MS-E1050

Ragnar Freij-Hollant

- 1-2: Basics
- 3: Matchings
- A: Connectiv
- _ _. .
- -----
- 1: Periectio
- 10: Ramsev

MS-E1050 Graph Theory

Ragnar Freij-Hollanti

October 13, 2022

Teachers

MS-E1050

Ragnar Freij-Hollant

0: Introductions

- 1-2: Basics
- 3: Matchings
- 4: Connecti
- 5: Planari
- 6: Colourir
- O. Dandamin
- -----
- 0: Ramsev

Instructor:

Ragnar Freij-Hollanti, ragnar.freij@aalto.fi

■ Teaching Assistants:

Patricija Šapokaite, patricija.sapokaite@aalto.fi Nataliia Kushnerchuk, nataliia.kushnerchuk@aalto.fi

Schedule

MS-E1050

Ragnar Freij-Hollant

0: Introductions

- 1_2. Basics
- 3: Matching
- ------
- 4: Connect
- 5: Planarit
- 6: Colourin
- . . .
- o. Randonnica
- 9: Extremalit
- l0: Ramsey

Lectures:

Thursdays 16-18, M1 and Fridays 10-12, Y405.

Exercise sessions:

Mondays 10-12, Y307 or Zoom.

Grading

MS-E1050

Ragnar Freij-Hollant

- 3: Matching
- 4. Connectiv
- J. Flanant
- 6: Colourin
- 7: Perfection
- 8: Randomness
- 9: Extremalit
- 10. Dames...

- Five homework sheets, due Mondays 19.9., 26.9., 3.10., 10.10., and Wednesday 19.10.
- Returned in the Assignments folder on MyCourses.
- Graded by two of your peers (randomly selected). Grades are due one week after the assignment deadline.
- Each homework sheet gives a maximum of $5 \cdot 2$ for exercises $+ 2 \cdot 5$ for problems + 5 for grading = 25 points.
- The four best homeworks count towards the final grade.

Literature

MS-E1050

- Reinhard Diestel: Graph Theory.
- Matthias Beck and Rayman Sanyal: Combinatorial Reciprocity Theorems.
- Slides Updated on course homepage after every lecture.

Course content

MS-E1050

Ragnar Freij-Hollant

0: Introductions

- 3: Matchings
- 4. 6.....
-
- J. Flallallt
- 6: Colourin
- 7: Perfection
- 8: Randomn

You will learn about:

- the twelve topics mentioned in the left hand menu.
- combinatorial, geometrical, algorithmic, probabilistic, and algebraic aspects of graph theory.

You will learn to:

- Solve combinatorial problems of different kinds.
- Relate different mathematical topics to each other.

Discuss in small groups (10-15 minutes):

MS-E1050

Ragnar Freij-Hollant

- 1–2: Basic
- 3: Matching
- A. Campastin
-
- 3: Planari
- 6: Colourin
- 7. Perfection
- 8: Randomne
- 9: Extremality
- 10: Rams

- What is your name?
- What is your quest?
- What is your favourite colour?
- Select a chairman! Preferably one who can share their screen and draw on it.
- How would you define what a graph is?

MS-E1050

Ragnar Freij-Hollanti

- 1-2: Basics
- 3: Matchings
- 4. Connectiv
- ----
- 6: Colourir
- 7: Perfection
- . . .
- J. LAUGINAIII
- 10: Rams

- A graph is a pair G = (V, E).
- V is a set of vertices or nodes
 - $E \subseteq \{\{x,y\}: x,y \in V\}$ is a set of *edges* (undirected graph). or
 - $E \subseteq \{(x,y): x,y \in V\}$ is a set of directed edges (digraph). ■ y is the head and x is the tail of the directed edge (x,y).
- |G| = |V| = n and ||G|| = |E| = m

MS-E1050

Ragnar Freij-Hollant

- 3. Matchings
- J. Widtellings
- 4: Connectiv
- E. Diamonia
-
- 7 5 6 ...

- 9: Extremalit
- 10: Ram

- If G = (V, E), then we also write (abusing notation) V = V(G) and E = E(G).
- If we allow E(G) to be a *multiset* (i.e. repeated elements allowed), then G is a *multigraph*.
- A *loop* is an edge $\{x, x\}$ (or a directed edge (x, x)).
- If G is not a multigraph, and $x \neq y$ for all edges $\{x,y\} \in E(G)$, then G is a *simple* graph.

MS-E1050

0. Introductions

- G is finite if V(G) and E(G) are finite sets (or multisets).
- In this course, unless explicitly mentioned, all graphs are simple and finite and undirected.

• G is bipartite if $V(G) = A \cup B$ where $A \cap B = \emptyset$ and $E(G) \subseteq \{xy : x \in A, y \in B\}.$

Discuss in small groups (10-15 minutes):

MS-E1050

Ragnar Freij-Hollant

- 1-2: Basic
- 3: Matching
- A. Camaati
-
- J. Flanani
- 6: Colourin
- 7: Perfection
- 8: Randomne
- 9: Extremality
- . . .

- What are some use cases (examples from science or real life) of bipartite graphs?
- Does any (or all) of you know what a cycle in a graph is? Explain to the others!
- What can you say about the cycles in a bipartite graph?
- For a graph without an explicit bipartition of its vertices, can you think of an *efficient* way to see if it is bipartite or not?

Bipartite graphs

MS-E1050

Ragnar Freij-Hollant

- -2. Basic
- 3. Matching
- A: Connectivit
- 5. Planarit
- o: Planarit
- 6: Colouring
- _ _ . .
- 8: Randomne
- 9: Extremality

Complete graphs

MS-E1050

0: Introductions

Example

■ The complete graph $K_n = (V, E)$ where

$$|V| = n \text{ and } E = {V \choose 2} = \{e \subseteq V : |e| = 2\}.$$

■ The complete bipartite graph $K_{m,n} = (A \cup B, E)$, where

$$|A| = m, |B| = n, A \cap B = \emptyset \text{ and } E = \{\{a, b\} : a \in A, b \in B\}.$$

■ The empty graph $\overline{K_n} = (V, \emptyset)$ where |V| = n.

Substructures

MS-E1050

Ragnar Freij-Hollanti

- 1–2: Basics
- 3: Matching
- 4: Connecti
- 5: Plan
- 6: Colourin
- 7: Perfection
- 8: Randomn
- 9: Extremalit
- 10: Ran

- A *clique* in G is a set $Q \subseteq V(G)$ of pairwise adjacent nodes (so G[Q] is complete).
- An independent (or stable) set in G is a set $S \subseteq V(G)$ of pairwise non-adjacent nodes (so G[S] is empty).

- The size of the largest clique in G is $\omega(G)$.
- The size of the largest independent in G is $\alpha(G) = \omega(\overline{G})$.

MS-E1050

Ragnar Freij-Hollant

0: Introductions

- 3: Matching
- A. Connacti
- ...
- J. Flanani
- 6: Colourin
- 7: Perfectio
- 8. Randomn
- 0. Extremalit

■ A (proper) *k-colouring* of G = (V, E) is a map $\gamma : V \to \{1, 2, ..., k\}$ such that $\gamma(v) \neq \gamma(u)$ whenever $uv \in E$.

- The *chromatic number* of G = (V, E) is the smallest $k \in \mathbb{N}$ such that there exists a k-colouring of G.
- In other words, $\chi(G) = k$ is the smallest number of independent sets into which V(G) can be partitioned.

Examples

MS-E1050

Ragnar Freij-Hollant

0: Introductions

- 1–2· Basics
- 3: Matching
- 4: Connecti
- 5: Planari
- 6: Colourii
- _ _ _
- Q. Dandomn
- 9: Extremali
- 0: Ramsey

 $\chi(K_n) = n.$

• $\chi(G) = 2$ if and only if G is bipartite.

Discuss in small groups (10-15 minutes):

MS-E1050

Ragnar Freij-Hollant

- 1-2: Basics
- 3: Matchings
- 4. 6......
- E. Diamonia.
- 0. 00.00....
- 8: Randomne
- 9: Extremality
- 10: Ramse

- Each colour class in a graph colouring is an independence set.
- The vertices of a clique have to all get different colours.
- Using this: Bound the chromatic number $\chi(G)$ from above in two different ways, in terms of $\alpha(G)$, $\omega(G)$, and n?
- Can you think of graphs for which these bounds are not tight?
- Do you think the bounds are tight for "most" graphs? And what does that even mean?

Chromatic numbers

MS-E1050

Ragnar Freij-Hollant

- -2. Basic
- 3. Matching
- A: Connectivit
- 5. Planarit
- o: Planarit
- b: Colouring
- 0. Extremality
- 10: Ramsev

Discuss in small groups (10-15 minutes):

MS-E1050

Ragnar Freij-Hollant

- 1-2: Basics
- 3: Matching
- 4: Connectiv
- F. Di......
- 0. 00.00...
- o. Randonnik
- 9: Extremalit
- 10: Ram

- At any party, some pairs of people are friends, and others are not. Test your intuition. Are the following true or false?
- At a party with 5 guests, there are always either three mutual friends, or three mutual non-friends.
- What about a party with 6 guests?
- At a party with a + b guests, there are always either a mutual friends or b mutual non-friends.
- At any large enough party, there are always either a mutual friends or b mutual non-friends.
 - How many guests R(a, b) are needed, so that this holds for all parties?
 - How many guests are needed, so that this holds for most parties? And what does that even mean?

Ramsey Theory

MS-E1050

Ragnar Freij-Hollant

- -2: Basic
- 3: Matching
- 4. Connectivit
- 5: Planarit
- _____
- o. Colouring

- 10: Ramsev

Conclusion

MS-E1050

Ragnar Freij-Hollant

- 3: Matching
- A. Composi
- .. comicci.
- 3: Planarii
- 6: Colourin
- 8: Randomn
- 9: Extremalit
- 10: Ran

- Today we have discussed some basic types of questions in graph theory.
- Some of these can be solved from first principles by clever high school students.
- Other questions require some sort of "theory".
- Starting Thursday, we will develop combinatorial, probabilistic and algebraic tools to study graphs, and use those to solve problems.

When are two graphs the same?

MS-E1050

Ragnar Freij-Hollant

o. milioduci

- 1-2: Basics
- 3: Matching
- --
- 7. Doufoutio

- J. Extremidit

lacksquare A homomorphism G o G' is a map arphi:V(G) o V(G') such that

$${u,v} \in E(G) \Rightarrow {\varphi(u),\varphi(v)} \in E(G').$$

lacksquare An isomorphism G o G' is a bijection arphi:V(G) o V(G') such that

$$\{u,v\} \in E(G) \Leftrightarrow \{\varphi(u),\varphi(v)\} \in E(G').$$

When are two graphs the same?

MS-E1050

Ragnar Freij-Hollanti

.

- 1-2: Basics
- 4: Connectiv
- 5: Planari
- 6: Colourin
- 8: Randomne
- 9: Extremali

lacksquare An isomorphism G o G' is a bijection arphi:V(G) o V(G') such that

$${u,v} \in E(G) \Leftrightarrow {\varphi(u),\varphi(v)} \in E(G').$$

- If there is an isomorphism $G \rightarrow G'$, then G and G' are isomorphic.
- This is an equivalence relation on graphs.
- An "unlabelled graph" is an equivalence class of graphs under this isomorphism relation.

Terminology

MS-E1050

Ragnar Freij-Hollant

1-2: Basics

ŭ

4: Connectiv

5: Plana

6. Calaunia

0: Colourii

o. Randonnie

9: Extremality

10: Ram

- Vertices x and y are adjacent if $\{e, y\} \in E$.
- The vertex x is *incident* to the edge e if $x \in e$.
- The edges e and e' are adjacent if $e \cap e' \neq \emptyset$.
- The (open) *neighbourhood* $N(v) = \{u \in V : \{v, u\} \in E\}.$
- The degree d(v) = |N(v)| is the number of neighbours of v (in a simple graph).

Degrees

MS-E1050

Ragnar Freij-Hollant

. . . .

- 1–2: Basics
- 3: Matching
- 4: Connection
- _ _. .
- o. colouiii
- o. Randonini
- 9: Extremali
- 10: Ram

- Minimal degree $\delta(G) = \min_{v \in V(G)} d(v)$.
- Maximal degree $\Delta(G) = \max_{v \in V(G)} d(v)$.
- Average degree

$$d(G) = \frac{1}{|V(G)|} \sum_{v \in V(G)} d(v) = \frac{2||G||}{|G|}.$$

• If all vertices have the same degree k, so $\delta(G) = \Delta(G)$, then G is k-regular.

