0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

MS-E1050
 Graph Theory

Ragnar Freij-Hollanti

October 13, 2022

Teachers

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- Instructor:

Ragnar Freij-Hollanti, ragnar.freij@aalto.fi

- Teaching Assistants:

Patricija Šapokaite, patricija.sapokaite@aalto.fi
Nataliia Kushnerchuk, nataliia.kushnerchuk@aalto.fi

Schedule

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey
■ Lectures:
Thursdays 16-18, M1 and Fridays 10-12, Y405.
■ Exercise sessions:
Mondays 10-12, Y307 or Zoom.

Grading

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ Five homework sheets, due Mondays 19.9., 26.9., 3.10., 10.10., and Wednesday 19.10.

- Returned in the Assignments folder on MyCourses.
- Graded by two of your peers (randomly selected). Grades are due one week after the assignment deadline.
- Each homework sheet gives a maximum of 5.2 for exercises + $2 \cdot 5$ for problems +5 for grading $=25$ points.
- The four best homeworks count towards the final grade.

Literature

- Reinhard Diestel: Graph Theory.

■ Matthias Beck and Rayman Sanyal: Combinatorial Reciprocity Theorems.

- Slides Updated on course homepage after every lecture.

Course content

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

You will learn about:

- the twelve topics mentioned in the left hand menu.
- combinatorial, geometrical, algorithmic, probabilistic, and algebraic aspects of graph theory.
You will learn to:
■ Solve combinatorial problems of different kinds.
■ Relate different mathematical topics to each other.

Discuss in small groups (10-15 minutes):

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ What is your name?

- What is your quest?

■ What is your favourite colour?
■ Select a chairman! Preferably one who can share their screen and draw on it.
■ How would you define what a graph is?

MS-E1050
Ragnar Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matching
4: Connectivity
5: Planarity

- A graph is a pair $G=(V, E)$.

■ V is a set of vertices or nodes

- $E \subseteq\{\{x, y\}: x, y \in V\}$ is a set of edges (undirected graph). or
- $E \subseteq\{(x, y): x, y \in V\}$ is a set of directed edges (digraph).
$\square y$ is the head and x is the tail of the directed edge (x, y).
- $|G|=|V|=n$ and $\|G\|=|E|=m$

UNDIRECTED
DIRECTED

$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{\{13\},\{13\},\{14\}\{\{2]\},\{307\}
\end{aligned}
$$

Definitions

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- If $G=(V, E)$, then we also write (abusing notation) $V=V(G)$ and $E=E(G)$.
- If we allow $E(G)$ to be a multiset (i.e. repeated elements allowed), then G is a multigraph.
- A loop is an edge $\{x, x\}$ (or a directed edge (x, x)).
- If G is not a multigraph, and $x \neq y$ for all edges $\{x, y\} \in E(G)$, then G is a simple graph.

MULTIGRAPH SIITPLIFICATION

Definitions

Frej-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- G is finite if $V(G)$ and $E(G)$ are finite sets (or multisets).

■ In this course, unless explicitly mentioned, all graphs are simple and finite and undirected.

- G is bipartite if $V(G)=A \cup B$ where $A \cap B=\emptyset$ and

$$
E(G) \subseteq\{x y: x \in A, y \in B\}
$$

Discuss in small groups (10-15 minutes):

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ What are some use cases (examples from science or real life) of bipartite graphs?
■ Does any (or all) of you know what a cycle in a graph is? Explain to the others!

- What can you say about the cycles in a bipartite graph?

■ For a graph without an explicit bipartition of its vertices, can you think of an efficient way to see if it is bipartite or not?

Bipartite graphs

MS-E1050

Ragnar Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Complete graphs

MS-E1050

Ragnar

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matching
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Example

- The complete graph $K_{n}=(V, E)$ where

$$
|V|=n \text { and } E=\binom{V}{2}=\{e \subseteq V:|e|=2\} .
$$

- The complete bipartite graph $K_{m, n}=(A \cup B, E)$, where

$$
|A|=m,|B|=n, A \cap B=\emptyset \text { and } E=\{\{a, b\}: a \in A, b \in B\} .
$$

- The empty graph $\overline{K_{n}}=(V, \emptyset)$ where $|V|=n$.

K_{5}

$K_{4,3}$

Substructures

- A clique in G is a set $Q \subseteq V(G)$ of pairwise adjacent nodes (so $G[Q]$ is complete).
■ An independent (or stable) set in G is a set $S \subseteq V(G)$ of pairwise non-adjacent nodes (so $G[S]$ is empty).

$$
\begin{array}{ll}
\text { Clique } & \omega=3 \\
\text { Independent } & \alpha=5
\end{array}
$$

■ The size of the largest clique in G is $\omega(G)$.
$■$ The size of the largest independent in G is $\alpha(G)=\omega(\bar{G})$.

Definitions

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- A (proper) k-colouring of $G=(V, E)$ is a map $\gamma: V \rightarrow\{1,2, \ldots, k\}$ such that $\gamma(v) \neq \gamma(u)$ whenever $u v \in E$.

 NOT
n
n
- The chromatic number of $G=(V, E)$ is the smallest $k \in \mathbb{N}$ such that there exists a k-colouring of G.
- In other words, $\chi(G)=k$ is the smallest number of independent sets into which $V(G)$ can be partitioned.

Examples

MS-E1050

Ragnar
Freij-Hollanti
■ $\chi\left(K_{n}\right)=n$.
0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ $\chi(G)=2$ if and only if G is bipartite.

Discuss in small groups (10-15 minutes):

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- Each colour class in a graph colouring is an independence set.
- The vertices of a clique have to all get different colours.
- Using this: Bound the chromatic number $\chi(G)$ from above in two different ways, in terms of $\alpha(G), \omega(G)$, and n ?
- Can you think of graphs for which these bounds are not tight?

■ Do you think the bounds are tight for "most" graphs? And what does that even mean?

Chromatic numbers

MS-E1050

Ragnar Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Discuss in small groups (10-15 minutes):

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ At any party, some pairs of people are friends, and others are not. Test your intuition. Are the following true or false?
■ At a party with 5 guests, there are always either three mutual friends, or three mutual non-friends.
■ What about a party with 6 guests?

- At a party with $a+b$ guests, there are always either a mutual friends or b mutual non-friends.
■ At any large enough party, there are always either a mutual friends or b mutual non-friends.
- How many guests $R(a, b)$ are needed, so that this holds for all parties?
■ How many guests are needed, so that this holds for most parties? And what does that even mean?

Ramsey Theory

MS-E1050

Ragnar Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection

8: Randomness
9: Extremality
10: Ramsey

Conclusion

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ Today we have discussed some basic types of questions in graph theory.

- Some of these can be solved from first principles by clever high school students.
- Other questions require some sort of "theory".
- Starting Thursday, we will develop combinatorial, probabilistic and algebraic tools to study graphs, and use those to solve problems.

When are two graphs the same?

Frej-Hollanti

0: Introductions
1-2: Basics
3: Matchings

- A homomorphism $G \rightarrow G^{\prime}$ is a map $\varphi: V(G) \rightarrow V\left(G^{\prime}\right)$ such that

$$
\{u, v\} \in E(G) \Rightarrow\{\varphi(u), \varphi(v)\} \in E\left(G^{\prime}\right)
$$

■ An isomorphism $G \rightarrow G^{\prime}$ is a bijection $\varphi: V(G) \rightarrow V\left(G^{\prime}\right)$ such that

$$
\{u, v\} \in E(G) \Leftrightarrow\{\varphi(u), \varphi(v)\} \in E\left(G^{\prime}\right)
$$

When are two graphs the same?

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- An isomorphism $G \rightarrow G^{\prime}$ is a bijection $\varphi: V(G) \rightarrow V\left(G^{\prime}\right)$ such that

$$
\{u, v\} \in E(G) \Leftrightarrow\{\varphi(u), \varphi(v)\} \in E\left(G^{\prime}\right) .
$$

- If there is an isomorphism $G \rightarrow G^{\prime}$, then G and G^{\prime} are isomorphic.
- This is an equivalence relation on graphs.
- An "unlabelled graph" is an equivalence class of graphs under this isomorphism relation.

Terminology

\square Vertices x and y are adjacent if $\{e, y\} \in E$.
■ The vertex x is incident to the edge e if $x \in e$.

- The edges e and e^{\prime} are adjacent if $e \cap e^{\prime} \neq \emptyset$.

■ The (open) neighbourhood $N(v)=\{u \in V:\{v, u\} \in E\}$.
■ The degree $d(v)=|N(v)|$ is the number of neighbours of v (in a simple graph).

Degrees

Ragnar

Freij-Hollanti

0: Introductions
1-2: Basics
3: Matching
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ Minimal degree $\delta(G)=\min _{v \in V(G)} d(v)$.
■ Maximal degree $\Delta(G)=\max _{v \in V(G)} d(v)$.
■ Average degree

$$
d(G)=\frac{1}{|V(G)|} \sum_{v \in V(G)} d(v)=\frac{2\|G\|}{|G|}
$$

■ If all vertices have the same degree k, so $\delta(G)=\Delta(G)$, then G is k-regular.

$$
3 \text {-regular }
$$

2-regular

Degrees

MS-E1050
Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Proposition

In any graph G, the number of vertices with odd degree is even.

Proof.

- Blackboard

Degrees

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey
\square The integer sequence $\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ is graphical if there exists a graph G with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $d\left(v_{i}\right)=d_{i}$.

$$
\begin{aligned}
& \text { Theorem (Havel, Hakimi 1955) } \\
& \text { Assume } d_{1} \geq d_{2} \geq \cdots \geq d_{n} \geq 0 \text {. Then the sequence }\left(d_{1}, \ldots, d_{n}\right) \text { is } \\
& \text { graphical if and only if } \\
& ■ n=1 \text { and } d_{1}=0 \text {, or } \\
& ■\left(d_{2}-1, d_{3}-1, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}\right) \text { is a graphical sequence. }
\end{aligned}
$$

Proof.

