an odd number of SC -edges.

No bridge ⇒ there are at least 3 SC -edges.

So
3|S | ≥

∑
#SC -edges ≥ 3q(G r S),

where the sum is over all odd components of G r S .
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Connectivity

X ⊆ V (G ) ∪ E (G ) is a separator of G if G r X is disconnected

X ⊆ V (G ) ∪ E (G ) is an A− B-separator, for A,B ⊆ V (G ), if
there is no path from A to B in G \ X .

If X consists only of vertices, it is a vertex separator
If X consists only of edges, it is a edge separator
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Connectivity

The graph G is k-connected if G \ X is connected for all
X ⊆ V (G ) with |X | < k .

The connectivity κ(G ) is the largest integer k such that G is
k-connected.
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Connectivity

The graph G is edge-k-connected if G \ X is k-connected for all
X ⊆ E (G ) with |X | < k .

The edge connectivity λ(G ) is the largest integer k such that G
is k-edge-connected.
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Connectivity

Theorem

For any non-complete graph G ,

κ(G ) ≤ λ(G ) ≤ δ(G ).

Proof.

λ(G ) ≤ δ(G ) :

The d(v) = δ(G ) edges surrounding some vertex v separate v
from the rest of the graph.
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Connectivity

Proof.

κ(G ) ≤ λ(G ) :

Consider a k element edge separator F .

Case one: F covers all vertices of G .

Consider v with d(v) < n − 1, and let A be the connected
component of v in G r F .

All edges v -y , y 6∈ A, are in F .

All elements of N(v) ∩ A are in different edges of F .

So |N(v)| ≤ k , and so N(v) is a separator of size < k.
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Connectivity

Proof.

κ(G ) ≤ λ(G ) :

Consider a k element edge separator F .

Case two: v ∈ V in not incident to any edge in F .

Let A be the connected component of v in G r F .

Let A′ ⊆ A be the set of vertices in A that are incident to an
edge in F .

So A′ ≤ k, A′ separates v from V r A in G \ F .
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Connectivity

So high connectivity implies high minimum degree.

The opposite implication does not hold.
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2-connected graphs

Theorem

G is 2-connected if and only if it can be inductively constructed by:

Starting from a cycle.

Adding a H-path to H.

A H-path is a x-y -path P for some vertices x , y ∈ H, such that
no internal vertex on P lies in H.
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2-connected graphs

Theorem

G is 2-connected if and only if it can be inductively constructed by:

Starting from a cycle.

Adding a H-path to H.

Proof.

⇒: Cycles are 2-connected, and 2-connectedness is preserved
when adding H-paths

⇐: By induction on |G |.
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2-connected graphs

Theorem

G is 2-connected if and only if it can be inductively constructed by:

Starting from a cycle.

Adding a H-path to H.

Proof.

For a contradiction, consider a maximal subgraph H ( G
constructed as in the theorem.

By maximality, H is induced.

G connected, so there is an edge uv ∈ E (G ) with u ∈ H, v 6∈ H.

G 2-connected, so there is a H—v -path P in G r {u}.
P + {u, v} is a H-path, contradicting the maximality of H.
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Paths and separators

X ⊆ V (G ) ∪ E (G ) is an A− B-separator, for A,B ⊆ V (G ), if
there is no path from A to B in G \ X .

A family of paths from A to B are

Disjoint if they have no vertices in common.
Independent if they have no internal vertices in common.
Edge disjoint if they have no vertices in common.

Clearly,
Edge disjoint⇐ Independent⇐ Disjoint
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Menger’s local theorem

Theorem

Let G be a graph and A,B ⊆ V (G ).

The minimum size of an (A,B)-vertex separator equals the
maximum number of pairwise disjoint A− B-paths in G .

We allow the vertex separator to intersect A ∪ B.

Indeed, if A ∩ B 6= ∅, then the vertex separator must contain
A ∩ B.
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Menger’s local theorem

Theorem

Let G be a graph and A,B ⊆ V (G ).

The minimum size of an (A,B)-vertex separator equals the
maximum number of pairwise disjoint A− B-paths in G .

Proof.

≥: If there are k disjoint paths, then all of them must contain a
vertex from the separator.

So any separator has size at least k .
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Menger’s local theorem

Theorem

Let G be a graph and A,B ⊆ V (G ).

The minimum size of an (A,B)-vertex separator equals the
maximum number of pairwise disjoint A− B-paths in G .

Proof.

≤: Assume there is no (A,B)-vertex separator of size k − 1.

We claim that there are k pairwise disjoint A− B-paths in G .

Proof by induction over |E (G )|.
Base case: If E = ∅, then A ∩ B is a separator, so |A ∩ B| ≥ k .

Then there are k trivial A− B-paths.
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Menger’s local theorem

Proof.

≤: Assume there is no (A,B)-vertex separator of size k − 1.

Assume for a contradiction that there are not k pairwise disjoint
A− B-paths in G .