Degrees

MS-E1050

Ragnar Freij-Hollan

u: Introdi

1-2: Basics

- 3: Matchings
- 4: Connectiv
- E. Diamonia.
- o: Colourin
- 8: Randomne
- 9: Extremality
- 10: Ram

Proposition

In any graph G, the number of vertices with odd degree is even.

Proof.

Blackboard

Degrees

MS-E1050

Ragnar Freij-Hollant

0: Introd

1–2: Basics

- J. Maccining
- 4: Connecti
- 5: Planarit
-
- o. colouiii
- .. . circution
- 8: Randomne
- 9: Extremalit
- 10: Ram

■ The integer sequence $(d_1, ..., d_n) \in \mathbb{N}^n$ is graphical if there exists a graph G with $V(G) = \{v_1, ..., v_n\}$ and $d(v_i) = d_i$.

Theorem (Havel, Hakimi 1955)

Assume $d_1 \geq d_2 \geq \cdots \geq d_n \geq 0$. Then the sequence (d_1, \ldots, d_n) is graphical if and only if

- n = 1 and $d_1 = 0$, or
- $(d_2-1, d_3-1, d_{d_1+1}-1, d_{d_1+2}, \dots, d_n)$ is a graphical sequence.

Proof.

Blackboard

MS-E1050

Ragnar Freij-Hollanti

o. miliodacti

1-2: Basics

3: Matching

7: Periectio

10: Rams

 \blacksquare The complement graph of G is

$$\overline{G} = \left(V(G), \binom{V(G)}{2} \setminus E(G)\right).$$

 \blacksquare The line graph of G is

$$L(G) = (E(G), \{\{e, e'\} : e \cap e' \neq \emptyset\}).$$

MS-E1050

Ragnar Freij-Hollanti

0: Introduc

- 1-2: Basics
- -------
- 4: Connection
- 5: Plai
- 6: Colourin
- 7: Perfection
- 9: Extremali

■ The disjoint union of two graphs *G* and *H* is

$$G \sqcup H = (V(G) \sqcup V(H), E(G) \sqcup E(H)).$$

■ The *join* of G and H has $G \sqcup H$ as a subgraph, and in addition an edge xy for all $x \in V(G)$, $y \in V(H)$.

MS-E1050

Ragnar Freij-Hollant

0: Introductio

1-2: Basics

- 3: Matching
- _ _ _ .
- o. . idiidii
- 6: Colouring
- 7: Perfection
- 8: Randomnes
- 9: Extremalit
- 10: Ramse

- The disjoint union of two non-empty graphs is always disconnected.
- The join of two non-empty graphs is always connected.
- $K_n \star K_m \cong K_{n+m}$ and $\overline{K_n} \star \overline{K_m} \cong K_{n,m}$

Substructures

MS-E1050

- 1-2: Basics

- H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
- H is an induced subgraph of G if $V(H) \subset V(G)$ and

$$E(H) = E(G) \cap \binom{V(H)}{2}$$
.

If H is an induced subgraph of G, with V(H) = U, then we say that H is induced on U, and write H = G[U].

Walks and paths

MS-E1050

Ragnar Freij-Hollant

- J. miliodacti
- 1-2: Basics
- 3: Matching
- A: Connection
- 5: Planar
- 6. Colouri
- 7. Doufootio
- 0. Extremalit
- J. Extremune,
- 10∙ Ramse

- A walk of length n in G = (V, E) is a sequence (v_0, v_1, \dots, v_n) of nodes $v_i \in V$ where $\{v_{i-1}, v_i\} \in E(G)$ for $i = 1, \dots, n$.
- A walk (v_0, v_1, \ldots, v_n) is *closed* if $v_0 = v_n$.
- A path of length n in G is a subgraph

$$(\{v_1, v_2, \dots, v_n\}, \{v_1v_2, \dots, v_{n-1}, v_n\}) \subseteq G$$

with all vertices distinct.

- So $(v_1, v_2, ..., v_n)$ is a non-revisiting walk of length n-1.
- A path $(x, v_1, ..., v_{n-1}, y)$ is an x-y-path, often denoted x—y.

Closed walks and cycles

MS-E1050

Ragnar Freij-Hollant

U: Introductio

1-2: Basics

- --------
- 4: Connectiv
- E. Diamonia.
- U. COIOUITII
- 7: Perfectio
- 8: Randomn
- 9: Extremality
- 10: Rams

- A walk $(v_0, v_1, ..., v_n)$ is closed if $v_0 = v_n$.
- A *cycle* of length *n* in *G* is a subgraph

$$(\{v_1, v_2, \dots, v_n\}, \{v_1v_2, \dots, v_{n-1}v_n, v_nv_0\}) \subseteq G$$

with all vertices distinct.

■ So $(v_1, v_2, ..., v_n, v_1)$ is a minimal closed walk of length n.

Paths

MS-E1050

Ragnar Freij-Hollant

. a. p. ...

1-2: Basics

3: Matching

4. C......

_ _. .

. . . .

o. Randonnie

9: Extremaiit

0. Evtror

- Let $A, B \subseteq V(G)$, and let H be a subgraph of G.
- An A B-path is a path

$$(\{v_1, v_2, \dots, v_n\}, \{v_1v_2, \dots, v_{n-1}, v_n\}) \subseteq G$$

where
$$\{v_1, v_2, \dots, v_n\} \cap A = \{v_1\}$$
 and $\{v_1, v_2, \dots, v_n\} \cap B = \{v_n\}$

- Note: If $A \cap B \neq \emptyset$, then there exist A B-paths of length 1.
- A H-path is a path

$$(\{v_1, v_2, \dots, v_n\}, \{v_1v_2, \dots, v_{n-1}, v_n\}) \subseteq G$$

where
$$\{v_1, v_2, \dots, v_n\} \cap V(H) = \{v_1, v_n\}.$$

Paths and cycles

MS-E1050

Ragnar Freij-Hollant

. . . .

- 1-2: Basics
- -- ------
- 4: Connectiv
- 5: Planarity
-
- 0. 00.00....
- .. . circulon
- 8: Randomne
- 9: Extremalit
- 10: Rams

- The girth g(G) is the minimum length of a cycle in G.
- \blacksquare The *circumference* of G is the maximum length of a cycle in G.
- The distance $d_G(x, y)$ is the length of the shortest x y-path in G
 - This notion of distance is a *metric*:

$$d_G(x,y)=0 \Leftrightarrow x=y$$

$$d_G(x,z) \leq d_G(x,y) + d_G(y,z)$$

Paths and cycles

MS-E1050

Ragnar Freij-Hollant

1-2: Basics

3: Matchings

A. Commonti

0. 00.00....

7: Periectic

8: Randomn

9: Extremality

10: Ram

■ The *diameter* of *G* is

$$\max_{x,y\in V(G)}d_G(x,y).$$

■ The *radius* of *G* is

$$\min_{x \in V(G)} \max_{y \in V(G)} d(x, y).$$

■ A vertex $x \in V(G)$ that minimizes

$$\max_{y \in V(G)} d(x, y)$$

is called a central vertex.

Exercise during the break

MS-E1050

Ragnar Freij-Hollanti

o. milioduct

1-2: Basics

1 2. Dubico

3: Matching

A: Connection

F. Di......

5. Extremant

• Compute the girth, circumference, diameter and radius of the Petersen graph.

Paths and cycles

MS-E1050

Ragnar Freij-Hollan

U: Introd

1-2: Basics

4: Connecti

o: Planar

6: Colouri

7. Perfection

_ _ .

J. Extremen

l0: Ram

Proposition

Every graph G with $\delta(G) \ge 2$ contains a cycle of length at least $\delta(G) + 1$.

Proof.

Blackboard

Euler tours

MS-E1050

Ragnar Freij-Hollanti

. . . .

1-2: Basics

. . . .

4: Connectiv

o. r ianani

0. 00.00....,

7: Periecui

8: Randomr

9: Extremalit

10: Ram

- An Euler tour in a graph is a closed walk that traverses every edge in *G* exactly once.
- "Motivation": Can one take a walk across all the bridges in Königsberg without going over any bridge more than once?

Euler tours

MS-E1050

Ragnar Freij-Hollant

U: Introduc

- 1-2: Basics
- J. Matering
- 4: Connectiv
- 5: Planarity
-
- o: Colourii
-
- 8: Randomness
- 9: Extremalit
- 10: Rame

Proposition

A connected graph G has an Euler tour if and only if every vertex in G has even degree.

- ⇒: Orient each edge according to which direction the Euler tour traverses it.
- Then every node has the same indegree as outdegree, so even total degree.
- ⇐: Induction on the number of edges. (Blackboard.)

Bipartite graphs

MS-E1050

Ragnar Freij-Hollant

J. IIILIOGUCLI

- 1–2: Basics
- 4: Connectiv
- 5: Planarity
- 6. Calaurin
- 7: Perfection
- 0. Extremality
- 10. Rams

Lemma

G is bipartite if and only if G has no odd cycles.

- ⇒: Proved in an exercise last time.
- ⇐: Suffices to prove it for connected graphs. Assume for a contradiction G is connected and has no odd cycles.
- A minimal odd length closed path is a cycle, so *G* has no odd length closed paths.

Bipartite graphs

MS-E1050

Ragnar Freij-Hollant

U: Introd

1-2: Basics

3. Matching

4. 6.....

..

J. I lallall

6: Colourin

- - - -

8. Randomn

0.5. "

10: Ramsey

Lemma

G is bipartite if and only if G has no odd cycles.

- \blacksquare \Leftarrow : We assumed for a contradiction G is connected and has no odd length closed paths.
- Fix $v \in V(G)$, and define

$$A = \{ y \in V(G) : d_G(x, y) \text{ is even} \}$$

$$B = \{y \in V(G) : d_G(x, y) \text{ is odd}\}.$$

- If there were an edge xy between two nodes in the same part, then v-x-y-v would be a closed walk of odd length.
- Contradiction, so (A, B) is a bipartition of V(G).

Bipartite graphs

MS-E1050

Ragnar Freij-Hollanti

): Introduction

1-2: Basics

3: Matching

4: Connectiv

4: Connectiv

5: Plan

6: Colouri

u: Colouri

7: Periectio

8: Randomness

9: Extremalit

10: Ram

Lemma

G is bipartite if and only if G has no induced odd cycles.

- \blacksquare \Rightarrow : Follows from the previous lemma.
- \blacksquare \Leftarrow : Assume G is not bipartite, yet has no induced odd cycle.
- Consider a minimal odd cycle C in G. (Exists because G is not bipartite.) Let $e = \{x, y\}$ be an edge in $G[V(C)] \setminus C$.

- The cycle *C* contains two *x-y*-paths *P* and *Q*.
- The cycles P + e and Q + e are shorter than C, and one of them is odd. Contradiction!

Connectivity

MS-E1050

Ragnar Freij-Hollant

0: Introduction

1-2: Basics

- 3: Matchings
- 4: Connectiv
- 5: Plana
- 0. 00.00....
- o. Randonine
- 9: Extremalit
- 10: Ramse

- A graph is connected if there is a path between any pair of nodes.
- The maximal connected subgraphs are the *connected components* of the graph.
- The connected components form a partition of the graph.

MS-E1050

Ragnar Freij-Hollant

1-2: Basics

- 3. Matchings
- ŭ
- 4: Connectiv
- 5: Plar
- o: Colourin
- 7: Perfection
- 0. D.
- 9: Extremalit
- 10: Ramse

- A connected graph without cycles is a tree.
- A node is a *leaf* if it only has one neighbour.
- Every tree with $|T| \ge 2$ has at least two leaves. (endpoints on a maximal path).

MS-E1050

Ragnar Freij-Hollant

- 1-2: Basics

-

-
- 5. Extremainty

- A connected graph without cycles is a tree.
- A graph without cycles is a forest
- Every forest is a disjoint union of trees. These are the connected components of the forest.

MS-E1050

Ragnar Freij-Hollant

. . . .

1–2: Basics

o. maccining.

4: Connectiv

5: Plar

6: Colourin

7: Perfecti

8: Randomne

9: Extremality

10: Ram

Theorem

The following are equivalent:

- T = (V, E) is a tree.
- For any $u, v \in V$, there s a unique u-v-path in T.
- T contains no cycle, and for any $E \subsetneq F \subseteq {V \choose 2}$, the graph (V, F) contains a cycle.
- T is connected, and for any F ⊊ E, the graph (V, F) is disconnected.

Proof.