- Blackboard

Definitions

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- The complement graph of G is

$$
\bar{G}=\left(V(G),\binom{V(G)}{2} \backslash E(G)\right) .
$$

- The line graph of G is

$$
L(G)=\left(E(G),\left\{\left\{e, e^{\prime}\right\}: e \cap e^{\prime} \neq \emptyset\right\}\right) .
$$

Definitions

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- The disjoint union of two graphs G and H is

$$
G \sqcup H=(V(G) \sqcup V(H), E(G) \sqcup E(H)) .
$$

- The join of G and H has $G \sqcup H$ as a subgraph, and in addition an edge $x y$ for all $x \in V(G), y \in V(H)$.

$P_{4} * P_{2}$

Definitions

■ The disjoint union of two non-empty graphs is always disconnected.

- The join of two non-empty graphs is always connected.
- $K_{n} \star K_{m} \cong K_{n+m}$ and $\overline{K_{n}} \star \overline{K_{m}} \cong K_{n, m}$

Substructures

Ragnar Freij-Hollanti

- H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- H is an induced subgraph of G if $V(H) \subseteq V(G)$ and

$$
E(H)=E(G) \cap\binom{V(H)}{2} .
$$

- If H is an induced subgraph of G, with $V(H)=U$, then we say that H is induced on U, and write $H=G[U]$.

$$
7\rangle
$$

Induced

Walks and paths

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- A walk of length n in $G=(V, E)$ is a sequence $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ of nodes $v_{i} \in V$ where $\left\{v_{i-1}, v_{i}\right\} \in E(G)$ for $i=1, \ldots, n$.
■ A walk $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ is closed if $v_{0}=v_{n}$.
■ A path of length n in G is a subgraph

$$
\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\},\left\{v_{1} v_{2}, \ldots, v_{n-1}, v_{n}\right\}\right) \subseteq G
$$

with all vertices distinct.
■ So $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a non-revisiting walk of length $n-1$.

- A path $\left(x, v_{1}, \ldots, v_{n-1}, y\right)$ is an $x-y$-path, often denoted $x-y$.

Closed walks and cycles

■ A walk $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ is closed if $v_{0}=v_{n}$.
4: Connectivity
■ A cycle of length n in G is a subgraph

$$
\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\},\left\{v_{1} v_{2}, \ldots, v_{n-1} v_{n}, v_{n} v_{0}\right\}\right) \subseteq G
$$

with all vertices distinct.
■ So $\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$ is a minimal closed walk of length n.

Paths

Ragnar

Freij-Hollanti

- Let $A, B \subseteq V(G)$, and let H be a subgraph of G.

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness

- An $A--B$-path is a path

$$
\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\},\left\{v_{1} v_{2}, \ldots, v_{n-1}, v_{n}\right\}\right) \subseteq G
$$

where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cap A=\left\{v_{1}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cap B=\left\{v_{n}\right\}$
■ Note: If $A \cap B \neq \emptyset$, then there exist $A--B$-paths of length 1 .

- A H-path is a path

$$
\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\},\left\{v_{1} v_{2}, \ldots, v_{n-1}, v_{n}\right\}\right) \subseteq G
$$

where $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cap V(H)=\left\{v_{1}, v_{n}\right\}$.

Paths and cycles

- This notion of distance is a metric:

$$
\begin{gathered}
d_{G}(x, y)=0 \Leftrightarrow x=y \\
d_{G}(x, z) \leq d_{G}(x, y)+d_{G}(y, z)
\end{gathered}
$$

Paths and cycles

- The diameter of G is

0: Introductions
1-2: Basics
3: Matchings

$$
\max _{y \in V(G)} d_{G}(x, y)
$$

- The radius of G is

$$
\min _{x \in V(G)} \max _{y \in V(G)} d(x, y)
$$

- A vertex $x \in V(G)$ that minimizes

$$
\max _{y \in V(G)} d(x, y)
$$

is called a central vertex.

Exercise during the break

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- Compute the girth, circumference, diameter and radius of the Petersen graph.

Paths and cycles

MS-E1050
Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Proposition

Every graph G with $\delta(G) \geq 2$ contains a cycle of length at least $\delta(G)+1$.

Proof.

- Blackboard

Euler tours

MS-E1050

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness

9: Extremality

- An Euler tour in a graph is a closed walk that traverses every edge in G exactly once.
- "Motivation": Can one take a walk across all the bridges in Königsberg without going over any bridge more than once?

Euler tours

Proposition

A connected graph G has an Euler tour if and only if every vertex in G has even degree.

Proof.

$■ \Rightarrow$: Orient each edge according to which direction the Euler tour traverses it.

- Then every node has the same indegree as outdegree, so even total degree.
$■ \Leftarrow$: Induction on the number of edges. (Blackboard.)

Bipartite graphs

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Lemma

G is bipartite if and only if G has no odd cycles.

Proof.

$\square \Rightarrow$: Proved in an exercise last time.
■ \Leftarrow : Suffices to prove it for connected graphs. Assume for a contradiction G is connected and has no odd cycles.

- A minimal odd length closed path is a cycle, so G has no odd length closed paths.

Bipartite graphs

Lemma

G is bipartite if and only if G has no odd cycles.

Proof.

■ \Leftarrow : We assumed for a contradiction G is connected and has no odd length closed paths.

- Fix $v \in V(G)$, and define

$$
\begin{aligned}
& A=\left\{y \in V(G): d_{G}(x, y) \text { is even }\right\} \\
& B=\left\{y \in V(G): d_{G}(x, y) \text { is odd }\right\}
\end{aligned}
$$

- If there were an edge $x y$ between two nodes in the same part, then $v-x-y-v$ would be a closed walk of odd length.
■ Contradiction, so (A, B) is a bipartition of $V(G)$.

Bipartite graphs

Lemma

G is bipartite if and only if G has no induced odd cycles.

Proof.

$\square \Rightarrow$: Follows from the previous lemma.
$■ \Leftarrow$: Assume G is not bipartite, yet has no induced odd cycle.
■ Consider a minimal odd cycle C in G. (Exists because G is not bipartite.) Let $e=\{x, y\}$ be an edge in $G[V(C)] \backslash C$.

- The cycle C contains two $x-y$-paths P and Q.

■ The cycles $P+e$ and $Q+e$ are shorter than C, and one of them is odd. Contradiction!

Connectivity

- A graph is connected if there is a path between any pair of nodes.

■ The maximal connected subgraphs are the connected components of the graph.
■ The connected components form a partition of the graph.

Trees

Ragnar

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Comnectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- A connected graph without cycles is a tree.

■ A node is a leaf if it only has one neighbour.
■ Every tree with $|T| \geq 2$ has at least two leaves. (endpoints on a maximal path).

Trees

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity

- A connected graph without cycles is a tree.
- A graph without cycles is a forest
- Every forest is a disjoint union of trees. These are the connected components of the forest.
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Trees

Theorem

The following are equivalent:
■ $T=(V, E)$ is a tree.

- For any $u, v \in V$, there s a unique $u-v$-path in T.
- T contains no cycle, and for any $E \subsetneq F \subseteq\binom{V}{2}$, the graph ($V, F)$ contains a cycle.
- T is connected, and for any $F \subsetneq E$, the graph (V, F) is disconnected.

Proof.

- Exercise

Spanning trees

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- A spanning tree in the connected graph (V, E) is a tree $\left(V, E^{\prime}\right)$ that contains all the nodes and some of the edges $E^{\prime} \subseteq E$ of the graph.
- A spanning tree exists in any connected graph:
- Start from one node. Add one edge at a time between a node in the tree and a node not yet in the tree.
- Notice: the spanning tree is not unique.

Trees

Lemma

A tree with n nodes has exactly $n-1$ edges.

Proof.

- By induction on n. Trivial base case $n=1$.
- Assume $|V| \geq 2$, and let $v \in V(T)$ be a leaf, with only outgoing edge $e \in E(T)$.
- Then $(V \backslash\{v\}, E \backslash\{e\})$ is a tree with $n-1$ vertices and (by induction hypothesis) $n-2$ edges.
- So $|E|=n-1$.

Rooted trees

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- A rooted tree is a tree T with a distinguished node r. Then:

■ The level of the node v is the length of the unique path (r, \ldots, v).

- The tree order associated to (T, r) is the partial order on $V(T)$ given by $v \leq u$ if the unique path from r to u goes through v.
$\square r$ is the unique minimal element in the tree order.

Normal trees

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- A rooted spanning tree (T, r) in G is called a normal tree if all edges in G go between comparable elements in the tree order.
- Normal trees are also called depth first search trees.
- Normal trees exist in every connected graph for any prescribed root.
- Constructed via depth first search.

Edge spaces

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- Consider $\mathbb{F}_{2}=\{0,1\}$ with addition $1+1=0$.

■ Define the edge space (over $\left.\mathbb{F}_{2}\right) \mathcal{E}(G)=\left\{f: E(G) \rightarrow \mathbb{F}_{2}\right\}$.
■ Identify the elements in $\mathcal{E}(G)$ with subsets of $E(G)$.

$$
\left\langle f, f^{\prime}\right\rangle=\sum_{e \in E} f(e) f^{\prime}(e)=\left|f \cap f^{\prime}\right| \quad \bmod 2
$$

$\square f+f^{\prime}$ corresponds to the symmetric difference of the sets f and f^{\prime}.

Cycle spaces

- The edge set of a cycle is called a circuit.

■ The cycle space $\mathcal{C}(G) \subseteq \mathcal{E}(G)$ is generated (over \mathbb{F}_{2}) by the circuits in G.

■ $F \in \mathcal{C}(G)$ iff and only if F is a disjoint union of circuits.
■ $F \in \mathcal{C}(G)$ iff and only if every $v \in V(G)$ has even degree in F.
■ Proofs of these equivalences: Exercise.

Cut spaces

- If $A \subseteq V(G)$, the set of edges between A and \bar{A} is a cut.

5: Planarity
■ The cut space $\mathcal{B}(G) \subseteq \mathcal{E}(G)$ is generated (over \mathbb{F}_{2}) by the cuts in G.

- The symmetric difference of two cuts is a cut.

■ So $F \in \mathcal{C}(G)$ iff and only if F is itself a cut.

Cut and cycle spaces

MS-E1050

Ragnar Freij-Hollanti

Example

0: Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- $c=\{1,2,3,4\} \in \mathcal{C}(G)$.
- $b=\{1,4,7\} \in \mathcal{B}(G)$.
- $\langle b, c\rangle=|b \cap c| \bmod 2=|\{1,4\}| \bmod 2=0$

Cut and cycle spaces

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- A closed walk enters A equally many times as it leaves A.