Fix e ∈ E (G ). There are at most k − 1 pairwise disjoint
A− B-paths in G r e.

By induction hypothesis, G \ e has an (A,B)-separator S with
|S | ≤ k − 1.
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Menger’s local theorem

Proof.

≤: We assumed there were no (A,B)-vertex separator of size
k − 1 but also no k pairwise disjoint A− B-paths in G .

By induction hypothesis, G \ e has an (A,B)-separator S with
|S | ≤ k − 1.

There is an A− B-path in G that uses e and does not intersect
S , because S is not a separator in G .
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Menger’s local theorem

Proof.

G \ e has neither a (A,S ∪ {vA})-separator nor any
(A,S ∪ {vB})-separator of size ≤ k − 1.

By induction, there are k disjoint (A,S ∪ {vA})-paths and k
disjoint (B,S ∪ {vA})-paths.

These can be glued together with the edge e to form k disjoint
(A,B)-paths.
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Menger’s global theorem

Theorem

Let G be a graph. The following are equivalent:

G is k-connected.
For every a, b ∈ V (G), there are k pairwise independent
a− b-paths.

Proof.

The following are equivalent.

There are k pairwise independent a− b-paths.
There are k pairwise disjoint N(a)− N(b)-paths.
There is no (N(a),N(b))-separator of size < k.

Every separator in the graph is an (N(a),N(b))-separator for
some a, b ∈ V (G ).

Thus, the conditions above hold for all vertices a, b ∈ V (G ) if
and only if G is k-connected.
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Menger’s edge-connectivity theorem

Corollary

Let G be a graph. The following are equivalent:

G is k-edge connected.
For every a, b ∈ V (G), there are k pairwise edge-disjoint
a− b-paths.

Proof.

Apply Menger’s theorem to the line graph L(G ) of G .

Edge disjoint (a, b)-paths in G are disjoint (E (a),E (b))-paths
in L(G ).
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Minors

If G is a graph, then IG (“inflated G”) denotes any graph G ′

whose vertex set can be partitioned as a disjoint union
V (G ′) = ∪x∈V (G)Ux where

xy ∈ E (G )⇔ ∃vx ∈ Ux , vy ∈ Uy : vxvy ∈ E (G ′).

If H has a subgraph isomorphic to an IG , then G is a minor of H.
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Minors

The deletion of X ⊆ E from G = (V ,E ) is

G \ X = (V ,E r X ).

The deletion of X ⊆ V ∪ E from G = (V ,E ) is

G \ X = (G r (E ∩ X ))[V r X ].
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Minors

The contraction of the edge e = {x , y} from G = (V ,E ) is
G/e = (V ′,E ′), where

V ′ = V r {x , y} ∪ {v}

and

E ′ = E r {xz}r {yz} ∪ {vz : xz ∈ E or yz ∈ E}.

Observe that it is often (but not always) more natural to define
the contraction as a multigraph.

If z ∈ N(x) ∩ N(y), then we get two parallel edges vz .
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Minors

Contraction and deletion commute:

(G/e)/f ∼= (G/f )/e,

and if e 6∈ X then

(G \ X )/e ∼= (G/e) \ X .

So for X ⊆ V ∪ E and Y ⊆ E r X , we can naturally define

G \ X/Y .
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Minors

Proposition

G is a minor of H = (V ,E ) if and only if there exists
X ⊆ V ∪ E and Y ⊆ E r X , such that

G ∼= H \ X/Y .
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Building k-connected graphs

Paraphrasing previous theorems:

Connected graphs can be obtained by glueing edges together
along vertices.
2-connected graphs can be constructed by glueing cycles
together along paths.

The family of connected 3-regular graphs is much more
complicated than the families of connected 1- and 2-regular
graphs

The building blocks of the structure theorem for 3-connected
graphs are K4, and the operations are the inverse of contraction.
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Two operations on multigraphs

Definition

The (v ,Nx ,Ny )-vertex split of G ′ is G ′ 7→ G = (V ,E ), where

V = V (G ′) ∪ {x , y}r {v}

and

E = E (G ′) r {e : v ∈ e} ∪ {xz : z ∈ Nx} ∪ {yz : z ∈ Ny} ∪ {xy},

where

v ∈ V (G ′), Nx ,Ny ⊆ N(v), Nx ∪ Ny = N(v).

Proposition

G ′ ∼= G/e for some e = xy ∈ E (G ) if and only if G is a vertex split
of G ′.
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Tutte’s wheel theorem

Our next goal is to prove the following theorem:

Theorem

A graph G is 3-connected if and only if there is a sequence of edges

e1, . . . , em−6

in G such that:

G/{e1, . . . , ek} is 3-connected for all k .

G/{e1, . . . , em−6} ∼= K4.
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Two operations on multigraphs

Lemma

If G is 3-connected, then there is some edge e ∈ E (G ) such that G/e
is also 3-connected.