Exercise

Spanning trees

MS-E1050

1-2: Basics

- 8: Randomness

- A spanning tree in the connected graph (V, E) is a tree (V, E')that contains all the nodes and some of the edges $E' \subseteq E$ of the graph.
- A spanning tree exists in any connected graph:
- Start from one node. Add one edge at a time between a node in the tree and a node not yet in the tree.
 - Notice: the spanning tree is not unique.

MS-E1050

Ragnar Freij-Hollant

): Introduction

1–2: Basics

- 3: Matching
- 4: Connecti
- 5: Planari
- 6: Colourii
- 7: Perfection
- 8: Randomnes
- 9: Extremalit
- 10: Ram

Lemma

A tree with n nodes has exactly n-1 edges.

- By induction on n. Trivial base case n = 1.
- Assume $|V| \ge 2$, and let $v \in V(T)$ be a leaf, with only outgoing edge $e \in E(T)$.
- Then $(V \setminus \{v\}, E \setminus \{e\})$ is a tree with n-1 vertices and (by induction hypothesis) n-2 edges.
- So |E| = n 1.

Rooted trees

MS-E1050

Ragnar Freij-Hollanti

1–2: Basics

3: Matchings

4: Connectiv

5: Plana

6: Colouring

7: Perfection

0. Extremali

10: Ramse

- A rooted tree is a tree *T* with a distinguished node *r*. Then:
- The *level* of the node v is the length of the unique path (r, ..., v).
- The *tree order* associated to (T, r) is the partial order on V(T) given by $v \le u$ if the unique path from r to u goes through v.
- r is the unique minimal element in the tree order.

Normal trees

MS-E1050

Ragnar Freij-Hollanti

- 1-2: Basics
- o. maccining
- 4: Connecti
- 5: Plai
- 6: Colourin
- 7: Perfectio
- 0. Extremali
- J. Extremen

- A rooted spanning tree (T, r) in G is called a *normal* tree if all edges in G go between comparable elements in the tree order.
- Normal trees are also called *depth first search* trees.
- Normal trees exist in every connected graph for any prescribed root.
- Constructed via depth first search.

Edge spaces

MS-E1050

Ragnar Freij-Hollant

o. meroduce

1-2: Basics

3: Matering

4: Connectiv

5. Planarity

6. 6.1.....

0: Colourin

8: Kandomn

9: Extremalit

10: Rams

- Consider $\mathbb{F}_2 = \{0,1\}$ with addition 1+1=0.
- Define the edge space (over \mathbb{F}_2) $\mathcal{E}(G) = \{f : E(G) \to \mathbb{F}_2\}.$
- Identify the elements in $\mathcal{E}(G)$ with subsets of E(G).

$$\langle f, f'
angle = \sum_{e \in E} f(e) f'(e) = |f \cap f'| \mod 2.$$

• f + f' corresponds to the symmetric difference of the sets f and f'.

Cycle spaces

MS-E1050

Ragnar Freij-Hollant

1-2: Basics

- ŭ
- 4: Connecti
- 5: Plana
-
- -------
- ... Circuio
- 8: Randomne
- 9: Extremality
- 10: Ram

- The edge set of a cycle is called a *circuit*.
- The cycle space $C(G) \subseteq E(G)$ is generated (over \mathbb{F}_2) by the circuits in G.
- $F \in C(G)$ iff and only if F is a *disjoint* union of circuits.
- $F \in C(G)$ iff and only if every $v \in V(G)$ has even degree in F.
- Proofs of these equivalences: Exercise.

Cut spaces

MS-E1050

Ragnar Freij-Hollant

0: Introduction

1-2: Basics

- J. Watering
- 4: Connectiv
- _ _ _ .
- o. . idildiic
- b: Colourin
- 8: Randomne
- 9: Extremalit
- l0: Ramsey

- If $A \subseteq V(G)$, the set of edges between A and \overline{A} is a *cut*.
- The cut space $\mathcal{B}(G) \subseteq \mathcal{E}(G)$ is generated (over \mathbb{F}_2) by the cuts in G.
- The symmetric difference of two cuts is a cut.
- So $F \in C(G)$ iff and only if F is itself a cut.

Cut and cycle spaces

MS-E1050

1-2: Basics

Example

- $c = \{1, 2, 3, 4\} \in C(G).$
- $b = \{1, 4, 7\} \in \mathcal{B}(G)$.
- $lack \langle b, c \rangle = |b \cap c| \mod 2 = |\{1, 4\}| \mod 2 = 0$

Cut and cycle spaces

MS-E1050

Ragnar Freij-Hollant

0: Introduc

1-2: Basics

3. Matchine

--

4: Connecti

5: Plan

6. Colouri

7. Perfection

8: Randomness

9: Extremali

10: Ram

- A closed walk enters A equally many times as it leaves A.
- So a circuit *c* contains an even number of edges from every cut.
- So $\mathcal{B}(G) \perp \mathcal{C}(B)$ as vector spaces over \mathbb{F}_2 .
- Standard linear algebra gives

$$\dim \mathcal{B}(G) + \dim \mathcal{C}(G) \leq \dim \mathcal{E}(G) = m.$$

• We will show that equality holds, so $\mathcal{B}(G) = \mathcal{C}(G)^{\perp}$.

Cut and cycle spaces

MS-E1050

Ragnar Freij-Hollant

0: Introduct

1-2: Basics

3: Matching

8: Randomness

0. Extremali

10: Ram

- A closed walk enters A equally many times as it leaves A.
- So a circuit *c* contains an even number of edges from every cut.
- So $\mathcal{B}(G) \perp \mathcal{C}(B)$ as vector spaces over \mathbb{F}_2 .
- Standard linear algebra gives

$$\dim \mathcal{B}(G) + \dim \mathcal{C}(G) \leq \dim \mathcal{E}(G) = m.$$

• We will show that equality holds, so $\mathcal{B}(G) = \mathcal{C}(G)^{\perp}$.

Cycle space dimension

MS-E1050

Ragnar Freij-Hollanti

J: IIILFOUUCL

1–2: Basics

3: Matching

4: Connectiv

F. Di....

0: Colourin

· · · circuit

8: Randomn

9: Extremalit

10: Ram

Easy to check:

$$\mathcal{C}(G \sqcup H) = \mathcal{C}(G) \oplus \mathcal{C}(H)$$
 and $\mathcal{B}(G \sqcup H) = \mathcal{B}(G) \oplus \mathcal{B}(H)$.

- So assume G connected. Fix a spanning tree $T \subseteq G$.
- For each $e = \{u, v\} \in E T$, consider the fundamental cycle

$$C_e = \{e\} \cup P_{uv},$$

where P_{uv} is the unique u - v-path in T.

- For every $e \in E$, the collection $\{C_i : i \in E T\}$ contains exactly one vector $C = C_e$ for which C(e) = 1.
- Therefore, the vectors $\{C_i : i \in E T\}$ are linearly independent.
- So dim(C(G)) $\geq |E T| = m (n 1)$.

Cut space dimension

MS-E1050

Ragnar Freij-Hollant

o. merodae

- 1-2: Basics
- 3: Matchin
- 4: Connectiv
- 5: Plar
- 6: Colourin
- 8: Randomn
- J. Extrement

- Assume G connected. Fix a rooted spanning tree $T \subseteq G$.
- For each $e = \{u, v\} \in T$, with v > u in the tree order, define $A_e = \{w \in V : w \ge v\}$.
- The cut B_e associated to A_e contains onely one edge from T, namely e.
- Therefore, the vectors $\{B_i : i \in T\}$ are linearly independent.
- So $\dim(\mathcal{B}(G)) \ge |T| = n 1 = m \dim(\mathcal{C}(G))$.
- It follows that $\mathcal{B}(G)^{\perp} = \dim(\mathcal{C}(G))$.

Matchings in bipartite graphs

MS-E1050

Ragnar Freij-Hollant

0: Introductions
1–2: Basics

3: Matchings

5: Planarit

o: Colourin

1: Perfection

8: Randomn

9: Extremalit

10: Ram

Example

- Six students have to do a group task, where they have to read five different books.
- Nobody has time to read more than one book.
- Moreover, not all students have access to all of the books.
- Can they divide the task so that all the books get read?

Matchings in general graphs

MS-E1050

Ragnar Freij-Hollant

0: Introduction

3: Matchings

J. Watering

4: Connectiv

J. Flanani

6: Colourin

7: Perfectio

0. D.

9: Extremalit

10: Ram

Example

- In a collection of people, some pairs of people are willing to live happily ever after together, while some other pairs are not.
- Can we pair the population up so that everyone is together with someone they want to live with?

Matchings

MS-E1050

Ragnar Freij-Hollant

0: Introductions

3: Matchings

4: Connecti

5: Planari

6: Colourin

7. D. C. ...

8. Random

9: Extremali

Definition

- A matching in G is a collection $M \subseteq E(G)$ of pairwise disjoint edges.
- A matching M is maximal if it is not contained in any other matching on G
- A matching M is complete on $A \subseteq V(G)$ if every vertex in A is in some edge of M.
- A matching M is perfect (or complete) if it is complete on V(G).

k-factors

MS-E1050

Ragnar Freij-Hollant

1–2: Basics

3: Matchings

4: Connectiv

5: Planarity

6. Colourin

7. Parfactio

8: Randomn

9: Extremality

10: Ram

Definition

- A perfect matching on *G* is also called a 1-factor.
- More generally, a k-factor on G is a spanning k-regular subgraph of G.
- In particular, a 2-factor is a collection of pairwise disjoint cycles that cover the vertices of *G*.

Vertex cover

MS-E1050

Ragnar Freij-Hollant

0: Introductions

. . . .

3: Matchings

4: Connectivi

5: Planarity

7: Periectio

o. Randonini

J. Zatramane,

Definition

- A vertex cover is a collection $A \subseteq V(G)$ such that every edge in E(G) contains at least one vertex in A.
- A vertex cover is minimal if it does not contain any other vertex cover.

Alternating paths

MS-E1050

Ragnar Freij-Hollant

0: Introduct

1–2: Basics

3: Matchings

A. Commonti

4: Connect

. . .

7. D. G. W.

0. Extremalit

10 5

Definition

- Consider a bipartite graph $G = (A \sqcup B, E)$ with a matching M.
- An alternating path with respect to M is a path

$$P = a_0, b_1, a_1, b_2, \cdots v$$

in *G* such that:

- \blacksquare a_0 is not matched in M.
- $a_i, b_i \} \in M \text{ for all } i \geq 1.$
- If the final vertex v of the path is unmatched, then P is an augmenting path with respect to M.

Augmenting paths

MS-E1050

Ragnar Freij-Hollant

U: Introduction

3: Matchings

J. 11102211116

4: Connecti

5: Planarit

6: Colourin

- - - -

O. Dandanin

10: Ram

Definition

■ An augmenting path with respect to M is a path

$$P = a_0, b_1, a_1, b_2, \cdots a_k, b_{k+1}$$

in *G* such that:

- $a_0 \notin e$ for every $e \in M$.
- $b_k \not\in e$ for every $e \in M$.

Lemma

If P is an augmenting path with respect to a matching M, then

$$M' = M \setminus \{a_i b_i : 1 \le i \le k\} \cup \{a_i b_{i+1} : 0 \le i \le k\}$$

is a matching with |M'| = |M| + 1.

König's Theorem

MS-E1050

Ragnar Freii-Hollant

0: Introducti

1–2: Basics

3: Matchings

4: Connect

J. Flanant

6: Colourin

_ _ . .

8: Randomn

0. Extremali

9: Extremality

Theorem

■ In any bipartite graph $(A \sqcup B, E)$, the size of the largest matching equals the size of the smallest vertex cover.

- These ends must all be different.
- ≥: Proof by alternating paths. (blackboard)

Another necessary condition

MS-E1050

Ragnar Freij-Hollanti

0: Introductions 1–2: Basics

- 3: Matchings
- F. Di......
-
-
- 9: Extremain

- Assume there is a set $S \in V(G)$ such that |N(S)| < |S|.
- Then there clearly can not be a complete matching on *S*, so not on *G* either.

Hall's Marriage Theorem

MS-E1050

Ragnar Freij-Hollanti

0: Introduction

3: Matchings

·

4: Connecti

J. I lallall

6: Colourin

7: Perfection

8: Randomne

9: Extremalit

10: Ram

Theorem

■ A bipartite graph $(A \sqcup B, E)$ with $|A| \leq |B|$ contains a complete matching if and only if $|N(S)| \geq |S|$ for all $S \subseteq A$.