■ So a circuit c contains an even number of edges from every cut.

- So $\mathcal{B}(G) \perp \mathcal{C}(B)$ as vector spaces over \mathbb{F}_{2}.
- Standard linear algebra gives

$$
\operatorname{dim} \mathcal{B}(G)+\operatorname{dim} \mathcal{C}(G) \leq \operatorname{dim} \mathcal{E}(G)=m .
$$

- We will show that equality holds, so $\mathcal{B}(G)=\mathcal{C}(G)^{\perp}$.

Cut and cycle spaces

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- A closed walk enters A equally many times as it leaves A.

■ So a circuit c contains an even number of edges from every cut.

- So $\mathcal{B}(G) \perp \mathcal{C}(B)$ as vector spaces over \mathbb{F}_{2}.
- Standard linear algebra gives

$$
\operatorname{dim} \mathcal{B}(G)+\operatorname{dim} \mathcal{C}(G) \leq \operatorname{dim} \mathcal{E}(G)=m .
$$

- We will show that equality holds, so $\mathcal{B}(G)=\mathcal{C}(G)^{\perp}$.

Cycle space dimension

■ Easy to check:

$$
\mathcal{C}(G \sqcup H)=\mathcal{C}(G) \oplus \mathcal{C}(H) \text { and } \mathcal{B}(G \sqcup H)=\mathcal{B}(G) \oplus \mathcal{B}(H)
$$

■ So assume G connected. Fix a spanning tree $T \subseteq G$.
■ For each $e=\{u, v\} \in E-T$, consider the fundamental cycle

$$
C_{e}=\{e\} \cup P_{u v}
$$

where $P_{u v}$ is the unique $u-v$-path in T.
■ For every $e \in E$, the collection $\left\{C_{i}: i \in E-T\right\}$ contains exactly one vector $C=C_{e}$ for which $C(e)=1$.
■ Therefore, the vectors $\left\{C_{i}: i \in E-T\right\}$ are linearly independent.
■ So $\operatorname{dim}(\mathcal{C}(G)) \geq|E-T|=m-(n-1)$.

Cut space dimension

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randommess
9: Extremality
10: Ramsey

- Assume G connected. Fix a rooted spanning tree $T \subseteq G$.
- For each $e=\{u, v\} \in T$, with $v>u$ in the tree order, define $A_{e}=\{w \in V: w \geq v\}$.
- The cut B_{e} associated to A_{e} contains onely one edge from T, namely e.
- Therefore, the vectors $\left\{B_{i}: i \in T\right\}$ are linearly independent.
- So $\operatorname{dim}(\mathcal{B}(G)) \geq|T|=n-1=m-\operatorname{dim}(\mathcal{C}(G))$.
- It follows that $\mathcal{B}(G)^{\perp}=\operatorname{dim}(\mathcal{C}(G))$.

Matchings in bipartite graphs

Example

■ Six students have to do a group task, where they have to read five different books.

- Nobody has time to read more than one book.

■ Moreover, not all students have access to all of the books.
■ Can they divide the task so that all the books get read?

Matchings in general graphs

Example

0 : Introductions
1-2: Basics
3: Matchings

- In a collection of people, some pairs of people are willing to live happily ever after together, while some other pairs are not.
- Can we pair the population up so that everyone is together with someone they want to live with?

Matchings

Definition

- A matching in G is a collection $M \subseteq E(G)$ of pairwise disjoint edges.
- A matching M is maximal if it is not contained in any other matching on G
- A matching M is complete on $A \subseteq V(G)$ if every vertex in A is in some edge of M.
- A matching M is perfect (or complete) if it is complete on $V(G)$.

k-factors

Definition

- A perfect matching on G is also called a 1-factor.
- More generally, a k-factor on G is a spanning k-regular subgraph of G.
- In particular, a 2-factor is a collection of pairwise disjoint cycles that cover the vertices of G.

Vertex cover

Definition

- A vertex cover is a collection $A \subseteq V(G)$ such that every edge in $E(G)$ contains at least one vertex in A.
- A vertex cover is minimal if it does not contain any other vertex cover.

6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Alternating paths

Definition

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey
■ Consider a bipartite graph $G=(A \sqcup B, E)$ with a matching M.

- An alternating path with respect to M is a path

$$
P=a_{0}, b_{1}, a_{1}, b_{2}, \cdots v
$$

in G such that:

- a_{0} is not matched in M.
- $\left\{a_{i}, b_{i}\right\} \in M$ for all $i \geq 1$.

■ If the final vertex v of the path is unmatched, then P is an augmenting path with respect to M.

Augmenting paths

Definition

- An augmenting path with respect to M is a path

$$
P=a_{0}, b_{1}, a_{1}, b_{2}, \cdots a_{k}, b_{k+1}
$$

in G such that:

- $a_{0} \notin e$ for every $e \in M$.
- $\left\{a_{i}, b_{i}\right\} \in M$ for all $i \geq 1$.
- $b_{k} \notin e$ for every $e \in M$.

Lemma

If P is an augmenting path with respect to a matching M, then

$$
M^{\prime}=M \backslash\left\{a_{i} b_{i}: 1 \leq i \leq k\right\} \cup\left\{a_{i} b_{i+1}: 0 \leq i \leq k\right\}
$$

is a matching with $\left|M^{\prime}\right|=|M|+1$.

König's Theorem

Theorem

- In any bipartite graph $(A \sqcup B, E)$, the size of the largest matching equals the size of the smallest vertex cover.

Proof.

- \leq : Every vertex cover contains at least one end of each edge in the matching.
- These ends must all be different.
- \geq : Proof by alternating paths. (blackboard)

Another necessary condition

- Assume there is a set $S \in V(G)$ such that $|N(S)|<|S|$.

0 : Introductions
1-2: Basics
■ Then there clearly can not be a complete matching on S, so not on G either.
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Hall's Marriage Theorem

Theorem

■ A bipartite graph $(A \sqcup B, E)$ with $|A| \leq|B|$ contains a complete matching if and only if $|N(S)| \geq|S|$ for all $S \subseteq A$.

Proof.

$■ \Rightarrow$: Trivial.
$■ \Leftarrow$: By induction on $|A|$. Obvious if $|A|=1$.
■ If $|N(S)|>|S|$ for all $S \subsetneq A, a b \in E(G)$ be an arbitrary edge.

- Hall's condition holds for the smaller graph $G^{\prime}=G-\{a, b\}$, so there is a complete matching M^{\prime} on G^{\prime}.
- Then $M^{\prime} \cup\{a b\}$ is a complete matching on G.

Hall's Marriage Theorem

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

\Leftarrow continued.

■ Remains to assume $\left|N\left(A^{\prime}\right)\right|=\left|A^{\prime}\right|$ for some $A^{\prime} \subsetneq A$.

- By induction, there is a complete matcing on $G^{\prime}=G\left[A^{\prime} \sqcup N\left(A^{\prime}\right)\right]$.
- Now if $S \subseteq A \backslash A^{\prime}$, then

$$
\begin{aligned}
\left|N(S) \backslash N\left(A^{\prime}\right)\right| & \geq\left|N\left(S \cup A^{\prime}\right)\right|-N\left(A^{\prime}\right) \\
& =\left|N\left(S \cup A^{\prime}\right)\right|-\left|A^{\prime}\right| \geq\left|S \cup A^{\prime}\right|-\left|A^{\prime}\right|=|S|
\end{aligned}
$$

■ So $G-G^{\prime}$ also satisfies Hall's condition and has a complete matching.
■ These two matchings together form a complete matching on G.

1-factors

Corollary

- Every non-empty bipartite regular graph has a 1-factor.

Proof.

- $(A \sqcup B, E)$ regular $\Rightarrow|A|=|B|$.
- For any $S \subseteq A$,

$$
k|S|=|E(S)| \leq|E(N(S))|=k|N(S)|,
$$

so S satisfies Hall's criterion.

2-factors

MS-E1050

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Corollary

■ Every regular graph of positive even degree has a 2-factor.

Proof.

- Assume WLOG G connected.
- Positive even degree \Rightarrow exists an Euler tour
$v_{0}, v_{1}, v_{2}, \ldots, v_{m}=v_{0}$ with

$$
E=\left\{v_{i} v_{i+1}: 0 \leq i<m\right\} .
$$

- Construct a bipartite graph $G^{\prime}=\left(V^{+} \sqcup V^{-}, E\right)$, where

$$
v^{+}=\left\{v^{+}: v \in V(G)\right\}, V^{\prime}=\left\{v^{-}: v \in V(G)\right\}
$$

and

$$
E=\left\{\left\{v_{i}^{+}, v_{i+1}^{-}\right\}: 0 \leq i<m\right\} .
$$

2-factors

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Corollary

- Every regular graph of positive even degree has a 2-factor.

Continued.

- Construct a bipartite graph $G^{\prime}=\left(V^{+} \sqcup V^{-}, E\right)$, where

$$
v^{+}=\left\{v^{+}: v \in V(G)\right\}, V^{\prime}=\left\{v^{-}: v \in V(G)\right\}
$$

and

$$
E=\left\{\left\{v_{i}^{+}, v_{i+1}^{-}\right\}: 0 \leq i<m\right\} .
$$

- This graph is bipartite and regular, so has a perfect matching.
- This perfect matching projects to a 2 -factor in G under the map $G^{\prime} \rightarrow G, v^{+} \mapsto v, v^{-} \mapsto v$.

Preference orders

■ A preference order of a vertex $v \in V(G)$ is a linear order \leq_{v} on $N(v)$.
■ We say that v prefers u to w if $u \geq_{v} w$.

- A preference ordered graph is a graph G together with a preference order for every vertex $v \in V(G)$.

Preference orders

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ Let M be a matching on a preference ordered graph.

- We say that a desires $b \in N(a)$ if $b \geq_{a} x$ for any x with $\{a, x\} \in M$.
■ An edge $\{a, b\} \notin M$ is critical with respect to the matching M if a desires b and b desires a.
■ A matching is stable if there is no critical pair with respect to M.
- We say that a is satisfied if a is unmatched or a is not contained in any critical edge.