Proof.

Assume not.

Then every edge is contained in a 3-separator.
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Two operations on multigraphs

Lemma

If G is 3-connected, then there is some edge e ∈ E (G ) such that G/e
is also 3-connected.

Proof.

Assume B minimal.

D ( B
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Two operations on multigraphs

Lemma

If G is 3-connected, v ∈ V (G ), and Nx ,Ny ⊆ N(v) satisfy
|Nx | ≥ 3, |Ny | ≥ 3, then the (v ,Nx ,Ny )-vertex split of G is
3-connected.

Proof.

Assume there were a 2-separator in the vertex split G ′.

Proof by contradiction by case separation
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Tutte’s wheel theorem

Theorem

A graph G is 3-connected if and only if there is a sequence of edges

e1, . . . , em−6

in G such that:

G/{e1, . . . , ek} is 3-connected for all k .

G/{e1, . . . , em−6} ∼= K4.
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Plane graphs

Definition

A plane graph is a pair (V ,E ) (notice the abuse of notation)
where

V is a set of points in R2

Every edge is a curve between two points in V .
The interior of an edge does not intersect any other edge or
contain any vertex v ∈ V .

Plane graphs have a natural multigraph structure.
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Plane graphs

The graph drawing

V ∪
⋃
e∈E

e ⊆ R2

separates the plane into faces.

Each face is topologically an open disc or a punctured open disc.

If G is finite, then there is only one unbounded face, the outer
face.

If we want to remove the distinction between inner and outer
faces, we draw our plane graphs on the sphere S2 instead of in
R2.

If G is connected, then each face (except for the outer face) is
an open disc, and is bounded by a closed walk in the graph G .
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Planar graphs

A planar graph is a graph that is isomorphic to the graph of
some plane graph.

In principle, two different plane graphs can yield the same planar
graph.
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Plane triangulations

Proposition

G is a maximally planar graph if and only if every drawing of it is a
triangulation of S2.

A planar graph G = (V ,E ) is maximally planar if (V ,E ∪ {e})
is nonplanar for any e 6∈ E .

The implication ⇒ is obvious, because if G can be drawn with a
non-triangle face, then a chord can be added to this face
without destroying planarity.

The implication ⇐ will follow shortly.
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Euler’s theorem

Proposition

A plane graph has only one face if and only if G is a forest.

Proof.

By induction on |E |.
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Euler’s theorem

Proposition

If a plane graph has v vertices, e edges and f faces, then

v − e + f = 2.

Proof.

By induction on |E |.
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Double counting

2e =
∑

faces F

|∂F | ≥
{

3f if G simple
4f if G simple bipartite

If G simple planar, then e ≤ 3v − 6.

In particular, K5 is not planar (e = 10, v = 5).

If G simple bipartite and planar, then e ≤ 2v − 4.

In particular, K3,3 is not planar (e = 9, v = 6).
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Faces

If H ⊆ G , and the edges F ⊆ E (G ) are contained in a face of
(some drawing of) G , then they are also contained in a face of
(the induced drawing of) H.
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2-connected planar graphs

The faces of 2-connected plane graphs are bounded by cycles.

By Euler’s theorem, the number of face-bounding cycles in G
does not depend on the drawing.

However, the set of face-bounding cycles does.
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Uniqueness of drawings

The moral of the following theorem is that “3-connected planar
graphs can essentially only be drawn in one way”.

Theorem

Consider a fixed drawing of a 3-connected planar graph G .

A cycle C ⊆ E (G ) bounds a face if and only if it is induced and
separating.
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Uniqueness of drawings

Theorem

A cycle C ⊆ E (G ) bounds a face iff it is induced and
non-separating.

Proof.

Face-bounding ⇒ Induced:

WLOG, assume C bounds the outer face and x , y ∈ V (C ).

If xy ∈ E (G ), then {x , y} is a 2-separator, contradicting
3-connectivity.
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Uniqueness of drawings

Theorem

A cycle C ⊆ E (G ) bounds a face iff it is induced and
non-separating.

Proof.

Face-bounding ⇒ Non-separating:

Assume C bounds a face, and let x , y ∈ V (G ) r V (C ).

By 3-connecteivity and Mernger’s theorem, there are 3
independent xy -paths.

One of these paths must go outside of C (by topology).

So C does not separate x from y .
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Uniqueness of drawings

Theorem

A cycle C ⊆ E (G ) bounds a face iff it is induced and
non-separating.

Proof.

Induced and non-separating ⇒ Face-bounding:

C non-separating, so all vertices in V (G ) r V (C ) are in one of
the two regions bounded by C .

WLOG all vertices on the “outside” of C .

C induced and no vertices inside of C ⇒ no edges inside of C .

Thus C bounds a face.
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Plane duals

Any plane graph G = (V ,E ) has a plane dual G∗ = (F ,E ′)

F is the set of faces of G , and there is a natural bijection
E ↔ E ′.