- ⇒: Trivial.
- $\blacksquare \Leftarrow$: By induction on |A|. Obvious if |A|=1.
- If |N(S)| > |S| for all $S \subsetneq A$, $ab \in E(G)$ be an arbitrary edge.
- Hall's condition holds for the smaller graph $G' = G \{a, b\}$, so there is a complete matching M' on G'.
- Then $M' \cup \{ab\}$ is a complete matching on G.

Hall's Marriage Theorem

MS-E1050

Ragnar Freij-Hollanti

0: Introducti

3: Matchings

J. Watering.

4: Connectiv

5: Plana

6. Colouri

7: Perfection

8. Randomn

0. Extremalit

, Extrement

\Leftarrow continued.

- Remains to assume |N(A')| = |A'| for some $A' \subseteq A$.
- By induction, there is a complete matcing on $G' = G[A' \sqcup N(A')].$
- Now if $S \subseteq A \setminus A'$, then

$$|N(S) \setminus N(A')| \ge |N(S \cup A')| - N(A')$$

= $|N(S \cup A')| - |A'| \ge |S \cup A'| - |A'| = |S|$.

- So G G' also satisfies Hall's condition and has a complete matching.
- These two matchings together form a complete matching on G.

1-factors

MS-E1050

Ragnar Freij-Hollant

o: introducti

3: Matchings

5. marching

4: Connectiv

5: Planarit

6: Colourin

7. D. C. ...

8: Randomn

o. randomic

9: Extremalit

10: Rams

Corollary

• Every non-empty bipartite regular graph has a 1-factor.

Proof.

- $(A \sqcup B, E)$ regular $\Rightarrow |A| = |B|$.
- For any $S \subseteq A$,

$$k|S| = |E(S)| \le |E(N(S))| = k|N(S)|,$$

so S satisfies Hall's criterion.

2-factors

MS-E1050

Ragnar Freij-Hollant

U: Introducti

1–2: Basics

3: Matchings

4: Connectiv

5: Planarity

6: Colouris

0. 00.00...

7: Perfection

8: Randomn

9: Extremalit

10: Ram

Corollary

■ Every regular graph of positive even degree has a 2-factor.

Proof.

- Assume WLOG G connected.
- Positive even degree \Rightarrow exists an *Euler tour* $v_0, v_1, v_2, \ldots, v_m = v_0$ with

$$E = \{v_i v_{i+1} : 0 \le i < m\}.$$

■ Construct a bipartite graph $G' = (V^+ \sqcup V^-, E)$, where

$$V^+ = \{v^+ : v \in V(G)\}, V' = \{v^- : v \in V(G)\}$$

and

$$E = \{\{v_i^+, v_{i+1}^-\} : 0 \le i < m\}.$$

2-factors

MS-E1050

Ragnar Freij-Hollant

0: Introductio

3: Matchings

A. Commonti

4. Connecti

6: Colouri

1: Perfection

8: Randomness

9: Extremalit

10: Ram

Corollary

• Every regular graph of positive even degree has a 2-factor.

Continued.

■ Construct a bipartite graph $G' = (V^+ \sqcup V^-, E)$, where

$$V^+ = \{v^+ : v \in V(G)\}, V' = \{v^- : v \in V(G)\}$$

and

$$E = \{\{v_i^+, v_{i+1}^-\} : 0 \le i < m\}.$$

- This graph is bipartite and regular, so has a perfect matching.
- This perfect matching projects to a 2-factor in G under the map $G' \to G$, $v^+ \mapsto v$, $v^- \mapsto v$.

Preference orders

MS-E1050

3: Matchings

- A preference order of a vertex $v \in V(G)$ is a linear order \leq_v on N(v).
- We say that v prefers u to w if $u \ge_v w$.
- A preference ordered graph is a graph G together with a preference order for every vertex $v \in V(G)$.

Preference orders

MS-E1050

Ragnar Freij-Hollant

- 0: Introductions
- 3: Matchings
- 4: Connectivi
- 5: Planarity
- 6: Colourin
- 8. Randomi
- 9: Extremality
- 10: Rams

- Let *M* be a matching on a preference ordered graph.
- We say that a desires $b \in N(a)$ if $b \ge_a x$ for any x with $\{a, x\} \in M$.
- An edge {a, b} ∉ M is critical with respect to the matching M if a desires b and b desires a.
- A matching is *stable* if there is no critical pair with respect to *M*.
- We say that a is satisfied if a is unmatched or a is not contained in any critical edge.

Preference orders

MS-E1050

Ragnar Freij-Hollanti

0: Introductions

3: Matchings

. . . .

4: Connecti

J. Flanani

.

7. I CITECTION

8: Randomn

9: Extremalit

- For some preference ordered graphs, there exist no stable matchings.
- **Example:** Consider the cyclic graph C_n with the preferences

$$i+1 \geq_i i-1$$

for all $i \in V(C_n) = \{0, 1, \dots, n-1\}$, (addition mod n).

- If *i* is unmatched, then $\{i, i-1\}$ is always a critical edge.
- If n is odd, then some vertex is always unmatched, so no stable matching exists.

Gale's Marriage Theorem

MS-E1050

Ragnar Freij-Hollant

0: Introducti

1–2: Basics

3: Matchings

4. Cannach

5: Planarity

6. Colourin

8: Randomness

o. manaomic

9: Extremalii

Theorem

■ For any set of preferences $\{\leq_x : x \in V(G)\}$ on a bipartite graph G, there exists a stable matching.

- We will find such a matching by an algorithm that will terminate on a stable matching.
- The algorithm is (controversially?) not symmetric on the sets A and B.

Gale's Marriage Theorem

MS-E1050

Ragnar Freij-Hollanti

0: Introductions

3: Matchings

4: Connectiv

3: Planarit

6: Colourin

7: Perfection

8: Randomne

9: Extremality

10: Ram

Continued.

- WHILE there exist desired unmatched $a \in A$:
 - Choose arbitrary desired unmatched $a \in A$.
 - Every element in *B* that desires *a proposes* to her.
 - a selects her favourite among the admirers (who leaves his previous partner if he was already matched).
- By construction, matched elements in A are never in a critical pair.
- The algorithm ends after at most $\sum_{b \in B} d(b)$ iterations.
- When the algorithm terminates, unmatched elements in A are also not in any critical pair.

Gale's Marriage Theorem

MS-E1050

Ragnar Freij-Hollant

0: Introductions

3: Matchings

.

4. Connecti

5: Planarit

6. Colouris

- - - ..

. Lacremane

0. Rame

Theorem

• On a given graph G with given preference orders, all stable matchings have the same size.

Proof.

Exercise

Tutte's condition

MS-E1050

Ragnar Freij-Hollant

u: Introduct

1–2: Basics

3: Matchings

4: Connectiv

5: Planari

6: Colouring

7: Periectio

8: Randomne

9: Extremalit

10: Ram

- If |G| is odd, then G has no 1-factor. (duh!)
- Let q(H) denote the number of odd components in the graph H.
- Assume S is a separator on G, A is a component of $G \setminus S$, and M is a 1-factor on G.
- Either *M* is a 1-factor on *A*, or *M* contains an *AS*-edge.
- So if G has a 1-factor, then $q(G \setminus S) \leq |S|$.

Tutte's condition

MS-E1050

Ragnar Freij-Hollant

0: Introductio

3: Matchings

4: Connecti

J. Flatiant,

o: Colourin

8: Randomn

9: Extremalit

10: Ram

Let q(H) denote the number of odd components in the graph H.

Theorem

■ The graph G has a 1-factor if and only if $q(G \setminus S) \leq |S|$ for all $S \subseteq V(G)$.

- ⇒: Trivial.
- \blacksquare \Leftarrow : Say that a set S is bad if $q(G \setminus S) > |S|$.
- If $G' \subseteq G$ is a spanning subgraph, and S is bad in G, then S is bad in G'.
- Assume G edge-maximal with no 1-factor. We want to find a bad set S.

Tutte's condition

MS-E1050

Ragnar Freij-Hollant

0: Introductio

3: Matchings

.

4. Connectiv

b: Colourii

- - - -

0. D.

10: Ram

Theorem

■ The graph G has a 1-factor if and only if $q(G \setminus S) \leq |S|$ for all $S \subseteq V(G)$.

Continued.

- Assume G edge-maximal with no 1-factor.
- Consider

$$S = \{ v \in V : \forall u \in V : vu \in E \}.$$

- Every component in $G \setminus S$ is complete by edge-maximality (technical lemma).
- If |G| is even, then we would get a 1-factor unless if S is bad.
- If |G| is odd, then \emptyset is bad.

3-regular graphs

MS-E1050

Ragnar Freij-Hollant

1_2. Racice

3: Matchings

3: Matching

. . .

..

o. . iaiiaii

6: Colourir

7. Perfecti

8: Randomn

9: Extremalit

10: Rams

Theorem

■ Every 3-regular bridgeless graph G has a 1-factor.

Proof.

- We will show that G satisfies Tutte's criterion.
- Fix $S \subseteq V(G)$, and an odd component C of $G \setminus S$.
- \blacksquare $\sum_{c \in C} d(c)$ is odd, so there is an odd number of *SC*-edges.
- No bridge \Rightarrow there are at least 3 *SC*-edges.
- So

$$3|S| \ge \sum \#SC$$
-edges $\ge 3q(G \setminus S)$,

where the sum is over all odd components of $G \setminus S$.

MS-E1050

Ragnar Freij-Hollant

u: Introductio

1–2: Basics

4: Connectivity

4: Connectivi

o: Colouring

- $X \subseteq V(G) \cup E(G)$ is a *separator* of G if $G \setminus X$ is disconnected
- $X \subseteq V(G) \cup E(G)$ is an A B-separator, for $A, B \subseteq V(G)$, if there is no path from A to B in $G \setminus X$.
 - If X consists only of vertices, it is a vertex separator
 - If X consists only of edges, it is a *edge separator*

MS-E1050

Ragnar Freij-Hollant

0: Introductions

3: Matchings

4: Connectivity

.

o. colour...

5. Extremain

- The graph G is k-connected if $G \setminus X$ is connected for all $X \subseteq V(G)$ with |X| < k.
- The *connectivity* $\kappa(G)$ is the largest integer k such that G is k-connected.

MS-E1050

Ragnar Freij-Hollanti

0: Introductions

3. Matchings

4: Connectivity

o. manaomin

9: Extremalit

10: Ram

- The graph G is edge-k-connected if $G \setminus X$ is k-connected for all $X \subseteq E(G)$ with |X| < k.
- The *edge connectivity* $\lambda(G)$ is the largest integer k such that G is k-edge-connected.

MS-E1050

4: Connectivity

Theorem

■ For any non-complete graph G,

$$\kappa(G) \leq \lambda(G) \leq \delta(G)$$
.

Proof.

$$\lambda(G) \leq \delta(G)$$
:

■ The $d(v) = \delta(G)$ edges surrounding some vertex v separate vfrom the rest of the graph.

MS-E1050

Ragnar Freij-Hollant

0: Introduction

1 2. Basina

3: Matching

4: Connectivity

..

6: Colourin

8: Randomnes

9: Extremalit

10: Ram

$$\kappa(G) \leq \lambda(G)$$
:

- Consider a k element edge separator F.
- Case one: F covers all vertices of G.
- Consider v with d(v) < n-1, and let A be the connected component of v in $G \setminus F$.
- All edges v-y, $y \notin A$, are in F.
- All elements of $N(v) \cap A$ are in *different* edges of F.
- So $|N(v)| \le k$, and so N(v) is a separator of size < k.

MS-E1050

Ragnar Freij-Hollant

u: Introduct

1–2: Basics

3: Matching

4: Connectivity

J. I lallalli

b: Colourin

8: Randomn

9: Extremality

10: Ramsey

$$\kappa(G) \leq \lambda(G)$$
:

- Consider a k element edge separator F.
- **Case two**: $v \in V$ in not incident to any edge in F.
- Let A be the connected component of v in $G \setminus F$.
- Let $A' \subseteq A$ be the set of vertices in A that are incident to an edge in F.
- So $A' \leq k$, A' separates v from $V \setminus A$ in $G \setminus F$.

MS-E1050

Ragnar Freij-Hollanti

- U: Introductions
- 1-2. Basics
- 3: Matching
- 4: Connectivity
- 5: Planarity
- 6: Colourin
- 7: Perfection
- 9: Extremalit
- 10: Rams

- So high connectivity implies high minimum degree.
- The opposite implication does not hold.