Preference orders

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- For some preference ordered graphs, there exist no stable matchings.
- Example: Consider the cyclic graph C_{n} with the preferences

$$
i+1 \geq_{i} i-1
$$

for all $i \in V\left(C_{n}\right)=\{0,1, \ldots, n-1\}$, (addition $\left.\bmod n\right)$.

- If i is unmatched, then $\{i, i-1\}$ is always a critical edge.

■ If n is odd, then some vertex is always unmatched, so no stable matching exists.

Gale's Marriage Theorem

Theorem

- For any set of preferences $\left\{\leq_{x}: x \in V(G)\right\}$ on a bipartite graph G, there exists a stable matching.

Proof.

■ We will find such a matching by an algorithm that will terminate on a stable matching.

- The algorithm is (controversially?) not symmetric on the sets A and B.

Gale's Marriage Theorem

Ragnar
Freij-Hollanti

Continued.

- WHILE there exist desired unmatched $a \in A$:
- Choose arbitrary desired unmatched $a \in A$.

■ Every element in B that desires a proposes to her.

- a selects her favourite among the admirers (who leaves his previous partner if he was already matched).
- By construction, matched elements in A are never in a critical pair.
- The algorithm ends after at most $\sum_{b \in B} d(b)$ iterations.
- When the algorithm terminates, unmatched elements in A are also not in any critical pair.

Gale's Marriage Theorem

MS-E1050

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

- On a given graph G with given preference orders, all stable matchings have the same size.

Proof.

- Exercise

Tutte's condition

- If $|G|$ is odd, then G has no 1-factor. (duh!)
- Let $q(H)$ denote the number of odd components in the graph H.
- Assume S is a separator on G, A is a component of $G \backslash S$, and M is a 1 -factor on G.
- Either M is a 1 -factor on A, or M contains an $A S$-edge.
- So if G has a 1 -factor, then $q(G \backslash S) \leq|S|$.

Tutte's condition

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ Let $q(H)$ denote the number of odd components in the graph H.

Theorem

■ The graph G has a 1-factor if and only if $q(G \backslash S) \leq|S|$ for all $S \subseteq V(G)$.

Proof.

■ \Rightarrow : Trivial.
$■ \Leftarrow$ Say that a set S is bad if $q(G \backslash S)>|S|$.
■ If $G^{\prime} \subseteq G$ is a spanning subgraph, and S is bad in G, then S is bad in G^{\prime}.

- Assume G edge-maximal with no 1-factor. We want to find a bad set S.

Tutte's condition

Theorem

- The graph G has a 1-factor if and only if $q(G \backslash S) \leq|S|$ for all $S \subseteq V(G)$.

Continued.

- Assume G edge-maximal with no 1-factor.
- Consider

$$
S=\{v \in V: \forall u \in V: v u \in E\} .
$$

■ Every component in $G \backslash S$ is complete by edge-maximality (technical lemma).

- If $|G|$ is even, then we would get a 1 -factor unless if S is bad.
- If $|G|$ is odd, then \emptyset is bad.

3-regular graphs

Theorem

- Every 3-regular bridgeless graph G has a 1-factor.

Proof.

- We will show that G satisfies Tutte's criterion.
- Fix $S \subseteq V(G)$, and an odd component C of $G \backslash S$.
- $\sum_{c \in C} d(c)$ is odd, so there is an odd number of SC-edges.
- No bridge \Rightarrow there are at least 3 SC-edges.
- So

$$
3|S| \geq \sum \# S C \text {-edges } \geq 3 q(G \backslash S)
$$

where the sum is over all odd components of $G \backslash S$.

Connectivity

Ragnar
Freij-Hollanti

0 : Introductions 1-2: Basics

3: Matching
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ $X \subseteq V(G) \cup E(G)$ is a separator of G if $G \backslash X$ is disconnected

- $X \subseteq V(G) \cup E(G)$ is an $A-B$-separator, for $A, B \subseteq V(G)$, if there is no path from A to B in $G \backslash X$.

■ If X consists only of vertices, it is a vertex separator
■ If X consists only of edges, it is a edge separator

Connectivity

Freij-Hollanti

- The graph G is k-connected if $G \backslash X$ is connected for all $X \subseteq V(G)$ with $|X|<k$.
- The connectivity $\kappa(G)$ is the largest integer k such that G is k-connected.

$1 F=3$

Connectivity

- The graph G is edge- k-connected if $G \backslash X$ is k-connected for all $X \subseteq E(G)$ with $|X|<k$.
- The edge connectivity $\lambda(G)$ is the largest integer k such that G is k-edge-connected.

Connectivity

Theorem

- For any non-complete graph G,

$$
\kappa(G) \leq \lambda(G) \leq \delta(G)
$$

Proof.

$$
\lambda(G) \leq \delta(G):
$$

- The $d(v)=\delta(G)$ edges surrounding some vertex v separate v from the rest of the graph.

Connectivity

Proof.

$$
\kappa(G) \leq \lambda(G):
$$

■ Consider a k element edge separator F.

- Case one: F covers all vertices of G.

■ Consider v with $d(v)<n-1$, and let A be the connected component of v in $G \backslash F$.

■ All edges $v-y, y \notin A$, are in F.

- All elements of $N(v) \cap A$ are in different edges of F.
$■$ So $|N(v)| \leq k$, and so $N(v)$ is a separator of size $<k$.

Connectivity

Proof.

$$
\kappa(G) \leq \lambda(G):
$$

■ Consider a k element edge separator F.
■ Case two: $v \in V$ in not incident to any edge in F.
■ Let A be the connected component of v in $G \backslash F$.
■ Let $A^{\prime} \subseteq A$ be the set of vertices in A that are incident to an edge in F.

- So $A^{\prime} \leq k, A^{\prime}$ separates v from $V \backslash A$ in $G \backslash F$.

Connectivity

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ So high connectivity implies high minimum degree.

- The opposite implication does not hold.

2-connected graphs

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

G is 2-connected if and only if it can be inductively constructed by:

- Starting from a cycle.
- Adding a H-path to H.

■ A H-path is a $x-y$-path P for some vertices $x, y \in H$, such that no internal vertex on P lies in H.

2-connected graphs

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

G is 2-connected if and only if it can be inductively constructed by:

- Starting from a cycle.
- Adding a H-path to H.

Proof.

$■ \Rightarrow$: Cycles are 2-connected, and 2-connectedness is preserved when adding H-paths
$■ \Leftarrow$: By induction on $|G|$.

2－connected graphs

Theorem

G is 2－connected if and only if it can be inductively constructed by：
－Starting from a cycle．
－Adding a H－path to H ．

Proof．

■ For a contradiction，consider a maximal subgraph $H \subsetneq G$ constructed as in the theorem．
－By maximality，H is induced．
■ G connected，so there is an edge $u v \in E(G)$ with $u \in H, v \notin H$ ．
■ G 2－connected，so there is a $H-v$－path P in $G \backslash\{u\}$ ．
$\square P+\{u, v\}$ is a H－path，contradicting the maximality of H ．

Paths and separators

- $X \subseteq V(G) \cup E(G)$ is an $A-B$-separator, for $A, B \subseteq V(G)$, if there is no path from A to B in $G \backslash X$.

4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- A family of paths from A to B are

■ Disjoint if they have no vertices in common.

- Independent if they have no internal vertices in common.
- Edge disjoint if they have no vertices in common.
- Clearly,

Edge disjoint \Leftarrow Independent \Leftarrow Disjoint

Menger's local theorem

MS-E1050
Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

- Let G be a graph and $A, B \subseteq V(G)$.
- The minimum size of an (A, B)-vertex separator equals the maximum number of pairwise disjoint $A-B$-paths in G.

- We allow the vertex separator to intersect $A \cup B$.
$■$ Indeed, if $A \cap B \neq \emptyset$, then the vertex separator must contain $A \cap B$.

Menger's local theorem

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

- Let G be a graph and $A, B \subseteq V(G)$.
- The minimum size of an (A, B)-vertex separator equals the maximum number of pairwise disjoint $A-B$-paths in G.

Proof.

- \geq : If there are k disjoint paths, then all of them must contain a vertex from the separator.
- So any separator has size at least k.

Menger's local theorem

6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

- Let G be a graph and $A, B \subseteq V(G)$.
- The minimum size of an (A, B)-vertex separator equals the maximum number of pairwise disjoint $A-B$-paths in G.

Proof.

$\square \leq$: Assume there is no (A, B)-vertex separator of size $k-1$.
■ We claim that there are k pairwise disjoint $A-B$-paths in G.
■ Proof by induction over $|E(G)|$.
\square Base case: If $E=\emptyset$, then $A \cap B$ is a separator, so $|A \cap B| \geq k$.

- Then there are k trivial $A-B$-paths.

Menger's local theorem

Proof.

$\square \leq$: Assume there is no (A, B)-vertex separator of size $k-1$.

- Assume for a contradiction that there are not k pairwise disjoint $A-B$-paths in G.
■ Fix e $\in E(G)$. There are at most $k-1$ pairwise disjoint $A-B$-paths in $G \backslash e$.
- By induction hypothesis, $G \backslash e$ has an (A, B)-separator S with $|S| \leq k-1$.

Menger's local theorem

Proof.

Ragnar

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ \leq : We assumed there were no (A, B)-vertex separator of size $k-1$ but also no k pairwise disjoint $A-B$-paths in G.
■ By induction hypothesis, $G \backslash e$ has an (A, B)-separator S with $|S| \leq k-1$.

- There is an $A-B$-path in G that uses e and does not intersect S, because S is not a separator in G.

Menger's local theorem

MS-E1050

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Proof.

- $G \backslash e$ has neither a $\left(A, S \cup\left\{v_{A}\right\}\right)$-separator nor any $\left(A, S \cup\left\{v_{B}\right\}\right)$-separator of size $\leq k-1$.
- By induction, there are k disjoint $\left(A, S \cup\left\{v_{A}\right\}\right)$-paths and k disjoint ($B, S \cup\left\{v_{A}\right\}$)-paths.
- These can be glued together with the edge e to form k disjoint (A, B)-paths.