Well defined up to topological equivalence.

(G∗)∗ = G .
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Plane duals

The complement of a spanning tree in G corresponds to a
spanning tree in G∗.

T ⊆ E (G ) acyclic ⇔ T̄ ′ ⊆ E (G∗) connected.
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Plane duals

The complement of a spanning tree in G corresponds to a
spanning tree in G∗.

This proves in a new way that

e = |E (G )| = (|V (G )| − 1) + (|V (G∗)| − 1) = (v − 1) + (f − 1),

so v − e + f = 2.
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Outerplanar graphs

A planar graph G is outerplanar if it has a drawing in which
every vertex is on the outer face.

Example: K4 and K3,2 are planar but not outerplanar.
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Minors

Assume G is (outer)planar and e ∈ E (G ).

Then both G/e and G \ e are (outer)planar.

So the classes of (outer)planar graphs are closed under taking
minors.

In particular, no planar graph can have K5 or K3,3 as a minor.
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Kuratowski’s theorem

Theorem

A graph G is planar if and only if it does not contain K5 or K3,3

as a minor.

⇒ follows because minors of planar graphs are planar.

⇐ Proof by contradiction, first reducing to the 3-connected case.

Lemma

An edge-minimal non-planar graph G that does not contain K5

or K3,3 as a minor is 3-connected.
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Kuratowski’s theorem

Lemma (Reduction to 3-connected case)

An edge-minimal non-planar graph G that does not contain K5

or K3,3 as a minor is 3-connected.

Proof.

Blackboard
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Kuratowski’s theorem

Lemma (Key Lemma)

A 3-connected graph G that does not contain K5 or K3,3 as a
minor is planar.

Proof.

Blackboard

Kuratowski’s Theorem follows from the reduction lemma and
the key lemma.
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Definitions

A (proper) k-colouring of G = (V ,E ) is a map
γ : V → {1, 2, . . . , k} such that γ(v) 6= γ(u) whenever uv ∈ E .

In other words, a k-colouring is a graph homomorphism G → Kk .

The chromatic number of G = (V ,E ) is the smallest k ∈ N
such that there exists a k-colouring of G .

In other words, χ(G ) = k is the smallest number of independent
sets into which V (G ) can be partitioned.
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Definitions

The chromatic number of G = (V ,E ) is the smallest k ∈ N
such that there exists a k-colouring of G .

In other words, χ(G ) = k is the smallest number of independent
sets into which V (G ) can be partitioned.
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Examples

χ(Kn) = n.

χ(G ) = 2 if and only if G is bipartite.
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Examples

ω(Cn) = 2 χ(Cn) =

{
2 n even
3 n odd

.

ω(C̄n) =
⌊n

2

⌋
χ(C̄n) =

⌈n
2

⌉
.
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Lower bounds

ω(G ) ≤ χ(G )

Proof: Pairwise connected vertices need different colours.
Strict inequality for odd cycles and odd cocycles of length ≥ 5.

χ(H) ≤ χ(G ) if H ⊆ G is a subgraph.

Proof: Any colouring of G restricts to a colouring of H.
|V (G)|
α(G) ≤ χ(G ).

Proof: V (G) is the union of χ(G) colour classes of size ≤ α(G).
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Greedy colouring

Order V (G ) = {v1, . . . , vn} arbitrarily.

For i = 1, . . . , n: Let

γ(vi ) = min{c ∈ N : γ(vj) 6= c for all 1 ≤ j < i , vj ∈ N(vi )}.

Then γ is a proper colouring of G .

For every vertex, there are at most ∆(G ) forbidden colours.
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Brooks’ Theorem

Any colouring gives an upper bound on χ(G ).

Greedy colouring shows χ(G ) ≤ ∆(G ) + 1.

Theorem (Brooks, 1941)

If χ(G ) = ∆(G ) + 1 if and only if G is complete or an odd cycle.

Proof: Clever vertex ordering + greedy colouring.
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Greedy colouring

Order V (G ) such that d(vn) = δ(G ), and recursively such that
vi has minimum degree in G r {vi+1, . . . , vn}.
Then the greedy colouring gives

γ(vi ) ≤ δ(G [v1, . . . , vi ]) + 1.

So
χ(G ) ≤ max

H⊆G
δ(H) + 1.
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Upper bounds

If χ(G ) = k , then for any k-colouring there must be at least one
edge between every pair of colour classes.

Thus (
k

2

)
≤ |E (G )| = m,

so

χ(G ) ≤ 1 +
√

8m + 1

2
.
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Greedy colouring

The greedy algorithm can be arbitrarily bad, depending on the
vertex ordering.

However, there exists a vertex ordering on which the greedy
algorithm uses only χ(G ) colours.

So if we can perform the greedy algorithm for all possible
orderings of V , we can compute the chromatic number exactly.