2-connected graphs

MS-E1050

Ragnar Freij-Hollant

0: Introductions

3: Matchings

4: Connectivity

4. Connectiv

5: Planarity

6: Colourir

. . .

5. Extreman

Theorem

G is 2-connected if and only if it can be inductively constructed by:

- Starting from a cycle.
- Adding a H-path to H.
- A H-path is a x-y-path P for some vertices $x, y \in H$, such that no internal vertex on P lies in H.

2-connected graphs

MS-E1050

Ragnar Freij-Hollant

0: Introductions

o. merodaceione

3: Matchings

4: Connectivity

4. Connectiv

5: Planarity

6: Colourin

7. Perfection

O. Dandamus

9: Extremaiit

Theorem

G is 2-connected if and only if it can be inductively constructed by:

- Starting from a cycle.
- Adding a H-path to H.

- ⇒: Cycles are 2-connected, and 2-connectedness is preserved when adding *H*-paths
- $\blacksquare \Leftarrow$: By induction on |G|.

2-connected graphs

MS-E1050

Ragnar Freij-Hollant

0: Introduction

1_2: Pacies

3: Matchings

4: Connectivity

8: Randomness

0. Extremali

J. Extreman

Theorem

G is 2-connected if and only if it can be inductively constructed by:

- Starting from a cycle.
- Adding a H-path to H.

- For a contradiction, consider a *maximal* subgraph $H \subsetneq G$ constructed as in the theorem.
- By maximality, *H* is induced.
- G connected, so there is an edge $uv \in E(G)$ with $u \in H$, $v \notin H$.
- *G* 2-connected, so there is a H—v-path P in $G \setminus \{u\}$.
- $P + \{u, v\}$ is a H-path, contradicting the maximality of H.

Paths and separators

MS-E1050

Ragnar Freij-Hollant

- 0: Introductions
- 1-2. Basics
- 3: Matching
- 4: Connectivity
- _ _ _ .
-
- 0. 00.00....
- o: Kandonine
- 9: Extremality
- 10: Ram:

- $X \subseteq V(G) \cup E(G)$ is an A B-separator, for $A, B \subseteq V(G)$, if there is no path from A to B in $G \setminus X$.
- A family of paths from A to B are
 - Disjoint if they have no vertices in common.
 - Independent if they have no internal vertices in common.
 - Edge disjoint if they have no vertices in common.
- Clearly,

 $\mathsf{Edge}\;\mathsf{disjoint} \Leftarrow \mathsf{Independent} \Leftarrow \mathsf{Disjoint}$

MS-E1050

Ragnar Freij-Hollant

0: Introductions

3: Matchings

4: Connectivity

6. 6.1......

_ _ . .

0. Extremalit

10: Ram

Theorem

- Let G be a graph and $A, B \subseteq V(G)$.
- The minimum size of an (A, B)-vertex separator equals the maximum number of pairwise disjoint A B-paths in G.

- We allow the vertex separator to intersect $A \cup B$.
- Indeed, if $A \cap B \neq \emptyset$, then the vertex separator must contain $A \cap B$.

MS-E1050

Ragnar Freii-Hollant

o: mtroduct

1–2: Basics

3: Matchings

4: Connectivity

.

0. 00.00....

.

9: Extremalit

10: Rams

Theorem

- Let G be a graph and $A, B \subseteq V(G)$.
- The minimum size of an (A, B)-vertex separator equals the maximum number of pairwise disjoint A B-paths in G.

- ≥: If there are *k* disjoint paths, then all of them must contain a vertex from the separator.
- \blacksquare So any separator has size at least k.

MS-E1050

Ragnar Freij-Hollant

). Introduction

1–2: Basics

3. Matchings

4: Connectivity

_ _. .

. . . .

o: Colourii

7. Terrectio

8: Randomness

9: Extremalit

10: Ram

Theorem

- Let G be a graph and $A, B \subseteq V(G)$.
- The minimum size of an (A, B)-vertex separator equals the maximum number of pairwise disjoint A B-paths in G.

- \leq : Assume there is no (A, B)-vertex separator of size k 1.
- We claim that there are k pairwise disjoint A B-paths in G.
- Proof by induction over |E(G)|.
- Base case: If $E = \emptyset$, then $A \cap B$ is a separator, so $|A \cap B| \ge k$.
- Then there are k trivial A B-paths.

MS-E1050

Ragnar Freij-Hollant

0: Introductions

3: Matchings

4: Connectivity

_ _. .

6. Colourin

8. Randomne

9: Extremalit

10: Ram

- \leq : Assume there is no (A, B)-vertex separator of size k 1.
- Assume for a contradiction that there are *not* k pairwise disjoint A B-paths in G.
- Fix $e \in E(G)$. There are at most k-1 pairwise disjoint A-B-paths in $G \setminus e$.
- By induction hypothesis, $G \setminus e$ has an (A, B)-separator S with $|S| \le k 1$.

MS-E1050

Ragnar Freij-Hollant

0: Introductions 1–2: Basics

3: Matchings

4: Connectivity

_ _. .

6: Colouri

7. Daufaatia

8: Randomness

9: Extremalit

- \leq : We assumed there were no (A, B)-vertex separator of size k-1 but also no k pairwise disjoint A-B-paths in G.
- By induction hypothesis, $G \setminus e$ has an (A, B)-separator S with $|S| \le k 1$.
- There is an A B-path in G that uses e and does not intersect S, because S is not a separator in G.

MS-E1050

Ragnar Freij-Hollant

0: Introduction

3: Matchings

4: Connectivity

..

6: Colouri

o: Colourir

7: Periection

0. D.

0. Extremalit

10: Ramse

- $G \setminus e$ has neither a $(A, S \cup \{v_A\})$ -separator nor any $(A, S \cup \{v_B\})$ -separator of size $\leq k 1$.
- By induction, there are k disjoint $(A, S \cup \{v_A\})$ -paths and k disjoint $(B, S \cup \{v_A\})$ -paths.
- These can be glued together with the edge e to form k disjoint (A, B)-paths.

MS-E1050

Ragnar Freij-Hollanti

o. miroduci

1–2: Basics

J. Matchings

4: Connectivity

_ _ . . .

6. 6.1.....

7: Porfection

. . .

8: Randomne

9: Extremalit

10: Rams

Theorem

- Let G be a graph. The following are equivalent:
 - G is k-connected.
 - For every $a, b \in V(G)$, there are k pairwise independent a b-paths.

- The following are equivalent.
 - There are k pairwise independent a b-paths.
 - There are k pairwise disjoint N(a) N(b)-paths.
 - There is no (N(a), N(b))-separator of size < k.
- Every separator in the graph is an (N(a), N(b))-separator for some $a, b \in V(G)$.
- Thus, the conditions above hold for all vertices $a, b \in V(G)$ if and only if G is k-connected.

Menger's edge-connectivity theorem

MS-E1050

Ragnar Freij-Hollant

0: Introduction

- 3: Matchings
- 4: Connectivity
- _ _ _ .
- Ť
- 8: Randomness
- 9: Extremalit
- 10: Rams

Corollary

- Let G be a graph. The following are equivalent:
 - G is k-edge connected.
 - For every $a, b \in V(G)$, there are k pairwise edge-disjoint a b-paths.

- Apply Menger's theorem to the *line graph* L(G) of G.
- Edge disjoint (a, b)-paths in G are disjoint (E(a), E(b))-paths in L(G).

MS-E1050

Ragnar Freij-Hollant

0: Introductions

- 1_2. Basics
- 3: Matchings
- 4: Connectivity
- 5 BL 1:
- 6: Colourin
- 7. Porfaction

- 9: Extremali
- 10: Ramsey

■ If G is a graph, then IG ("inflated G") denotes any graph G' whose vertex set can be partitioned as a disjoint union $V(G') = \bigcup_{x \in V(G)} U_x$ where

$$xy \in E(G) \Leftrightarrow \exists v_x \in U_x, v_y \in U_y : v_x v_y \in E(G').$$

■ If H has a subgraph isomorphic to an IG, then G is a minor of H.

MS-E1050

- 4: Connectivity

■ The *deletion* of $X \subseteq E$ from G = (V, E) is

$$G \setminus X = (V, E \setminus X).$$

■ The *deletion* of $X \subseteq V \cup E$ from G = (V, E) is

$$G \setminus X = (G \setminus (E \cap X))[V \setminus X].$$

MS-E1050

Ragnar Freij-Hollant

U: Introduct

1–2: Basics

.

4: Connectivity

0: Colourin

o. Randonnic

9: Extremality

10: Ran

■ The *contraction* of the edge $e = \{x, y\}$ from G = (V, E) is G/e = (V', E'), where

$$V' = V \setminus \{x, y\} \cup \{v\}$$

and

$$E' = E \setminus \{xz\} \setminus \{yz\} \cup \{vz : xz \in E \text{ or } yz \in E\}.$$

- Observe that it is often (but not always) more natural to define the contraction as a multigraph.
- If $z \in N(x) \cap N(y)$, then we get two parallel edges vz.

MS-E1050

Ragnar Freij-Hollant

U: Introductions

3: Matchings

4: Connectivity

_ _ _ _ _ _

6. 6-1---

. . .

9: Extremain

Contraction and deletion commute:

$$(G/e)/f \cong (G/f)/e$$
,

and if $e \notin X$ then

$$(G \setminus X)/e \cong (G/e) \setminus X$$
.

 \blacksquare So for $X\subseteq V\cup E$ and $Y\subseteq E\smallsetminus X,$ we can naturally define $G\setminus X/Y.$

MS-E1050

Ragnar Freij-Hollant

0: Introductions

. . . .

3: Matching

4: Connectivity

- B. ..

6: Colouris

....

J. Extreman

Proposition

■ G is a minor of H = (V, E) if and only if there exists $X \subseteq V \cup E$ and $Y \subseteq E \setminus X$, such that

$$G \cong H \setminus X/Y$$
.

Building k-connected graphs

MS-E1050

Ragnar Freij-Hollant

U: Introducti

1-2. Dasics

4: Connectivity

4. Connectiv

. . . .

.

8: Randomne

9: Extremality

10: Ram

- Paraphrasing previous theorems:
 - Connected graphs can be obtained by glueing edges together along vertices.
 - 2-connected graphs can be constructed by glueing cycles together along paths.
- The family of connected 3-regular graphs is much more complicated than the families of connected 1- and 2-regular graphs
- The building blocks of the structure theorem for 3-connected graphs are K_4 , and the operations are the inverse of contraction.

MS-E1050

Ragnar Freij-Hollant

0: Introductions

. . . .

3: Matching

4: Connectivity

5: Planarit

o: Colourin

7: Perfection

O. Dandanın

9: Extremali

10: Rams

Definition

The (v, N_x, N_y) -vertex split of G' is $G' \mapsto G = (V, E)$, where

$$V = V(G') \cup \{x, y\} \setminus \{v\}$$

and

$$E = E(G') \setminus \{e : v \in e\} \cup \{xz : z \in N_x\} \cup \{yz : z \in N_y\} \cup \{xy\},$$

where

$$v \in V(G'),$$
 $N_x, N_y \subseteq N(v),$ $N_x \cup N_y = N(v).$

Proposition

 $G' \cong G/e$ for some $e = xy \in E(G)$ if and only if G is a vertex split of G'.

Tutte's wheel theorem

MS-E1050

Ragnar Freii-Hollant

- U: Introducti
- 1-2: Basics
- J. Matchings
- 4: Connectivity
- F. Di......
- 6. Calaunia
- o. Colodini,
- 7. I circulon
- 9: Extremalit

Our next goal is to prove the following theorem:

Theorem

A graph G is 3-connected if and only if there is a sequence of edges

$$e_1,\ldots,e_{m-6}$$

in G such that:

- $G/\{e_1, ..., e_k\}$ is 3-connected for all k.
- $G/\{e_1,\ldots,e_{m-6}\}\cong K_4.$

MS-E1050

Ragnar Freij-Hollant

4: Connectivity

5. Planarity

6: Colourin

7: Perfection

0. D.

0. Extremalit

10: Rams

Lemma

If G is 3-connected, then there is some edge $e \in E(G)$ such that G/e is also 3-connected.

Proof.

- Assume not.
- Then every edge is contained in a 3-separator.

MS-E1050

Ragnar Freij-Hollant

0: Introductions

2. Martillani

4: Connectivity

7: Perfection

0. Extremalit

10: Ram

Lemma

If G is 3-connected, then there is some edge $e \in E(G)$ such that G/e is also 3-connected.

Proof.

Assume B minimal.

 $D \subsetneq B \square$

MS-E1050

Ragnar Freij-Hollant

): Introductions

3: Matchings

4: Connectivity

.