Menger's global theorem

Theorem

- Let G be a graph. The following are equivalent:
- G is k-connected.
- For every $a, b \in V(G)$, there are k pairwise independent $a-b$-paths.

Proof.

- The following are equivalent.

■ There are k pairwise independent $a-b$-paths.

- There are k pairwise disjoint $N(a)-N(b)$-paths.
- There is no $(N(a), N(b))$-separator of size $<k$.
\square Every separator in the graph is an $(N(a), N(b))$-separator for some $a, b \in V(G)$.
- Thus, the conditions above hold for all vertices $a, b \in V(G)$ if and only if G is k-connected.

Menger's edge-connectivity theorem

Corollary

- Let G be a graph. The following are equivalent:
- G is k-edge connected.
- For every $a, b \in V(G)$, there are k pairwise edge-disjoint $a-b$-paths.

Proof.

■ Apply Menger's theorem to the line graph $L(G)$ of G.
■ Edge disjoint (a, b)-paths in G are disjoint $(E(a), E(b))$-paths in $L(G)$.

Minors

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- If G is a graph, then $I G$ ("inflated G ") denotes any graph G^{\prime} whose vertex set can be partitioned as a disjoint union $V\left(G^{\prime}\right)=U_{x \in V(G)} U_{x}$ where

$$
x y \in E(G) \Leftrightarrow \exists v_{x} \in U_{x}, v_{y} \in U_{y}: v_{x} v_{y} \in E\left(G^{\prime}\right)
$$

- If H has a subgraph isomorphic to an $I G$, then G is a minor of H.

Minors

Ragnar

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremaility
10: Ramsey

- The deletion of $X \subseteq E$ from $G=(V, E)$ is

$$
G \backslash X=(V, E \backslash X)
$$

- The deletion of $X \subseteq V \cup E$ from $G=(V, E)$ is

$$
G \backslash X=(G \backslash(E \cap X))[V \backslash X] .
$$

Minors

MS-E1050
Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- The contraction of the edge $e=\{x, y\}$ from $G=(V, E)$ is $G / e=\left(V^{\prime}, E^{\prime}\right)$, where

$$
V^{\prime}=V \backslash\{x, y\} \cup\{v\}
$$

and

$$
E^{\prime}=E \backslash\{x z\} \backslash\{y z\} \cup\{v z: x z \in E \text { or } y z \in E\} .
$$

- Observe that it is often (but not always) more natural to define the contraction as a multigraph.
- If $z \in N(x) \cap N(y)$, then we get two parallel edges $v z$.

Minors

MS-E1050

Ragnar

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- Contraction and deletion commute:

$$
(G / e) / f \cong(G / f) / e,
$$

and if $e \notin X$ then

$$
(G \backslash X) / e \cong(G / e) \backslash X
$$

- So for $X \subseteq V \cup E$ and $Y \subseteq E \backslash X$, we can naturally define $G \backslash X / Y$.

Minors

MS-E1050

Ragnar

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Proposition

■ G is a minor of $H=(V, E)$ if and only if there exists $X \subseteq V \cup E$ and $Y \subseteq E \backslash X$, such that

$$
G \cong H \backslash X / Y
$$

$$
G \cong H I X / Y
$$

Building k-connected graphs

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- Paraphrasing previous theorems:
- Connected graphs can be obtained by glueing edges together along vertices.
- 2-connected graphs can be constructed by glueing cycles together along paths.
- The family of connected 3-regular graphs is much more complicated than the families of connected 1- and 2-regular graphs
- The building blocks of the structure theorem for 3-connected graphs are K_{4}, and the operations are the inverse of contraction.

Two operations on multigraphs

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randommess
9: Extremality
10: Ramsey

Definition

The $\left(v, N_{x}, N_{y}\right)$-vertex split of G^{\prime} is $G^{\prime} \mapsto G=(V, E)$, where

$$
V=V\left(G^{\prime}\right) \cup\{x, y\} \backslash\{v\}
$$

and

$$
E=E\left(G^{\prime}\right) \backslash\{e: v \in e\} \cup\left\{x z: z \in N_{x}\right\} \cup\left\{y z: z \in N_{y}\right\} \cup\{x y\}
$$

where

$$
v \in V\left(G^{\prime}\right), \quad N_{x}, N_{y} \subseteq N(v), \quad N_{x} \cup N_{y}=N(v)
$$

Proposition

$G^{\prime} \cong G / e$ for some $e=x y \in E(G)$ if and only if G is a vertex split of G^{\prime}.

Tutte's wheel theorem

- Our next goal is to prove the following theorem:

Theorem

A graph G is 3-connected if and only if there is a sequence of edges

$$
e_{1}, \ldots, e_{m-6}
$$

in G such that:
$\square G /\left\{e_{1}, \ldots, e_{k}\right\}$ is 3-connected for all k.
■ $G /\left\{e_{1}, \ldots, e_{m-6}\right\} \cong K_{4}$.

Two operations on multigraphs

0 : Introductions

1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randommess
9: Extremality
10: Ramsey

Lemma

If G is 3-connected, then there is some edge $e \in E(G)$ such that G / e is also 3-connected.

Proof.

- Assume not.
- Then every edge is contained in a 3-separator.

Two operations on multigraphs

0 : Introductions

1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Lemma

If G is 3-connected, then there is some edge $e \in E(G)$ such that G / e is also 3-connected.

Proof.

- Assume B minimal.

$$
D \subsetneq B \quad \square
$$

Two operations on multigraphs

0 : Introductions 1-2: Basics

3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Lemma

If G is 3 -connected, $v \in V(G)$, and $N_{x}, N_{y} \subseteq N(v)$ satisfy $\left|N_{x}\right| \geq 3,\left|N_{y}\right| \geq 3$, then the (v, N_{x}, N_{y})-vertex split of G is
3-connected.

Proof.

- Assume there were a 2 -separator in the vertex split G^{\prime}.
- Proof by contradiction by case separation

Tutte's wheel theorem

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

A graph G is 3-connected if and only if there is a sequence of edges

$$
e_{1}, \ldots, e_{m-6}
$$

in G such that:
■ $G /\left\{e_{1}, \ldots, e_{k}\right\}$ is 3-connected for all k.
■ $G /\left\{e_{1}, \ldots, e_{m-6}\right\} \cong K_{4}$.

Plane graphs

Definition

- A plane graph is a pair (V, E) (notice the abuse of notation) where
- V is a set of points in \mathbb{R}^{2}
- Every edge is a curve between two points in V.
- The interior of an edge does not intersect any other edge or contain any vertex $v \in V$.
- Plane graphs have a natural multigraph structure.

Plane graphs

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- The graph drawing

$$
V \cup \bigcup_{e \in E} e \subseteq \mathbb{R}^{2}
$$

separates the plane into faces.

- Each face is topologically an open disc or a punctured open disc.
- If G is finite, then there is only one unbounded face, the outer face.
- If we want to remove the distinction between inner and outer faces, we draw our plane graphs on the sphere S^{2} instead of in \mathbb{R}^{2}.
- If G is connected, then each face (except for the outer face) is an open disc, and is bounded by a closed walk in the graph G.

Planar graphs

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- A planar graph is a graph that is isomorphic to the graph of some plane graph.
- In principle, two different plane graphs can yield the same planar graph.

Plane triangulations

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Proposition

G is a maximally planar graph if and only if every drawing of it is a triangulation of S^{2}.

- A planar graph $G=(V, E)$ is maximally planar if $(V, E \cup\{e\})$ is nonplanar for any $e \notin E$.
■ The implication \Rightarrow is obvious, because if G can be drawn with a non-triangle face, then a chord can be added to this face without destroying planarity.
- The implication \Leftarrow will follow shortly.

Euler's theorem

MS-E1050

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Proposition

- A plane graph has only one face if and only if G is a forest.

Proof.

- By induction on $|E|$.

Euler's theorem

MS-E1050

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Proposition

- If a plane graph has v vertices, e edges and f faces, then

$$
v-e+f=2
$$

Proof.

- By induction on $|E|$.

Double counting

$$
2 e=\sum_{\text {faces } F}|\partial F| \geq \begin{cases}3 f & \text { if } G \text { simple } \\ 4 f & \text { if } G \text { simple bipartite }\end{cases}
$$

- If G simple planar, then $e \leq 3 v-6$.

■ In particular, K_{5} is not planar $(e=10, v=5)$.

- If G simple bipartite and planar, then $e \leq 2 v-4$.
- In particular, $K_{3,3}$ is not planar $(e=9, v=6)$.

Faces

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- If $H \subseteq G$, and the edges $F \subseteq E(G)$ are contained in a face of (some drawing of) G, then they are also contained in a face of (the induced drawing of) H.

2-connected planar graphs

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- The faces of 2-connected plane graphs are bounded by cycles.
- By Euler's theorem, the number of face-bounding cycles in G does not depend on the drawing.
■ However, the set of face-bounding cycles does.

Uniqueness of drawings

■ The moral of the following theorem is that "3-connected planar graphs can essentially only be drawn in one way".

Theorem

- Consider a fixed drawing of a 3-connected planar graph G.
- A cycle $C \subseteq E(G)$ bounds a face if and only if it is induced and separating.

Uniqueness of drawings

Theorem

- A cycle $C \subseteq E(G)$ bounds a face iff it is induced and non-separating.

Proof.

■ Face-bounding \Rightarrow Induced:
\square WLOG, assume C bounds the outer face and $x, y \in V(C)$.
■ If $x y \in E(G)$, then $\{x, y\}$ is a 2-separator, contradicting 3-connectivity.

Uniqueness of drawings

MS-E1050

Ragnar Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

- A cycle $C \subseteq E(G)$ bounds a face iff it is induced and non-separating.

Proof.

- Face-bounding \Rightarrow Non-separating:

■ Assume C bounds a face, and let $x, y \in V(G) \backslash V(C)$.

- By 3-connecteivity and Mernger's theorem, there are 3 independent $x y$-paths.
■ One of these paths must go outside of C (by topology).
- So C does not separate x from y.

Uniqueness of drawings

Theorem

- A cycle $C \subseteq E(G)$ bounds a face iff it is induced and non-separating.

Proof.