But there are n! possible ways to order V , so this is not an
efficient algorithm.
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Greedy algorithm

Theorem

There exists a vertex ordering of V (G ) on which the greedy
algorithm uses only χ(G ) colours.

Proof.

Let γ : V → {1, 2, . . . , k} be some k-colouring of G .

Let Vi be the independent set Vi = {v ∈ V (G ) : γ(v) = i} ⊆ V .

Order the vertices such that all nodes in V1 come first, then all
nodes in V2, and so on.

Let δ : V → {1, 2, . . . , k} be a greedy graph colouring with
respect to this ordering.

By induction: δ(v) ≤ i for all v ∈ Vi , so δ uses ≤ k colours.
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The Four Colour Theorem

Colouring a plane graph ! Colouring a political map (with
connected countries), such that neighbouring countries can be
distinguished by their colours.
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The Four Colour Theorem

K4 is planar (Luxembourg, Germany, France, Belgium), so at
least four colours are needed to colour all planar maps.

K5 is not planar, but maybe we could need five colours anyway?
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The Four Colour Theorem

Theorem (Apple, Haken, 1976)

Any planar graph G satisfies χ(G ) ≤ 4

Proof by decomposition via extensive computer search.

Enough to prove for 5-regular graphs.

Computer aided colouring of > 1000 “reducible configurations”
of > 100 vertices each.
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The Four Colour Theorem

Any planar graph G satisfies χ(G ) ≤ 4

Any graph that can be drawn without edge crossings on...

the torus satisfies χ(G) ≤ 7.
a Klein bottle satisfies χ(G) ≤ 6.
an orientable surface of genus g satsfies

χ(G) ≤
⌊

7 +
√

1 + 48g

2

⌋
.

a non-orientable surface of genus k satisfies

χ(G) ≤
⌊

7 +
√

1 + 24k

2

⌋
.

Ragnar Freij-Hollanti MS-E1050



MS-E1050

Ragnar
Freij-Hollanti

0: Introductions

1–2: Basics

3: Matchings

4: Connectivity

5: Planarity

6: Colourings

7: Perfection

8: Randomness

9: Extremality

10: Ramsey

The Five Colour Theorem

The following proof of the weaker five colour theorem “almost”
proves the four colour theorem.

Remarkably (?) it uses geometric properties of plane graphs,
rather than Kuratowski’s theorem.

Theorem (Heawood, 1890)

Any planar graph G satisfies χ(G ) ≤ 5.
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The Five Colour Theorem

Theorem (Heawood, 1890)

Any planar graph G satisfies χ(G ) ≤ 5.

Proof.

Average degree < 6, so choose a vertex v with degree ≤ 5.

Enough to show that G r v can be 5-coloured such that only 4
colours are used on N(v).

Assume not, and fix a plane drawing of G and a 5-colouring of
G r v .
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The Five Colour Theorem

Proof.

WLOG, the neighbours of v are coloured 1, . . . , 5 in colockwise
order.

Let Hi,j be the induced subgraph on the colour classes i , j .
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The Five Colour Theorem

Proof.

Every v1 − v3-path in G r v intersects with every v2 − v4-path in
G r v .

But H13 ∩ H24 = ∅.
So either v1 and v3 are in different components of H13, or v2 and
v4 are in different components of H24.
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The Five Colour Theorem

Proof.

Assume WLOG that v1 and v3 are in different components of
H13.

We can swap the colours on the component of H13 containing v1.

After this, colour 1 is no longer used on N(v).
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Motivation

Some (many) graphs can not be k-coloured, although they have
no k − cliques

Erdös theorem (next week) says that χ is a “global” invariant.

A graph can look like a tree within an arbitrarily large radius,
but still have arbitrarily large chromatic number.

We want to define a class of graphs where all obstacles to
colouring are purely “local”.
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Perfect graphs

G is perfect if χ(H) = ω(H) for any induced subgraph H ⊆ G .

Example

Complete graphs have ω(Kn) = n = χ(Kn).

Bipartite graphs have

ω(G ) = χ(G ) =

{
2 if E (G ) 6= ∅
1 if E (G ) = ∅

Induced subgraphs of complete graphs are complete, and
induced subgraphs of bipartite graphs are bipartite, so all such
graphs are perfect.
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Comparability graphs

A poset is a (finite) set with an order relation ≤ (reflexive,
antisymmetric, transitive).

The comparability graph of a poset (P,≤) is

(P,E ) where xy ∈ E whenever x ≤ y .

(In other words, it is the undirected version of the transitive
closure of the Hasse diagram of P.)

Theorem

Comparability graphs of finite posets are perfect.

Proof.

Blackboard.
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Replicating

If v ∈ V (G ), then G ′ is obtained from G by replicating v if

V (G ′) = V (G ) ∪ {v ′}
E (G ′) = E (G ) ∪ {uv ′ : uv ∈ E (G )} ∪ {vv ′}.