6: Colourin

7: Periectio

8: Randomne

9: Extremalit

10: Ram

Lemma

If G is 3-connected, $v \in V(G)$, and $N_x, N_y \subseteq N(v)$ satisfy $|N_x| \ge 3$, $|N_y| \ge 3$, then the (v, N_x, N_y) -vertex split of G is 3-connected.

Proof.

- **Assume there were a 2-separator in the vertex split** G'.
- Proof by contradiction by case separation

Tutte's wheel theorem

MS-E1050

Ragnar Freij-Hollant

0: Introductions

. . . .

3: Matchings

4: Connectivity

_ _ _

6. Calaunia

_ _ _ .

8: Randomne

9: Extremality

10: Rams

Theorem

A graph G is 3-connected if and only if there is a sequence of edges

$$\textit{e}_1, \ldots, \textit{e}_{m-6}$$

in G such that:

- $G/\{e_1, \ldots, e_k\}$ is 3-connected for all k.
- $G/\{e_1,\ldots,e_{m-6}\}\cong K_4$.

Plane graphs

MS-E1050

Ragnar Freij-Hollant

0: Introductions

3: Matchings

4. Commontin

4: Connectiv

5: Planarity

6: Colourin

7. Ferrection

8: Randomne

9: Extremality

10: Rams

Definition

- A plane graph is a pair (V, E) (notice the abuse of notation) where
 - $lue{V}$ is a set of points in \mathbb{R}^2
 - $lue{}$ Every edge is a curve between two points in V.
 - The interior of an edge does not intersect any other edge or contain any vertex $v \in V$.
- Plane graphs have a natural multigraph structure.

Plane graphs

MS-E1050

Ragnar Freij-Hollant

1 2 Decise

1–2: Basics

3: Matching

.

5: Planarity

b: Colourir

7. Ferrection

o. Randonnie

J. Extreman

■ The graph drawing

$$V \cup \bigcup_{e \in F} e \subseteq \mathbb{R}^2$$

separates the plane into faces.

- Each face is topologically an open disc or a punctured open disc.
- If G is finite, then there is only one unbounded face, the outer face.
- If we want to remove the distinction between inner and outer faces, we draw our plane graphs on the sphere S^2 instead of in \mathbb{R}^2 .
- If G is connected, then each face (except for the outer face) is an open disc, and is bounded by a closed walk in the graph G.

Planar graphs

MS-E1050

Ragnar Freij-Hollant

- 1–2: Basics
- 3: Matchings
- 4. Connectiv
- 5: Planarity
- •
-
- 8: Randomn
- 9: Extremalit
- l0: Ramsey

- A planar graph is a graph that is isomorphic to the graph of some plane graph.
- In principle, two different plane graphs can yield the same planar graph.

Plane triangulations

MS-E1050

Ragnar Freij-Hollant

.

1–2: Basics

3: Matching

4: Connectivi

5: Planarity

6: Colourii

7: Perfecti

8: Random

9: Extremalit

10: Ran

Proposition

G is a maximally planar graph if and only if every drawing of it is a triangulation of S^2 .

- A planar graph G = (V, E) is maximally planar if $(V, E \cup \{e\})$ is nonplanar for any $e \notin E$.
- The implication ⇒ is obvious, because if G can be drawn with a non-triangle face, then a chord can be added to this face without destroying planarity.
- The implication ← will follow shortly.

Euler's theorem

MS-E1050

Ragnar Freij-Hollant

o: miroduci

1–2: Basics

3: Matchings

4. Connectivit

5: Planarity

6: Colouring

7: Perfection

8: Randomne

9: Extremainty

10: Ram

Proposition

■ A plane graph has only one face if and only if G is a forest.

Proof.

■ By induction on |E|.

Euler's theorem

MS-E1050

Ragnar Freij-Hollant

0: Introduction

3. Matchine

J. Watering

4: Connecti

5: Planarity

6: Colourings

7: Perfection

. . .

9: Extremalit

10: Ramse

Proposition

■ If a plane graph has v vertices, e edges and f faces, then

$$v - e + f = 2$$
.

Proof.

■ By induction on |E|.

Double counting

MS-E1050

Ragnar Freij-Hollant

o: mtrouuci

1-2: Basics

3: Matchings

A. Commontin

5: Planarity

J. Flanality

6: Colouri

7: Perfectio

8: Randomne

9: Extremalit

10: Ram:

$$2e = \sum_{\text{faces } F} |\partial F| \ge \begin{cases} 3f & \text{if } G \text{ simple} \\ 4f & \text{if } G \text{ simple bipartite} \end{cases}$$

- If G simple planar, then $e \le 3v 6$.
 - In particular, K_5 is not planar (e = 10, v = 5).
- If G simple bipartite and planar, then $e \le 2v 4$.
 - In particular, $K_{3,3}$ is not planar (e = 9, v = 6).

Faces

MS-E1050

Ragnar Freij-Hollant

- o. milioducti
- 1–2: Basics
- 3: Matching
- 4. Connectiv
- 5: Planarity
- J. Flallalit
- 6: Colouring
- 7: Perfectio
- 8: Randomn
- 9: Extremalit
- 10: Rams

■ If $H \subseteq G$, and the edges $F \subseteq E(G)$ are contained in a face of (some drawing of) G, then they are also contained in a face of (the induced drawing of) H.

2-connected planar graphs

MS-E1050

Ragnar Freij-Hollant

-
- 1–2: Basics
- 3: Matchings
- A: Connectivi
- 5: Planarity
- Ĭ
- 0. 00.00....
- 7: Periection
- 8: Randomn
- 9: Extremalit
- l0: Ramse

- The faces of 2-connected plane graphs are bounded by cycles.
- By Euler's theorem, the *number* of face-bounding cycles in *G* does not depend on the drawing.
- However, the set of face-bounding cycles does.

MS-E1050

Ragnar Freii-Hollant

0: Introductions

3: Matchings

4: Connectiv

5: Planarity

: Colourin

7. I chection

8: Randomness

9: Extremality

10: Rams

■ The moral of the following theorem is that "3-connected planar graphs can essentially only be drawn in one way".

Theorem

- Consider a fixed drawing of a 3-connected planar graph G.
- A cycle $C \subseteq E(G)$ bounds a face if and only if it is induced and separating.

MS-E1050

5: Planarity

Theorem

■ A cycle $C \subseteq E(G)$ bounds a face iff it is induced and non-separating.

Proof.

- Face-bounding ⇒ Induced:
- WLOG, assume C bounds the outer face and $x, y \in V(C)$.
- If $xy \in E(G)$, then $\{x,y\}$ is a 2-separator, contradicting 3-connectivity.

MS-E1050

MS-E1050

Ragnar Freij-Hollant

0: Introductions

1–2: Basics

3: Matching

J. Maccining

4: Connect

5: Planarity

6: Colourir

7: Perfecti

8: Randomne

9: Extremalit

10: Ram

Theorem

■ A cycle $C \subseteq E(G)$ bounds a face iff it is induced and non-separating.

Proof.

- Face-bounding ⇒ Non-separating:
- Assume C bounds a face, and let $x, y \in V(G) \setminus V(C)$.
- By 3-connecteivity and Mernger's theorem, there are 3 independent xy-paths.
- One of these paths must go outside of C (by topology).
- So C does not separate x from y.

MS-E1050

Ragnar Freij-Hollant

0: Introductions

1–2: Basics

3: Matching

J. Widtelling

4. 6.....

5: Planarity

o: Colouri

o. Randonine

9: Extremali

10: Ramsey

Theorem

■ A cycle $C \subseteq E(G)$ bounds a face iff it is induced and non-separating.

Proof.

- Induced and non-separating ⇒ Face-bounding:
- C non-separating, so all vertices in $V(G) \setminus V(C)$ are in one of the two regions bounded by C.
- WLOG all vertices on the "outside" of C.
- C induced and no vertices inside of $C \Rightarrow$ no edges inside of C.
- Thus C bounds a face.

Plane duals

MS-E1050

Ragnar Freij-Hollant

-): Introductions
- 3: Matchings
- 4. Connectivit
- 4: Connectivity
- 5: Planarity
 - : Colourir
- 7: Perfecti
- 8. Randomi
- 0. Extremalit
- J. Extrement

- Any plane graph G = (V, E) has a plane dual $G^* = (F, E')$
- F is the set of faces of G, and there is a natural bijection $E \leftrightarrow E'$.
- Well defined up to topological equivalence.
- G^* $(G^*)^* = G$.

Plane duals

MS-E1050

Ragnar Freij-Hollant

- 1 0 Decision
- 1-2: Dasics
- J. Watering
- 4. Connectiv
- 5: Planarity
- J. Flanani,
- b: Colourin

- . Lattemant

- The complement of a spanning tree in G corresponds to a spanning tree in G^* .
- $T \subseteq E(G)$ acyclic $\Leftrightarrow \bar{T}' \subseteq E(G^*)$ connected.

Plane duals

MS-E1050

Ragnar Freij-Hollant

1-2: Basics

3: Matching

4. Connectivi

...

5: Planarity

6: Colouring

7. Perfection

_ _ .

9: Extremali

10: Rams

■ The complement of a spanning tree in G corresponds to a spanning tree in G^* .

■ This proves in a new way that

$$e = |E(G)| = (|V(G)| - 1) + (|V(G^*)| - 1) = (v - 1) + (f - 1),$$

so
$$v - e + f = 2$$
.

Outerplanar graphs

MS-E1050

- 5: Planarity

A planar graph G is outerplanar if it has a drawing in which every vertex is on the outer face.

Example: K_4 and $K_{3,2}$ are planar but not outerplanar.

Minors

MS-E1050

Ragnar Freij-Hollant

U: Introduc

1-2: Basics

4: Connectiv

5: Planarity

6: Colouring

7. Terrectio

o. Randonini

9: Extremalit

10: Ramse

- Assume G is (outer)planar and $e \in E(G)$.
- Then both G/e and $G \setminus e$ are (outer)planar.
- So the classes of (outer)planar graphs are closed under taking minors.
- In particular, no planar graph can have K_5 or $K_{3,3}$ as a minor.

Kuratowski's theorem

MS-E1050

Ragnar Freij-Hollant

0: Introductions

1-2: Basics

3: Matching

A. Compositivi

5: Planarity

3: Planarity

6: Colourir

7: Perfection

8: Randomness

9: Extremalit

10: Ran

Theorem

- A graph G is planar if and only if it does not contain K_5 or $K_{3,3}$ as a minor.
- \blacksquare \Rightarrow follows because minors of planar graphs are planar.
- ← Proof by contradiction, first reducing to the 3-connected case.

Lemma

■ An edge-minimal non-planar graph G that does not contain K_5 or $K_{3,3}$ as a minor is 3-connected.

Kuratowski's theorem

MS-E1050

Ragnar Freij-Hollant

0: Introductions

1_2. Basics

3: Matchings

4: Connectivit

...

5: Planarity

6: Colouring

7: Perfectio

O. Dandanı

9: Extremalit

10. Ram

Lemma (Reduction to 3-connected case)

■ An edge-minimal non-planar graph G that does not contain K_5 or $K_{3,3}$ as a minor is 3-connected.

Proof.

Blackboard

Kuratowski's theorem

MS-E1050

Ragnar Freii-Hollant

0: Introduc

1–2: Basics

3: Matching

4: Connectiv

5: Planarity

Colourin

0. Dandami

10: Ram

Lemma (Key Lemma)

■ A 3-connected graph G that does not contain K_5 or $K_{3,3}$ as a minor is planar.

Proof.

Blackboard

 Kuratowski's Theorem follows from the reduction lemma and the key lemma.

Definitions

MS-E1050

Ragnar Freii-Hollant

- 0: Introductions
- 1-2: Basics
- 3: Matchings
- 4: Connectivi
- 5. Planarit
-
- 6: Colourings
- 8: Randomness
- 0: Extremalit
- 10: Ramsey

■ A (proper) *k-colouring* of G = (V, E) is a map $\gamma : V \to \{1, 2, ..., k\}$ such that $\gamma(v) \neq \gamma(u)$ whenever $uv \in E$.

- In other words, a k-colouring is a graph homomorphism $G \to K_k$.
- The *chromatic number* of G = (V, E) is the smallest $k \in \mathbb{N}$ such that there exists a k-colouring of G.
- In other words, $\chi(G) = k$ is the smallest number of independent sets into which V(G) can be partitioned.