■ Induced and non-separating \Rightarrow Face-bounding:

- C non-separating, so all vertices in $V(G) \backslash V(C)$ are in one of the two regions bounded by C.
■ WLOG all vertices on the "outside" of C.
- C induced and no vertices inside of $C \Rightarrow$ no edges inside of C.
- Thus C bounds a face.

Plane duals

Ragnar

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- Any plane graph $G=(V, E)$ has a plane dual $G^{*}=\left(F, E^{\prime}\right)$

■ F is the set of faces of G, and there is a natural bijection $E \leftrightarrow E^{\prime}$.

- Well defined up to topological equivalence.

■ $\left(G^{*}\right)^{*}=G$.

Plane duals

- The complement of a spanning tree in G corresponds to a spanning tree in G^{*}.
- $T \subseteq E(G)$ acyclic $\Leftrightarrow \bar{T}^{\prime} \subseteq E\left(G^{*}\right)$ connected.

3: Matchings
4: Connectivity
5: Planarity

Plane duals

MS-E1050
Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- The complement of a spanning tree in G corresponds to a spanning tree in G^{*}.
- This proves in a new way that

$$
\begin{aligned}
& e=|E(G)|=(|V(G)|-1)+\left(\left|V\left(G^{*}\right)\right|-1\right)=(v-1)+(f-1), \\
& \text { so } v-e+f=2 .
\end{aligned}
$$

Outerplanar graphs

Ragnar

Freij-Hollanti
■ A planar graph G is outerplanar if it has a drawing in which every vertex is on the outer face.

■ Example: K_{4} and $K_{3,2}$ are planar but not outerplanar.

Minors

- Assume G is (outer)planar and $e \in E(G)$.

4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- Then both G / e and $G \backslash e$ are (outer)planar.
- So the classes of (outer)planar graphs are closed under taking minors.
- In particular, no planar graph can have K_{5} or $K_{3,3}$ as a minor.

Kuratowski's theorem

Theorem

- A graph G is planar if and only if it does not contain K_{5} or $K_{3,3}$ as a minor.
- \Rightarrow follows because minors of planar graphs are planar.

■ \Leftarrow Proof by contradiction, first reducing to the 3-connected case.

Lemma

- An edge-minimal non-planar graph G that does not contain K_{5} or $K_{3,3}$ as a minor is 3 -connected.

Kuratowski's theorem

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Lemma (Reduction to 3-connected case)

- An edge-minimal non-planar graph G that does not contain K_{5} or $K_{3,3}$ as a minor is 3-connected.

Proof.

■ Blackboard

Kuratowski's theorem

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Lemma (Key Lemma)

■ A 3-connected graph G that does not contain K_{5} or $K_{3,3}$ as a minor is planar.

Proof.

- Blackboard
- Kuratowski's Theorem follows from the reduction lemma and the key lemma.

Definitions

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- A (proper) k-colouring of $G=(V, E)$ is a map $\gamma: V \rightarrow\{1,2, \ldots, k\}$ such that $\gamma(v) \neq \gamma(u)$ whenever $u v \in E$.

■ In other words, a k-colouring is a graph homomorphism $G \rightarrow K_{k}$.

- The chromatic number of $G=(V, E)$ is the smallest $k \in \mathbb{N}$ such that there exists a k-colouring of G.
- In other words, $\chi(G)=k$ is the smallest number of independent sets into which $V(G)$ can be partitioned.

Definitions

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ The chromatic number of $G=(V, E)$ is the smallest $k \in \mathbb{N}$ such that there exists a k-colouring of G.

- In other words, $\chi(G)=k$ is the smallest number of independent sets into which $V(G)$ can be partitioned.

Examples

MS-E1050

Ragnar
Freij-Hollanti
■ $\chi\left(K_{n}\right)=n$.
0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- $\chi(G)=2$ if and only if G is bipartite.

Examples

MS-E1050

Ragnar

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings

$$
\omega\left(C_{n}\right)=2 \quad \chi\left(C_{n}\right)= \begin{cases}2 & n \text { even } \\ 3 & n \text { odd }\end{cases}
$$

$$
\omega\left(\bar{C}_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor \quad \chi\left(\bar{C}_{n}\right)=\left\lceil\frac{n}{2}\right\rceil .
$$

Lower bounds

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- $\omega(G) \leq \chi(G)$

■ Proof: Pairwise connected vertices need different colours.
■ Strict inequality for odd cycles and odd cocycles of length ≥ 5.
■ $\chi(H) \leq \chi(G)$ if $H \subseteq G$ is a subgraph.
■ Proof: Any colouring of G restricts to a colouring of H.
■ $\frac{|V(G)|}{\alpha(G)} \leq \chi(G)$.

- Proof: $V(G)$ is the union of $\chi(G)$ colour classes of size $\leq \alpha(G)$.

Greedy colouring

Ragnar

Freij-Hollanti
■ Order $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ arbitrarily.
0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey
■ For $i=1, \ldots, n$: Let

$$
\gamma\left(v_{i}\right)=\min \left\{c \in \mathbb{N}: \gamma\left(v_{j}\right) \neq c \text { for all } 1 \leq j<i, v_{j} \in N\left(v_{i}\right)\right\}
$$

- Then γ is a proper colouring of G.

- For every vertex, there are at most $\Delta(G)$ forbidden colours.

Brooks' Theorem

■ Any colouring gives an upper bound on $\chi(G)$.
■ Greedy colouring shows $\chi(G) \leq \Delta(G)+1$.

$$
\begin{aligned}
& \text { Theorem (Brooks, 1941) } \\
& \text { If } \chi(G)=\Delta(G)+1 \text { if and only if } G \text { is complete or an odd cycle. }
\end{aligned}
$$

■ Proof: Clever vertex ordering + greedy colouring.

Greedy colouring

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey
\square Order $V(G)$ such that $d\left(v_{n}\right)=\delta(G)$, and recursively such that v_{i} has minimum degree in $G \backslash\left\{v_{i+1}, \ldots, v_{n}\right\}$.

- Then the greedy colouring gives

$$
\gamma\left(v_{i}\right) \leq \delta\left(G\left[v_{1}, \ldots, v_{i}\right]\right)+1
$$

- So

$$
\chi(G) \leq \max _{H \subseteq G} \delta(H)+1
$$

Upper bounds

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ If $\chi(G)=k$, then for any k-colouring there must be at least one edge between every pair of colour classes.
■ Thus

$$
\binom{k}{2} \leq|E(G)|=m
$$

so

$$
\chi(G) \leq \frac{1+\sqrt{8 m+1}}{2}
$$

Greedy colouring

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- The greedy algorithm can be arbitrarily bad, depending on the vertex ordering.

- However, there exists a vertex ordering on which the greedy algorithm uses only $\chi(G)$ colours.
- So if we can perform the greedy algorithm for all possible orderings of V, we can compute the chromatic number exactly.
- But there are n ! possible ways to order V, so this is not an efficient algorithm.

Greedy algorithm

Theorem

■ There exists a vertex ordering of $V(G)$ on which the greedy algorithm uses only $\chi(G)$ colours.

Proof.

■ Let $\gamma: V \rightarrow\{1,2, \ldots, k\}$ be some k-colouring of G.
■ Let V_{i} be the independent set $V_{i}=\{v \in V(G): \gamma(v)=i\} \subseteq V$.

- Order the vertices such that all nodes in V_{1} come first, then all nodes in V_{2}, and so on.
- Let $\delta: V \rightarrow\{1,2, \ldots, k\}$ be a greedy graph colouring with respect to this ordering.
- By induction: $\delta(v) \leq i$ for all $v \in V_{i}$, so δ uses $\leq k$ colours.

The Four Colour Theorem

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ Colouring a plane graph \longleftrightarrow Colouring a political map (with connected countries), such that neighbouring countries can be distinguished by their colours.

The Four Colour Theorem

■ K_{4} is planar (Luxembourg, Germany, France, Belgium), so at least four colours are needed to colour all planar maps.

■ K_{5} is not planar, but maybe we could need five colours anyway?

The Four Colour Theorem

Theorem (Apple, Haken, 1976)
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection

- Proof by decomposition via extensive computer search.

8: Randomness
■ Enough to prove for 5-regular graphs.
9: Extremality
10: Ramsey
■ Computer aided colouring of >1000 "reducible configurations" of >100 vertices each.

The Four Colour Theorem

- Any planar graph G satisfies $\chi(G) \leq 4$

0 : Introductions
1-2: Basics
■ Any graph that can be drawn without edge crossings on...
3: Matchings
4: Connectivity

- the torus satisfies $\chi(G) \leq 7$.
- a Klein bottle satisfies $\chi(G) \leq 6$.
- an orientable surface of genus g satsfies

6: Colourings
7: Perfection
8: Randomness

$$
\chi(G) \leq\left\lfloor\frac{7+\sqrt{1+48 g}}{2}\right\rfloor
$$

- a non-orientable surface of genus k satisfies

$$
\chi(G) \leq\left\lfloor\frac{7+\sqrt{1+24 k}}{2}\right\rfloor
$$

The Five Colour Theorem

- The following proof of the weaker five colour theorem "almost" proves the four colour theorem.
■ Remarkably (?) it uses geometric properties of plane graphs, rather than Kuratowski's theorem.

Theorem (Heawood, 1890)

- Any planar graph G satisfies $\chi(G) \leq 5$.

The Five Colour Theorem

Theorem (Heawood, 1890)

- Any planar graph G satisfies $\chi(G) \leq 5$.

Proof.

- Average degree <6, so choose a vertex v with degree ≤ 5.

■ Enough to show that $G \backslash v$ can be 5-coloured such that only 4 colours are used on $N(v)$.

- Assume not, and fix a plane drawing of G and a 5-colouring of $G \backslash v$.

The Five Colour Theorem

Proof.

■ WLOG, the neighbours of v are coloured $1, \ldots, 5$ in colockwise order.

■ Let $H_{i, j}$ be the induced subgraph on the colour classes i, j.

The Five Colour Theorem

Proof.

0 : Introductions

1-2: Basics
■ Every $v_{1}-v_{3}$-path in $G \backslash v$ intersects with every $v_{2}-v_{4}$-path in $G \backslash v$.

■ But $H_{13} \cap H_{24}=\emptyset$.
\square So either v_{1} and v_{3} are in different components of H_{13}, or v_{2} and v_{4} are in different components of H_{24}.