Ragnar Freij-Hollanti MS-E1050



MS-E1050

Ragnar
Freij-Hollanti

0: Introductions

1–2: Basics

3: Matchings

4: Connectivity

5: Planarity

6: Colourings

7: Perfection

8: Randomness

9: Extremality

10: Ramsey

Replicating

Theorem

Assume G is perfect and v ∈ V (G ).

If G ′ is obtained from G by replicating v , then G ′ is also perfect.
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Combining perfect graphs

Theorem

Assume G and H are perfect graphs.

If G ∩ H is a clique, then G ∪ H is perfect.
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Chordal graphs

The class of chordal graphs is defined inductively as follows:

Complete graphs are chordal.

If G and H are chordal and G ∩ H is a clique, then G ∪ H is
chordal.

Corollary

Chordal graphs are perfect.

Ragnar Freij-Hollanti MS-E1050



MS-E1050

Ragnar
Freij-Hollanti

0: Introductions

1–2: Basics

3: Matchings

4: Connectivity

5: Planarity

6: Colourings

7: Perfection

8: Randomness

9: Extremality

10: Ramsey

Strong Perfect Graph Theorem

Graphs whose only induced cycles are C3 are chordal, so perfect.

Graphs whose only induced cycles are even are bipartite, so
perfect.

Graphs that have some odd induced cycle C2k+1, k ≥ 2, are not
perfect.

What about graphs that have induced even cycles and triangles?
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Strong Perfect Graph Theorem

Theorem (Chudnovsky, Robertson, Seymour, Thomas, 2006)

G is perfect if and only if G has no induced subgraph Cn or C̄n

fr n ≥ 5 odd.

⇒: Trivial, because ω(Cn) < χ(Cn) and ω(C̄n) < χ(C̄n) for odd
n ≥ 5.

⇐: Extremely difficult. Proof uses technically complicated
recursive constructions of all Berge graphs.

Berge graphs are the pre-SPGT name for graphs that have no
induced subgraph Cn or C̄n fr n ≥ 5 odd.
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Weak Perfect Graph Theorem

Theorem (Lovázs, 1972)

G is perfect if and only if Ḡ is perfect.

Clearly, SPGT implies WPGT.

We prove WPGT as a corollary of the following characterization
of perfect graphs.

Proposition

G is perfect if and only if

ω(H)α(H) ≥ n

for all induced subgraphs H ⊆ G .
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Weak Perfect Graph Theorem

Proposition

G is perfect if and only if

ω(H)α(H) ≥ n

for all induced subgraphs H ⊆ G .

Proof.

Blackboard.
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Random graphs

Two reasons to study random graphs:

To know what a “typical” graph looks like.

Existence proofs (via The Probabilistic Method).
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G(n,p): definition

For fixed n ∈ N, p ∈ [0, 1], we construct a probability space
G (n, p) of simple graphs with n vertices.

|V | = n fixed, E ⊆
(
V
2

)
random.

For S ⊆
(
V
2

)
, P(E = S) = p|S|(1− p)(n

2)−|S|.

Easy to check: The events {e ∈ E} are independent for different
edges e.
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G(n,p): basic properties

Sample G G (n, p).

By the union bound:

P(α(G ) ≥ k) ≤
(
n

k

)
(1− p)(k

2)

and

P(ω(G ) ≥ k) ≤
(
n

k

)
p(k

2).
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Basic probability theory

Often it is easier to deal with expected values than with
probabilities directly.

Expected values of random variables can be manipulated by
linearity.

Example:

E(#Kk ⊆ G ) =
∑

K∈(V
k)

P(K clique in G ) =

(
n

k

)
p(k

2)
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Counting cycles

Let k ≥ 3.

E(#k-cycles in G ) =
n!

2k(n − k)!
pk

Indeed, there are n!
2k(n−k)! k-cycles in Kn.

Each of these is a cycle in G with probability pk .
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Large random graphs

Often, it makes sense to consider random graphs G (n, p) where
n→∞, and p = p(n) is allowed to depend on n.

Average degree ≈ p
n−1 .

If p is (approximately) constant, we call the graph sequence
dense, if p = O( 1

n ), then we call it sparse.

Another frequently useful regime is p ≈ log n
n .
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Erdös Theorem

We are ready to prove Erdös’s theorem.

Theorem

For all integers k , ` ∈ N, there exists a graph G with girth > `
and chromatic number k .

Moral: Chromatic number is a fundamentally global invariant.

A graph can look like a tree within a radius `
2 from any vertex,

and still have arbitrarily high chromatic number.
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Erdös Theorem

Theorem

For all integers k , ` ∈ N, there exists a graph G with girth > `
and chromatic number k .

We will use random graphs to prove this, but the random graphs
themselves do not have this property.

Rather, random graphs with suitably chosen p have high
chromatic number, and not too many cycles of length < `.

So small modifications of random graphs yield the desired
example.
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Chromatic numbers of dense graphs

Theorem

Fix p ∈ (0, 1), and let G ∼ G (n, p).