Definitions

MS-E1050

6: Colourings

- The *chromatic number* of G = (V, E) is the smallest $k \in \mathbb{N}$ such that there exists a k-colouring of G.
- In other words, $\chi(G) = k$ is the smallest number of independent sets into which V(G) can be partitioned.

Examples

MS-E1050

Ragnar Freij-Hollant

- 0: Introduction
- 1-2: Basics
- 3: Matching
- 4: Connectiv
- 5: Plana
- 6: Colourings
- 7: Perfection
- 0. D.
- 9: Extremali
- 10: Ramsey

 $\chi(K_n) = n.$

• $\chi(G) = 2$ if and only if G is bipartite.

Examples

MS-E1050

Ragnar Freij-Hollant

U: Introduct

1-2: Basics

3: Matching

Ť

6: Colourings

1: Periectio

o. Randonnics

10. Bamar

 $\omega(C_{\bullet})$

$$\omega(C_n)=2$$

$$\chi(C_n) = \left\{ \begin{array}{ll} 2 & n \text{ even} \\ 3 & n \text{ odd} \end{array} \right..$$

$$\omega(\bar{C}_n) = \left|\frac{n}{2}\right|$$

$$\chi(\bar{C}_n)=\left\lceil\frac{n}{2}\right\rceil.$$

Lower bounds

MS-E1050

Ragnar Freij-Hollant

0: Introduction

.

3: Matching

1: Connectivi

......

5: Plan

6: Colourings

7: Perfection

9: Extremality

0: Ramsey

- \bullet $\omega(G) \leq \chi(G)$
 - Proof: Pairwise connected vertices need different colours.
 - Strict inequality for odd cycles and odd cocycles of length ≥ 5 .
- $\chi(H) \leq \chi(G)$ if $H \subseteq G$ is a subgraph.
 - Proof: Any colouring of G restricts to a colouring of H.
- $|V(G)| \leq \chi(G).$
 - Proof: V(G) is the union of $\chi(G)$ colour classes of size $\leq \alpha(G)$.

Greedy colouring

MS-E1050

Ragnar Freij-Hollant

0: Introductions

3: Matchings

4.6

4: Connectiv

5: Plan

6: Colourings

7: Perfection

. . . .

9. Extremalit

10: Ram

- Order $V(G) = \{v_1, \dots, v_n\}$ arbitrarily.
- For i = 1, ..., n: Let

$$\gamma(v_i) = \min\{c \in \mathbb{N} : \gamma(v_j) \neq c \text{ for all } 1 \leq j < i, v_j \in N(v_i)\}.$$

■ Then γ is a proper colouring of G.

■ For every vertex, there are at most $\Delta(G)$ forbidden colours.

Brooks' Theorem

MS-E1050

Ragnar Freij-Hollant

- o: mtroduct
- 1-2: Basics
- 3: Matchings
- A: Connectivi
- 5. Plan
- J. Flaii
- 6: Colourings
- 7: Perfection
- 8: Randomnes
- 9: Extremalit
- 10: Ram

- Any colouring gives an upper bound on $\chi(G)$.
- Greedy colouring shows $\chi(G) \leq \Delta(G) + 1$.

Theorem (Brooks, 1941)

If $\chi(G) = \Delta(G) + 1$ if and only if G is complete or an odd cycle.

■ Proof: Clever vertex ordering + greedy colouring.

→ □ ▶ → □ ▶ → □ ▶ → □ ● の Q ○

Greedy colouring

MS-E1050

Ragnar Freij-Hollant

- 0: Introductions
- 3: Matching
- A. Commontin
-
- 5: Plan
- 6: Colourings
- 7. Daufaatia
- O. Eutropelite
- . Extremant

- Order V(G) such that $d(v_n) = \delta(G)$, and recursively such that v_i has minimum degree in $G \setminus \{v_{i+1}, \dots, v_n\}$.
- Then the greedy colouring gives

$$\gamma(v_i) \leq \delta(G[v_1,\ldots,v_i]) + 1.$$

So

$$\chi(G) \leq \max_{H \subseteq G} \delta(H) + 1.$$

Upper bounds

MS-E1050

Ragnar Freij-Hollant

- U: Introduction
- 1-2: Basics
- 3: Matching
- 4: Connectiv

- 6: Colourings
- 7: Perfection
- 0. D.
- 9: Extremalit
- 10: Ram

- If $\chi(G) = k$, then for any k-colouring there must be at least one edge between every pair of colour classes.
- Thus

$$\binom{k}{2} \leq |E(G)| = m,$$

so

$$\chi(G) \leq \frac{1+\sqrt{8m+1}}{2}.$$

Greedy colouring

MS-E1050

Ragnar Freij-Hollanti

- 0: Introductions
- 1-2: Basics
- 3: Matching
- . . .
-
- o. r ianan
- 6: Colourings
- 7: Perfection
- 8. Randomn
- 9: Extremalit
- 10: Ran

The greedy algorithm can be arbitrarily bad, depending on the vertex ordering.

- However, there exists a vertex ordering on which the greedy algorithm uses only $\chi(G)$ colours.
- So if we can perform the greedy algorithm for all possible orderings of V, we can compute the chromatic number exactly.
- But there are n! possible ways to order V, so this is not an efficient algorithm.

Greedy algorithm

MS-E1050

Ragnar Freij-Hollant

1_2. Racies

1–2: Basics

5: iviatenings

4: Connectiv

5: Planar

6: Colourings

7: Perfect

8: Randomne

9: Extremalit

10: Ram

Theorem

■ There exists a vertex ordering of V(G) on which the greedy algorithm uses only $\chi(G)$ colours.

Proof.

- Let $\gamma: V \to \{1, 2, ..., k\}$ be some k-colouring of G.
- Let V_i be the independent set $V_i = \{v \in V(G) : \gamma(v) = i\} \subseteq V$.
- Order the vertices such that all nodes in V_1 come first, then all nodes in V_2 , and so on.
- Let $\delta: V \to \{1, 2, ..., k\}$ be a greedy graph colouring with respect to this ordering.
- By induction: $\delta(v) \le i$ for all $v \in V_i$, so δ uses $\le k$ colours.

MS-E1050

Ragnar Freii-Hollant

- 1-2: Basics
- 3: Matching
- ,
- 5. Planarit
- 6: Colourings
- 7: Perfection
- 9: Extremality
- l0: Ramsey

MS-E1050

Ragnar Freij-Hollant

v: introducti

1–2: Basics

3: Matching

ŭ

4. Connectiv

5: Plana

6: Colourings

7: Perfection

8. Randomn

9: Extremalit

10: Ram

■ *K*₄ is planar (Luxembourg, Germany, France, Belgium), so at least four colours are needed to colour all planar maps.

• K_5 is not planar, but maybe we could need five colours anyway?

MS-E1050

6: Colourings

Theorem (Apple, Haken, 1976)

- Any planar graph G satisfies $\chi(G) \leq 4$
- Proof by decomposition via extensive computer search.
- Enough to prove for 5-regular graphs.
- Computer aided colouring of > 1000 "reducible configurations" of > 100 vertices each.

MS-E1050

Ragnar Freij-Hollanti

- 0: Introductions
-
- 3: Matchings
- 4: Connectivit
- -
- 6: Colourings
- 7: Perfection
- o. Randonine
- 9: Extremalit
- 10: Ramsey

- Any planar graph G satisfies $\chi(G) \leq 4$
- Any graph that can be drawn without edge crossings on...
 - the torus satisfies $\chi(G) \leq 7$.
 - a Klein bottle satisfies $\chi(G) \leq 6$.
 - an orientable surface of genus g satsfies

$$\chi(G) \leq \left\lfloor \frac{7 + \sqrt{1 + 48g}}{2} \right\rfloor.$$

a non-orientable surface of genus k satisfies

$$\chi(G) \leq \left| \frac{7 + \sqrt{1 + 24k}}{2} \right|.$$

MS-E1050

Ragnar Freii-Hollant

- 0: Introductions
-
- 3: Matching
- A: Connectiv
-
- 5: Plan
- 6: Colourings
- 7: Perfection
- 9: Pandomno
- 9: Extremalit
- 10: Ram

- The following proof of the weaker five colour theorem "almost" proves the four colour theorem.
- Remarkably (?) it uses geometric properties of plane graphs, rather than Kuratowski's theorem.

Theorem (Heawood, 1890)

■ Any planar graph G satisfies $\chi(G) \leq 5$.

MS-E1050

Ragnar Freij-Hollant

u: Introduct

1–2: Basics

3: Matchings

4: Connectiv

E. Diamoni

. . . .

6: Colourings

....

8: Randomne

9: Extremality

10: Ram

Theorem (Heawood, 1890)

• Any planar graph G satisfies $\chi(G) \leq 5$.

Proof.

- Average degree < 6, so choose a vertex ν with degree \le 5.
- Enough to show that $G \setminus v$ can be 5-coloured such that only 4 colours are used on N(v).
- Assume not, and fix a plane drawing of G and a 5-colouring of $G \setminus v$.

MS-E1050

Ragnar Freij-Hollant

U: Introduction

1-2: Basics

3: Matchings

4. Connectivi

6: Colourings

7: Perfectio

Proof.

- WLOG, the neighbours of v are coloured 1, ..., 5 in colockwise order.
- Let $H_{i,j}$ be the induced subgraph on the colour classes i, j.

MS-E1050

Ragnar Freij-Hollant

0: Introductions

1–2: Basics

3: Matchings

4. Campastini

5: Plan

6: Colourings

J. Extrement

Proof.

■ Every $v_1 - v_3$ -path in $G \setminus v$ intersects with every $v_2 - v_4$ -path in $G \setminus v$.

- But $H_{13} \cap H_{24} = \emptyset$.
- So either v_1 and v_3 are in different components of H_{13} , or v_2 and v_4 are in different components of H_{24} .

MS-E1050

Ragnar Freij-Hollant

o. maroduce

1–2: Basics

4: Connectivi

5: Plan

6: Colourings

7. Perfection

. . .

9: Extremalit

10: Ram

Proof.

- Assume WLOG that v_1 and v_3 are in different components of H_{13} .
- We can swap the colours on the component of H_{13} containing v_1 .
- After this, colour 1 is no longer used on N(v).

Motivation

MS-E1050

- 7: Perfection
- 8: Randomness

- Some (many) graphs can not be k-coloured, although they have no k — cliques
- **Erdös** theorem (next week) says that χ is a "global" invariant.
- A graph can look like a tree within an arbitrarily large radius, but still have arbitrarily large chromatic number.
- We want to define a class of graphs where all obstacles to colouring are purely "local".

Perfect graphs

MS-E1050

Ragnar Freij-Hollant

- 0: Introductions
- 1–2: Basics
- J. Matchings
- 4: Connectivi
- 5: Planarit
- 6: Colourin
- 7: Perfection
- 9: Extremalit
- J. Extremain

• G is perfect if $\chi(H) = \omega(H)$ for any induced subgraph $H \subseteq G$.

Example

- Complete graphs have $\omega(K_n) = n = \chi(K_n)$.
- Bipartite graphs have

$$\omega(G) = \chi(G) = \begin{cases} 2 & \text{if } E(G) \neq \emptyset \\ 1 & \text{if } E(G) = \emptyset \end{cases}$$

Induced subgraphs of complete graphs are complete, and induced subgraphs of bipartite graphs are bipartite, so all such graphs are perfect.

Comparability graphs

MS-E1050

- 7: Perfection
- 8: Randomness

- A poset is a (finite) set with an order relation < (reflexive, antisymmetric, transitive).
- The comparability graph of a poset (P, \leq) is

$$(P, E)$$
 where $xy \in E$ whenever $x \leq y$.

(In other words, it is the undirected version of the transitive closure of the Hasse diagram of P.)

Theorem

Comparability graphs of finite posets are perfect.

Proof.

Blackboard.

Replicating

MS-E1050

Ragnar Freij-Hollant

0: Introductio

1-2: Basics

1-2: Basics

3: Matching

.

4. Connect

5: Planari

6: Colourin

7: Perfection

.

9: Extremalit

10: Ramsey

■ If $v \in V(G)$, then G' is obtained from G by replicating v if

$$V(G') = V(G) \cup \{v'\}$$

$$E(G') = E(G) \cup \{w' : w \in G\}$$

$$E(G') = E(G) \cup \{uv' : uv \in E(G)\} \cup \{vv'\}.$$

Replicating

MS-E1050

7: Perfection

Theorem

- Assume G is perfect and $v \in V(G)$.
- If G' is obtained from G by replicating v, then G' is also perfect.