The Five Colour Theorem

Proof.

- Assume WLOG that v_{1} and v_{3} are in different components of H_{13}.
- We can swap the colours on the component of H_{13} containing v_{1}.
- After this, colour 1 is no longer used on $N(v)$.

Motivation

- Some (many) graphs can not be k-coloured, although they have no k - cliques

■ Erdös theorem (next week) says that χ is a "global" invariant.
5: Planarity
6: Colourings
7: Perfection

- A graph can look like a tree within an arbitrarily large radius, but still have arbitrarily large chromatic number.
■ We want to define a class of graphs where all obstacles to colouring are purely "local".

Perfect graphs

- G is perfect if $\chi(H)=\omega(H)$ for any induced subgraph $H \subseteq G$.

Example

- Complete graphs have $\omega\left(K_{n}\right)=n=\chi\left(K_{n}\right)$.
- Bipartite graphs have

$$
\omega(G)=\chi(G)= \begin{cases}2 & \text { if } E(G) \neq \emptyset \\ 1 & \text { if } E(G)=\emptyset\end{cases}
$$

- Induced subgraphs of complete graphs are complete, and induced subgraphs of bipartite graphs are bipartite, so all such graphs are perfect.

Comparability graphs

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ A poset is a (finite) set with an order relation \leq (reflexive, antisymmetric, transitive).

- The comparability graph of a poset (P, \leq) is

$$
(P, E) \text { where } x y \in E \text { whenever } x \leq y
$$

■ (In other words, it is the undirected version of the transitive closure of the Hasse diagram of P.)

Theorem

Comparability graphs of finite posets are perfect.

Proof.

Blackboard.

Replicating

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity

- If $v \in V(G)$, then G^{\prime} is obtained from G by replicating v if

$$
\begin{aligned}
& V\left(G^{\prime}\right)=V(G) \cup\left\{v^{\prime}\right\} \\
& E\left(G^{\prime}\right)=E(G) \cup\left\{u v^{\prime}: u v \in E(G)\right\} \cup\left\{v v^{\prime}\right\} .
\end{aligned}
$$

Replicating

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity

Theorem

5: Planarity
6: Colourings
7: Perfection

- Assume G is perfect and $v \in V(G)$.
- If G^{\prime} is obtained from G by replicating v, then G^{\prime} is also perfect.

Combining perfect graphs

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection

Theorem

- Assume G and H are perfect graphs.
- If $G \cap H$ is a clique, then $G \cup H$ is perfect.

Chordal graphs

■ The class of chordal graphs is defined inductively as follows:
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey
■ Complete graphs are chordal.
■ If G and H are chordal and $G \cap H$ is a clique, then $G \cup H$ is chordal.

Corollary

- Chordal graphs are perfect.

Strong Perfect Graph Theorem

■ Graphs whose only induced cycles are C_{3} are chordal, so perfect.

5: Planarity
■ Graphs whose only induced cycles are even are bipartite, so perfect.
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- Graphs that have some odd induced cycle $C_{2 k+1}, k \geq 2$, are not perfect.
■ What about graphs that have induced even cycles and triangles?

Strong Perfect Graph Theorem

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem (Chudnovsky, Robertson, Seymour, Thomas, 2006)

- G is perfect if and only if G has no induced subgraph C_{n} or \bar{C}_{n} fr $n \geq 5$ odd.
$■ \Rightarrow$: Trivial, because $\omega\left(C_{n}\right)<\chi\left(C_{n}\right)$ and $\omega\left(\bar{C}_{n}\right)<\chi\left(\bar{C}_{n}\right)$ for odd $n \geq 5$.
$■ \Leftarrow$: Extremely difficult. Proof uses technically complicated recursive constructions of all Berge graphs.
- Berge graphs are the pre-SPGT name for graphs that have no induced subgraph C_{n} or \bar{C}_{n} fr $n \geq 5$ odd.

Weak Perfect Graph Theorem

Theorem (Lovázs, 1972)

- G is perfect if and only if \bar{G} is perfect.
- Clearly, SPGT implies WPGT.
- We prove WPGT as a corollary of the following characterization of perfect graphs.

Proposition

- G is perfect if and only if

$$
\omega(H) \alpha(H) \geq n
$$

for all induced subgraphs $H \subseteq G$.

Weak Perfect Graph Theorem

MS-E1050

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Proposition

- G is perfect if and only if

$$
\omega(H) \alpha(H) \geq n
$$

for all induced subgraphs $H \subseteq G$.

Proof.

- Blackboard.

Random graphs

■ Two reasons to study random graphs:
■ To know what a "typical" graph looks like.
■ Existence proofs (via The Probabilistic Method).

$G(n, p)$: definition

$■$ For fixed $n \in \mathbb{N}, p \in[0,1]$, we construct a probability space $G(n, p)$ of simple graphs with n vertices.
$\square|V|=n$ fixed, $E \subseteq\binom{V}{2}$ random.
■ For $S \subseteq\binom{V}{2}, \mathbb{P}(E=S)=p^{|S|}(1-p)^{\binom{n}{2}-|S|}$.
■ Easy to check: The events $\{e \in E\}$ are independent for different edges e.

$\mathrm{G}(\mathrm{n}, \mathrm{p})$: basic properties

0 : Introductions
1-2: Basics

- Sample G G(n,p).

3: Matchings

- By the union bound:

$$
\mathbb{P}(\alpha(G) \geq k) \leq\binom{ n}{k}(1-p)^{\binom{k}{2}}
$$

and

$$
\mathbb{P}(\omega(G) \geq k) \leq\binom{ n}{k} p^{\binom{k}{2}} .
$$

Basic probability theory

- Often it is easier to deal with expected values than with probabilities directly.
- Expected values of random variables can be manipulated by linearity.
- Example:

$$
\mathbb{E}\left(\# K_{k} \subseteq G\right)=\sum_{K \in\binom{v}{k}} \mathbb{P}(K \text { clique in } G)=\binom{n}{k} p^{\binom{k}{2}}
$$

Counting cycles

$$
\mathbb{E}(\# k \text {-cycles in } G)=\frac{n!}{2 k(n-k)!} p^{k}
$$

10: Ramsey

- Let $k \geq 3$.

■

■ Indeed, there are $\frac{n!}{2 k(n-k)!} k$-cycles in K_{n}.
■ Each of these is a cycle in G with probability p^{k}.

Large random graphs

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- Often, it makes sense to consider random graphs $G(n, p)$ where $n \rightarrow \infty$, and $p=p(n)$ is allowed to depend on n.
- Average degree $\approx \frac{p}{n-1}$.
- If p is (approximately) constant, we call the graph sequence dense, if $p=O\left(\frac{1}{n}\right)$, then we call it sparse.
- Another frequently useful regime is $p \approx \frac{\log n}{n}$.

Erdös Theorem

■ We are ready to prove Erdös's theorem.

Theorem

- For all integers $k, \ell \in \mathbb{N}$, there exists a graph G with girth $>\ell$ and chromatic number k.
- Moral: Chromatic number is a fundamentally global invariant.
- A graph can look like a tree within a radius $\frac{\ell}{2}$ from any vertex, and still have arbitrarily high chromatic number.

Erdös Theorem

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

■ For all integers $k, \ell \in \mathbb{N}$, there exists a graph G with girth $>\ell$ and chromatic number k.

■ We will use random graphs to prove this, but the random graphs themselves do not have this property.
■ Rather, random graphs with suitably chosen p have high chromatic number, and not too many cycles of length $<\ell$.
■ So small modifications of random graphs yield the desired example.

Chromatic numbers of dense graphs

Theorem

- Fix $p \in(0,1)$, and let $G \sim G(n, p)$.
- Let $\chi_{n, p}=\frac{\log (1-p)^{-1}}{2} \frac{n}{\log n}$.

■ Fix $\epsilon>0$. Then asymptotically almost surely,

$$
\mathbb{P}\left(\chi(G) \in\left[(1-\epsilon) \chi_{n, p},(1+\epsilon) \chi_{n, p}\right]\right) \rightarrow 1 \text { as } n \rightarrow \infty
$$

■ We prove only the lower bound on the chromatic number: $\chi(G)>(1-\epsilon) \chi_{n, p}$ asymptotically almost surely.

Almost sure properties of dense graphs.

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey
$■$ For $i, j \in \mathbb{N}$, let $P_{i, j}$ be the following graph property:
■ For every two sets $A, B \subseteq V$ with $A \cap B=\emptyset,|A|=i, B=j$, there exists $v \in V$ such that

$$
A \subseteq N(v) \text { and } B \cap N(v)=\emptyset
$$

■ For example, $P_{1,1}$ is the property that no two vertices have the same neighbourhood.

Lemma

- Fix $p \in(0,1)$ and $i, j \in \mathbb{N}$.
- With probability $\rightarrow 1$ as $n \rightarrow \infty$, the graph $G \sim G(n, p)$ has property $P_{i, j}$.

Almost sure properties of dense graphs.

MS-E1050
Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Corollary

- Fix $p \in(0,1)$ and $k \in \mathbb{N}$.
- With probability $\rightarrow 1$ as $n \rightarrow \infty$, the graph $G \sim G(n, p)$ is k-connected.

$G\left(\aleph_{0}, p\right)$.

■ We can construct a probability measure on graphs with a countable vertex set, just like we did for $G(n, p)$.
■ This "countable random graph" has the property $P_{i, j}$ almost surely, for all i, j.

■ But there is a unique countable graph (up to isomorphism) that has all these properties at once. This is the Rado graph.
■ So this random graph is uniquely determined up to isomorphism, with probability one!
$G\left(\aleph_{0}, p\right)$.

Theorem

- Let G and H be graphs with countable vertex sets.
- Assume that both G and H have property $P_{i, j}$ for all i, j.
- Then $G \cong H$.

Proof.