Let χn,p = log(1−p)−1

2
n

log n .

Fix ε > 0. Then asymptotically almost surely,

P(χ(G ) ∈ [(1− ε)χn,p, (1 + ε)χn,p])→ 1 as n→∞.

We prove only the lower bound on the chromatic number:
χ(G ) > (1− ε)χn,p asymptotically almost surely.
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Almost sure properties of dense graphs.

For i , j ∈ N, let Pi,j be the following graph property:

For every two sets A,B ⊆ V with A ∩ B = ∅, |A| = i , B = j ,
there exists v ∈ V such that

A ⊆ N(v) and B ∩ N(v) = ∅.

For example, P1,1 is the property that no two vertices have the
same neighbourhood.

Lemma

Fix p ∈ (0, 1) and i , j ∈ N.

With probability → 1 as n→∞, the graph G ∼ G (n, p) has
property Pi,j .
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Almost sure properties of dense graphs.

Corollary

Fix p ∈ (0, 1) and k ∈ N.

With probability → 1 as n→∞, the graph G ∼ G (n, p) is
k-connected.
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G (ℵ0, p).

We can construct a probability measure on graphs with a
countable vertex set, just like we did for G (n, p).

This “countable random graph” has the property Pi,j almost
surely, for all i , j .

But there is a unique countable graph (up to isomorphism) that
has all these properties at once. This is the Rado graph.

So this random graph is uniquely determined up to isomorphism,
with probability one!
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G (ℵ0, p).

Theorem

Let G and H be graphs with countable vertex sets.

Assume that both G and H have property Pi,j for all i , j .

Then G ∼= H.

Proof.

Let V (G ) = v1, v2, . . . . Construct φ : G → H recursively.

Let φ(v1) ∈ V (H) be arbitrary.

Recursively, let Vk = {v1, . . . , vk−1}, and N(vk) ∩ Vk = Uk

By property Pi,j , there exists w ∈ V (H) such that

∀x ∈ φ(Uk) : xw ∈ E and ∀x ∈ φ(Vk \ Uk) : xw 6∈ E .

Define φ(vk) = w . Then φ : G → H is an isomorphism.
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Rado graph

Let V = Z+.

For x < y , let xy ∈ E if and only if the x :th last digit in the
binary extension of y is 1.

N(1) = {3, 5, 7, 9, . . . }.
N(2) = {3, 6, 7, 10, 11, . . . }.
N(3) = {4, 5, 6, 7, 12, 13, 14, 15, . . . }.
Call G = (V ,E ) the Rado graph.

It has property Pi,j for all i , j .

So up to isomorphism, G (ℵ0, p) is the Rado graph with
probability one.
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Guiding questions

How many edges can G have, if |V (G )| = n and ω(G ) < k?

How many edges can G have, if |V (G )| = n and χ(G ) < k?

How many edges can G have, if |V (G )| = n and G has no
subgraph isomorphic to H?

How many vertices can G have, if G has no subgraph isomorphic
to H1 and Ḡ has no subgraph isomorphic to H2?

How many edges can G have, if |V (G )| = n and G has no minor
isomorphic to H?
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Turán’s Theorem

How many edges can G have, if |V (G )| = n and ω(G ) < k?

How many edges can G have, if |V (G )| = n and χ(G ) < k?

Remarkably (?) the answers to these two questions are the same.

Let Tr (n) be the complete r -partite graph with all parts the
same size ±1, and tr (n) = |E (Tr (n))|.
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Turán’s Theorem

Let Tr (n) be the complete r -partite graph with all parts the
same size ±1, and tr (n) = |E (Tr (n))|.

Clearly, χ(Tr (n)) = ω(Tr (n)) = r .

Theorem

Any graph with n vertices and > tr (n) edges contains a clique of
size r + 1.
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Turán’s Theorem

Theorem

Any graph with n vertices and > tr (n) edges contains a clique of
size r + 1.

Proof.

By induction on r .

Consider an edge-maximal G without Kr+1.

Consider H = G r Q where Q ∼= Kr .
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Turán’s Theorem

Theorem

Any graph with n vertices and > tr (n) edges contains a clique of
size r + 1.

Proof.

|E (G )| = #(Q − Q)-edges + #(Q − H)-edges + #(H − H)-edges

I .H.
≤
(
r

2

)
+ (n − r)(r − 1) + tr (n − r)

= tr (n).
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Szemeredi’s regularity lemma: paraphrazing

“All really large graphs on M nodes, can be approximated by
random graphs constructed as follows:

Subdivide the M vertices into k 5 M parts V1, . . .Vk .

For vi ∈ Vi , vj ∈ Vj , assign vivj ∈ E with probability pij .”
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ε-regular pairs

For A,B ⊆ V (G ) with A ∩ B = ∅, let

d(A,B) =
#A− B-edges

|A||B|
∈ [0, 1].

A,B is an ε-regular pair if, for all

X ⊆ A,Y ⊆ B with |X | > ε|A| and |Y | > ε|B|

it holds that
|d(X ,Y )− d(A,B)| < ε.
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ε-regular partitions

Fix ε > 0. A partitioning V (G ) = V0 t V1 t · · · t Vk is ε-regular
if:

|V1| = |V2| = · · · = |Vk |.
|V0| < ε|V |.
The number of not ε-regular pairs amonng V1, . . . ,Vk is < εk2.
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Szemeredi’s regularity lemma

Theorem

For all ε > 0 and all m, there exists M such that:

Every graph G admits an ε-regular partition into k parts with
m < k < M.

Proof strategy: start with an arbitrary partition into m parts.

For each not ε-regular pair V ,U in the partition, subdivide both
U and V into two parts.

Choose a common refinement of such subdivisions. We now
have a partition into 2m−1 parts.
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Szemeredi’s regularity lemma

Choose a common refinement of such subdivisions. We now
have a partition into 2m−1 parts.

Show that the potential q of the partition has now increased by
at least ε5, where

q(V1, . . .Vk) =
∑
i,j

|Vi ||Vj |
|V |2

d2(Vi ,Vj).

The potential is increasing under refinement, and satisfies
0 < q < 1, so the “algorithm” terminates after at most ε−5

refinements.

The number of parts is thus bounded from above by
M = M(m, ε).
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Regularity graphs
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Erdös-Stone’s theorem

Theorem (Erdös, Stone, 1946)

For every 2 ≤ r ≤ m, γ > 0, there exists an integer N such that
every graph with n ≥ N vertices and at least tr−1(n) + γn2

edges contains Tr (m) as a subgraph.

Lemma (Paraphrased)

If G contains R as a regularity graph with critical edge density
d > 0 and |G |/|R| ≥ 2s/d∆, then every subgraph H ⊆ Rs with
maximal degree < ∆ is also a subgraph of G .
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Erdös-Stone’s theorem

Theorem (Erdös, Stone, 1946)

For every 2 ≤ r ≤ m, γ > 0, there exists an integer N such that
every graph with n ≥ N vertices and at least tr−1(n) + γn2

edges contains Tr (m) as a subgraph.

Sketch.

Consider an ε-regular partition into > 1/γ parts, and a regularity
graph with critical edge density γ.

This regularity graph has n′ vertices and > tr−1(n′) edges, so
contains a Kr subgraph.

This yields a Tr (m) subgraph in Rs (where s = m/n′), so also in
G .
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Erdös-Stone’s theorem

Theorem

For every 2 ≤ r ≤ m, γ > 0, there exists an integer N such that
every graph with n ≥ N vertices and at least tr−1(n) + γn2

edges contains Tr (m) as a subgraph.

So morally, all graphs with large enough size and edge density

>
tr−1(n)

n
+ γ ≈ r − 2

1
+ γ

contains all r -colourable graphs as subgraphs.
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Exclusion numbers

For n ∈ N and a graph H, let ex(n,H) be the largest number of
edges in an n vertex graph with no H subgraph.

In particular, ex(n,Kr ) = tr−1(n)

Corollary

For every graph H,

lim
n→∞

ex(n,H)(
n
2

) =
χ(H)− 2

χ(H)− 1
.
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Exclusion numbers

Corollary

For every graph H,

lim
n→∞

ex(n,H)(
n
2

) =
χ(H)− 2

χ(H)− 1
.

So

ex(n,H) =

{
Θ(n2) if H not bipartite
o(n2) if H bipartite
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Exclusion numbers

Corollary

For every graph H,

lim
n→∞

ex(n,H)(
n
2

) =
χ(H)− 2

χ(H)− 1
.

Proof.

Let χ(H) = r .

H 6⊆ Tr−1(n) for all n but H ⊆ Tr (m) for large enoughm.

So
tr−1(n) ≤ ex(n,H) ≤ ex(n,Tr (m)).
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Exclusion numbers

Corollary

For every graph H,

lim
n→∞

ex(n,H)(
n
2

) =
χ(H)− 2

χ(H)− 1
.

Continued.

Erdös-Stone:

tr−1(n) ≤ ex(n,H) ≤ ex(n,Tr (m)) = tr−1(n) + o(n2).

r − 2

r − 1
← tr−1(n)(

n
2

) ≤ ex(n,H)(
n
2

) ≤ tr−1(n) + o(n2)(
n
2

) → r − 2

r − 1
.
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Exclusion numbers

What is the growth rate of ex(n,H) for bipartite graphs?

Theorem

c1n
2− 2

r−1 ≤ ex(n,Kr ,r ) ≤ c2n
2− 1

r

for some universal constants c1, c2.

Conjecture (Erdös-Soós)

For any tree T with k edges, ex(n,T ) = n(k−1)
2 .
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Ramsey
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