■ Let $V(G)=v_{1}, v_{2}, \ldots$ Construct $\phi: G \rightarrow H$ recursively.
■ Let $\phi\left(v_{1}\right) \in V(H)$ be arbitrary.
\square Recursively, let $V_{k}=\left\{v_{1}, \ldots, v_{k-1}\right\}$, and $N\left(v_{k}\right) \cap V_{k}=U_{k}$
■ By property $P_{i, j}$, there exists $w \in V(H)$ such that

$$
\forall x \in \phi\left(U_{k}\right): x w \in E \text { and } \forall x \in \phi\left(V_{k} \backslash U_{k}\right): x w \notin E
$$

■ Define $\phi\left(v_{k}\right)=w$. Then $\phi: G \rightarrow H$ is an isomorphism.

Rado graph

- Let $V=\mathbb{Z}_{+}$.

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- For $x<y$, let $x y \in E$ if and only if the x :th last digit in the binary extension of y is 1 .
- $N(1)=\{3,5,7,9, \ldots\}$.
- $N(2)=\{3,6,7,10,11, \ldots\}$.
- $N(3)=\{4,5,6,7,12,13,14,15, \ldots\}$.

■ Call $G=(V, E)$ the Rado graph.
■ It has property $P_{i, j}$ for all i, j.

- So up to isomorphism, $G\left(\aleph_{0}, p\right)$ is the Rado graph with probability one.

Guiding questions

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ How many edges can G have, if $|V(G)|=n$ and $\omega(G)<k$?
■ How many edges can G have, if $|V(G)|=n$ and $\chi(G)<k$?

- How many edges can G have, if $|V(G)|=n$ and G has no subgraph isomorphic to H ?
- How many vertices can G have, if G has no subgraph isomorphic to H_{1} and \bar{G} has no subgraph isomorphic to H_{2} ?
- How many edges can G have, if $|V(G)|=n$ and G has no minor isomorphic to H ?

Turán's Theorem

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

■ How many edges can G have, if $|V(G)|=n$ and $\omega(G)<k$?

- How many edges can G have, if $|V(G)|=n$ and $\chi(G)<k$?
- Remarkably (?) the answers to these two questions are the same.
- Let $T_{r}(n)$ be the complete r-partite graph with all parts the same size ± 1, and $t_{r}(n)=\left|E\left(T_{r}(n)\right)\right|$.

Turán's Theorem

MS-E1050

Ragnar

Freij-Hollanti

- Let $T_{r}(n)$ be the complete r-partite graph with all parts the same size ± 1, and $t_{r}(n)=\left|E\left(T_{r}(n)\right)\right|$.

- Clearly, $\chi\left(T_{r}(n)\right)=\omega\left(T_{r}(n)\right)=r$.

Theorem

- Any graph with n vertices and $>t_{r}(n)$ edges contains a clique of size $r+1$.

Turán's Theorem

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

- Any graph with n vertices and $>t_{r}(n)$ edges contains a clique of size $r+1$.

Proof.

- By induction on r.

■ Consider an edge-maximal G without K_{r+1}.
■ Consider $H=G \backslash Q$ where $Q \cong K_{r}$.

Turán's Theorem

MS-E1050

Ragnar
Freij-Hollanti

0: Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

■ Any graph with n vertices and $>t_{r}(n)$ edges contains a clique of size $r+1$.

Proof.

$$
\begin{aligned}
|E(G)| & =\#(Q-Q) \text {-edges }+\#(Q-H) \text {-edges }+\#(H-H) \text {-edges } \\
& \stackrel{\text { I.H. }}{\leq}\binom{r}{2}+(n-r)(r-1)+t_{r}(n-r) \\
& =t_{r}(n)
\end{aligned}
$$

Szemeredi's regularity lemma: paraphrazing

■ "All really large graphs on M nodes, can be approximated by random graphs constructed as follows:
■ Subdivide the M vertices into $k \leqq M$ parts $V_{1}, \ldots V_{k}$.
$■$ For $v_{i} \in V_{i}, v_{j} \in V_{j}$, assign $v_{i} v_{j} \in E$ with probability $p_{i j}$."

ϵ-regular pairs

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- For $A, B \subseteq V(G)$ with $A \cap B=\emptyset$, let

$$
d(A, B)=\frac{\# A-B \text {-edges }}{|A||B|} \in[0,1] .
$$

- A, B is an ϵ-regular pair if, for all

$$
X \subseteq A, Y \subseteq B \text { with }|X|>\epsilon|A| \text { and }|Y|>\epsilon|B|
$$

it holds that

$$
|d(X, Y)-d(A, B)|<\epsilon .
$$

ϵ-regular partitions

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
■ Fix $\epsilon>0$. A partitioning $V(G)=V_{0} \sqcup V_{1} \sqcup \cdots \sqcup V_{k}$ is ϵ-regular if:

- $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{k}\right|$.
- $\left|V_{0}\right|<\epsilon|V|$.
- The number of not ϵ-regular pairs amonng V_{1}, \ldots, V_{k} is $<\epsilon k^{2}$.

Szemeredi's regularity lemma

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

■ For all $\epsilon>0$ and all m, there exists M such that:
■ Every graph G admits an ϵ-regular partition into k parts with $m<k<M$.

- Proof strategy: start with an arbitrary partition into m parts.

■ For each not ϵ-regular pair V, U in the partition, subdivide both U and V into two parts.
■ Choose a common refinement of such subdivisions. We now have a partition into 2^{m-1} parts.

Szemeredi's regularity lemma

Ragnar
Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

- Choose a common refinement of such subdivisions. We now have a partition into 2^{m-1} parts.
- Show that the potential q of the partition has now increased by at least ϵ^{5}, where

$$
q\left(V_{1}, \ldots V_{k}\right)=\sum_{i, j} \frac{\left|V_{i}\right|\left|V_{j}\right|}{|V|^{2}} d^{2}\left(V_{i}, V_{j}\right)
$$

- The potential is increasing under refinement, and satisfies $0<q<1$, so the "algorithm" terminates after at most ϵ^{-5} refinements.
- The number of parts is thus bounded from above by $M=M(m, \epsilon)$.

Regularity graphs

MS-E1050

Ragnar Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Erdös-Stone's theorem

Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randommess
9: Extremality
10: Ramsey

Theorem (Erdös, Stone, 1946)

- For every $2 \leq r \leq m, \gamma>0$, there exists an integer N such that every graph with $n \geq N$ vertices and at least $t_{r-1}(n)+\gamma n^{2}$ edges contains $T_{r}(m)$ as a subgraph.

Lemma (Paraphrased)

- If G contains R as a regularity graph with critical edge density $d>0$ and $|G| /|R| \geq 2 s / d^{\Delta}$, then every subgraph $H \subseteq R_{s}$ with maximal degree $<\Delta$ is also a subgraph of G.

Erdös-Stone's theorem

Theorem (Erdös, Stone, 1946)

- For every $2 \leq r \leq m, \gamma>0$, there exists an integer N such that every graph with $n \geq N$ vertices and at least $t_{r-1}(n)+\gamma n^{2}$ edges contains $T_{r}(m)$ as a subgraph.

Sketch.

■ Consider an ϵ-regular partition into $>1 / \gamma$ parts, and a regularity graph with critical edge density γ.

- This regularity graph has n^{\prime} vertices and $>t_{r-1}\left(n^{\prime}\right)$ edges, so contains a K_{r} subgraph.
- This yields a $T_{r}(m)$ subgraph in R_{s} (where $s=m / n^{\prime}$), so also in G.

Erdös-Stone's theorem

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Theorem

■ For every $2 \leq r \leq m, \gamma>0$, there exists an integer N such that every graph with $n \geq N$ vertices and at least $t_{r-1}(n)+\gamma n^{2}$ edges contains $T_{r}(m)$ as a subgraph.

■ So morally, all graphs with large enough size and edge density

$$
>\frac{t_{r-1}(n)}{n}+\gamma \approx \frac{r-2}{1}+\gamma
$$

contains all r-colourable graphs as subgraphs.

Exclusion numbers

■ For $n \in \mathbb{N}$ and a graph H, let ex (n, H) be the largest number of edges in an n vertex graph with no H subgraph.

- In particular, ex $\left(n, K_{r}\right)=t_{r-1}(n)$

Corollary

- For every graph H,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}
$$

Exclusion numbers

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randommess
9: Extremality
10: Ramsey

Corollary

- For every graph H,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}
$$

- So

$$
\operatorname{ex}(n, H)= \begin{cases}\Theta\left(n^{2}\right) & \text { if } H \text { not bipartite } \\ o\left(n^{2}\right) & \text { if } H \text { bipartite }\end{cases}
$$

Exclusion numbers

Corollary

- For every graph H,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1} .
$$

Proof.

- Let $\chi(H)=r$.
- $H \nsubseteq T_{r-1}(n)$ for all n but $H \subseteq T_{r}(m)$ for large enoughm.
- So

$$
t_{r-1}(n) \leq \operatorname{ex}(n, H) \leq \operatorname{ex}\left(n, T_{r}(m)\right) .
$$

Exclusion numbers

MS-E1050
Ragnar
Freij-Hollanti

0: Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

Corollary

- For every graph H,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}
$$

Continued.

- Erdös-Stone:

$$
t_{r-1}(n) \leq \operatorname{ex}(n, H) \leq \operatorname{ex}\left(n, T_{r}(m)\right)=t_{r-1}(n)+o\left(n^{2}\right)
$$

$$
\frac{r-2}{r-1} \leftarrow \frac{t_{r-1}(n)}{\binom{n}{2}} \leq \frac{\operatorname{ex}(n, H)}{\binom{n}{2}} \leq \frac{t_{r-1}(n)+o\left(n^{2}\right)}{\binom{n}{2}} \rightarrow \frac{r-2}{r-1}
$$

Exclusion numbers

- What is the growth rate of ex (n, H) for bipartite graphs?

Theorem

$$
c_{1} n^{2-\frac{2}{r-1}} \leq \operatorname{ex}\left(n, K_{r, r}\right) \leq c_{2} n^{2-\frac{1}{r}}
$$

for some universal constants c_{1}, c_{2}.

Conjecture (Erdös-Soós)

- For any tree T with k edges, $\operatorname{ex}(n, T)=\frac{n(k-1)}{2}$.

Ramsey

MS-E1050

Ragnar Freij-Hollanti

0 : Introductions
1-2: Basics
3: Matchings
4: Connectivity
5: Planarity
6: Colourings
7: Perfection
8: Randomness
9: Extremality
10: Ramsey