Combining perfect graphs

MS-E1050

Ragnar Freij-Hollant

o. miliodaci

1-2: Basics

3: Matchine

3: Matching

4: Connect

5. Plan

.

0. 00.00....

7: Perfection

9: Extremalit

10: Ram

Theorem

- Assume G and H are perfect graphs.
- If $G \cap H$ is a clique, then $G \cup H$ is perfect.

Chordal graphs

MS-E1050

Ragnar Freii-Hollant

- 0: Introductions
- -------
- 3: Matchings
- 4: Connectivi
- 5: Planarity
- 6: Colourin
- 7: Perfection
- 0. Extremalit
- _____

- The class of *chordal graphs* is defined inductively as follows:
- Complete graphs are chordal.
- If G and H are chordal and $G \cap H$ is a clique, then $G \cup H$ is chordal.

Corollary

Chordal graphs are perfect.

Strong Perfect Graph Theorem

MS-E1050

Ragnar Freij-Hollant

- o: introduct
- 1–2: Basics
-
- 4: Connectiv
- 5: Planarity
- 6: Colouring
- 0. 00.00....
- 7: Perfection
- o. Randonnik
- 9: Extremalit
- 10: Ran

- Graphs whose only induced cycles are C_3 are chordal, so perfect.
- Graphs whose only induced cycles are even are bipartite, so perfect.
- Graphs that have some odd induced cycle C_{2k+1} , $k \ge 2$, are *not* perfect.
- What about graphs that have induced even cycles and triangles?

Strong Perfect Graph Theorem

MS-E1050

Ragnar Freij-Hollant

0: Introduc

1-2: Basics

3: Matching

4: Connectivi

...

5: Flan

6: Colourin

7: Perfection

Q. Pandomi

9: Extremali

10: Rar

Theorem (Chudnovsky, Robertson, Seymour, Thomas, 2006)

- G is perfect if and only if G has no induced subgraph C_n or \bar{C}_n fr $n \ge 5$ odd.
- ⇒: Trivial, because $\omega(C_n) < \chi(C_n)$ and $\omega(\bar{C}_n) < \chi(\bar{C}_n)$ for odd $n \ge 5$.
- Extremely difficult. Proof uses technically complicated recursive constructions of all Berge graphs.
 - Berge graphs are the pre-SPGT name for graphs that have no induced subgraph C_n or \bar{C}_n fr $n \ge 5$ odd.

Weak Perfect Graph Theorem

MS-E1050

Ragnar Freij-Hollant

0: Introduction

1-2: Basics

3: Matchings

A: Connectiv

5: Planarit

6: Colourin

7: Perfection

9: Extremalit

10∙ Rams

Theorem (Lovázs, 1972)

- G is perfect if and only if G
 is perfect.
- Clearly, SPGT implies WPGT.
- We prove WPGT as a corollary of the following characterization of perfect graphs.

Proposition

■ G is perfect if and only if

$$\omega(H)\alpha(H) \geq n$$

for all induced subgraphs $H \subseteq G$.

Weak Perfect Graph Theorem

MS-E1050

Ragnar Freij-Hollant

U: Introduct

1–2: Basics

ŭ

4: Connecti

5: Plan

6: Colourin

7: Perfection

8: Randomne

9: Extremalit

10: Rams

Proposition

■ *G* is perfect if and only if

$$\omega(H)\alpha(H) \geq n$$

for all induced subgraphs $H \subseteq G$.

Proof.

■ Blackboard.

Random graphs

MS-E1050

Ragnar Freij-Hollant

- U: Introduction
- 1-2: Basics
- 3: Matching
- ...
- J. 1 lanare,
- 0: Colourin
- 7: Perfection
- 8: Randomness
- 9: Extremalit
- l0: Ramsey

- Two reasons to study random graphs:
- To know what a "typical" graph looks like.
- Existence proofs (via The Probabilistic Method).

G(n,p): definition

MS-E1050

Ragnar Freij-Hollant

- U: Introduct
- 1-2: Basics
- 3: Matchings
- 4: Connectiv
- 5: Plana
-
- 0. 00.00....
- 7: Perfection
- 8: Randomness
- 9: Extremalit
- 10: Rams

- For fixed $n \in \mathbb{N}$, $p \in [0,1]$, we construct a probability space G(n,p) of simple graphs with n vertices.
- |V| = n fixed, $E \subseteq {V \choose 2}$ random.
- For $S \subseteq \binom{V}{2}$, $\mathbb{P}(E = S) = p^{|S|} (1 p)^{\binom{n}{2} |S|}$.
- Easy to check: The events $\{e \in E\}$ are independent for different edges e.

G(n,p): basic properties

MS-E1050

Ragnar Freij-Hollant

- 0: Introductions
- 3: Matching
- J. Widtellings
- 4: Connectiv
- 5: Planarity
- 6. 6-1----
- 8: Randomness
- 0. Extremalit
- In Barres

- Sample G G(n, p).
- By the union bound:

$$\mathbb{P}(\alpha(G) \geq k) \leq \binom{n}{k} (1-p)^{\binom{k}{2}}$$

and

$$\mathbb{P}(\omega(G) \geq k) \leq \binom{n}{k} p^{\binom{k}{2}}.$$

Basic probability theory

MS-E1050

Ragnar Freij-Hollant

- 0: Introductions
- 1_2. Racice
- 3: Matchings
- 5. Dianarity
- o. Colourni
- 7. Daufaatia
- 8: Randomness
- 0. Extremali
- 10: Rams

- Often it is easier to deal with expected values than with probabilities directly.
- Expected values of random variables can be manipulated by linearity.
- Example:

$$\mathbb{E}(\# K_k \subseteq G) = \sum_{K \in \binom{V}{k}} \mathbb{P}(K \text{ clique in } G) = \binom{n}{k} p^{\binom{k}{2}}$$

Counting cycles

MS-E1050

Ragnar Freij-Hollant

o: mtrouuc

1-2: Basics

3: Matchine

. . .

4: Connectiv

5: Plar

6: Colouring

7: Perfection

8: Randomness

9: Extremality

10: Rams

■ Let k > 3.

$$\mathbb{E}(\#k\text{-cycles in }G) = \frac{n!}{2k(n-k)!}p^k$$

- Indeed, there are $\frac{n!}{2k(n-k)!}$ k-cycles in K_n .
- **Each** of these is a cycle in G with probability p^k .

Large random graphs

MS-E1050

Ragnar Freij-Hollant

- u: Introduct
- 1–2: Basics
- 3: Matchings
- A. Camaati
- E. Diana
- b: Colourin
- 7: Perfection
- 8: Randomness
- 9: Extremality
- 10: Rams

- Often, it makes sense to consider random graphs G(n, p) where $n \to \infty$, and p = p(n) is allowed to depend on n.
- Average degree $\approx \frac{p}{n-1}$.
- If p is (approximately) constant, we call the graph sequence dense, if $p = O(\frac{1}{n})$, then we call it sparse.
- Another frequently useful regime is $p \approx \frac{\log n}{n}$.

Erdös Theorem

MS-E1050

Ragnar Freii-Hollant

0: Introduction

3: Matchings

A. Commontin

4: Connecti

6: Colourii

- - - .

8: Randomness

. Extremant

: Extrem

■ We are ready to prove Erdös's theorem.

Theorem

- For all integers $k, \ell \in \mathbb{N}$, there exists a graph G with girth $> \ell$ and chromatic number k.
- Moral: Chromatic number is a fundamentally global invariant.
- A graph can look like a tree within a radius $\frac{\ell}{2}$ from any vertex, and still have arbitrarily high chromatic number.

Erdös Theorem

MS-E1050

Ragnar Freij-Hollant

0: Introducti

1–2: Basics

3: Matchings

4: Connectiv

E. Dlanavit

. . .

u. Colourii

....

8: Randomness

9: Extremalit

10: Ran

Theorem

- For all integers $k, \ell \in \mathbb{N}$, there exists a graph G with girth $> \ell$ and chromatic number k.
- We will use random graphs to prove this, but the random graphs themselves do not have this property.
- Rather, random graphs with suitably chosen p have high chromatic number, and not too many cycles of length $< \ell$.
- So small modifications of random graphs yield the desired example.

Chromatic numbers of dense graphs

MS-E1050

Ragnar Freij-Hollant

U: Introduct

1–2: Basics

3: Matchings

4: Connectiv

5: Plar

6. Calaunia

0. 00.00...

7: Periecti

8: Randomness

9: Extremalit

10: Ram

Theorem

- Fix $p \in (0,1)$, and let $G \sim G(n,p)$.
- Let $\chi_{n,p} = \frac{\log(1-p)^{-1}}{2} \frac{n}{\log n}$.
- Fix $\epsilon > 0$. Then asymptotically almost surely,

$$\mathbb{P}(\chi(G) \in [(1-\epsilon)\chi_{n,p}, (1+\epsilon)\chi_{n,p}]) \to 1 \text{ as } n \to \infty.$$

We prove only the lower bound on the chromatic number: $\chi(G) > (1 - \epsilon)\chi_{n,p}$ asymptotically almost surely.

Almost sure properties of dense graphs.

MS-E1050

Ragnar Freij-Hollant

- U: Introducti
- 2 14-1-1-
- 3: Matching
- 4. Cannact:
- 5: Plana
-
- 8: Randomness
- 9: Extremalii

- For $i, j \in \mathbb{N}$, let $P_{i,j}$ be the following graph property:
- For every two sets $A, B \subseteq V$ with $A \cap B = \emptyset$, |A| = i, B = j, there exists $v \in V$ such that

$$A \subseteq N(v)$$
 and $B \cap N(v) = \emptyset$.

■ For example, $P_{1,1}$ is the property that no two vertices have the same neighbourhood.

Lemma

- Fix $p \in (0,1)$ and $i, j \in \mathbb{N}$.
- With probability \rightarrow 1 as $n \rightarrow \infty$, the graph $G \sim G(n, p)$ has property $P_{i,j}$.

Almost sure properties of dense graphs.

MS-E1050

Ragnar Freij-Hollant

o. milioduci

1–2: Basics

3: Matching

Ĭ

4: Connect

5: Planarit

6: Colouring

- - - -

8: Randomness

9. Extremalit

10: Ran

Corollary

- Fix $p \in (0,1)$ and $k \in \mathbb{N}$.
- With probability \rightarrow 1 as n \rightarrow ∞ , the graph G \sim G(n,p) is k-connected.

MS-E1050

Ragnar Freij-Hollant

- 0: Introductions
-
- 3: Matchings
- 4. Connectivi
- F. Discourse
- 6: Colourin
- 7: Perfection
- 8: Randomness
- 9: Extremalit
- 10. 5

- We can construct a probability measure on graphs with a countable vertex set, just like we did for G(n, p).
- This "countable random graph" has the property $P_{i,j}$ almost surely, for all i, j.
- But there is a unique countable graph (up to isomorphism) that has all these properties at once. This is the Rado graph.
- So this random graph is uniquely determined up to isomorphism, with probability one!

$G(\aleph_0, p)$.

MS-E1050

Ragnar Freij-Hollant

0: Introductions

o. introductions

3: Matching

4: Connectivi

F. Di.......

. . .

u. Colourii

7: Perfect

8: Randomness

9: Extremalit

10: Rams

Theorem

- Let G and H be graphs with countable vertex sets.
- Assume that both G and H have property $P_{i,j}$ for all i,j.
- Then $G \cong H$.

Proof.

- Let $V(G) = v_1, v_2, \ldots$ Construct $\phi : G \to H$ recursively.
- Let $\phi(v_1) \in V(H)$ be arbitrary.
- Recursively, let $V_k = \{v_1, \dots, v_{k-1}\}$, and $N(v_k) \cap V_k = U_k$
- By property $P_{i,i}$, there exists $w \in V(H)$ such that

$$\forall x \in \phi(U_k) : xw \in E \text{ and } \forall x \in \phi(V_k \setminus U_k) : xw \notin E.$$

■ Define $\phi(v_k) = w$. Then $\phi : G \to H$ is an isomorphism.

Rado graph

MS-E1050

Ragnar Freij-Hollant

- U: Introducti
- 1–2: Basics
- J. Matching
- 4: Connectiv
- 5: Planarit
- o: Colourin
- 7. Perfecti
- 8: Randomness
- 9. Extremalit
- J. Extremant

- Let $V = \mathbb{Z}_+$.
- For x < y, let $xy \in E$ if and only if the x:th last digit in the binary extension of y is 1.
- $N(1) = \{3, 5, 7, 9, \dots\}.$
- $N(2) = \{3, 6, 7, 10, 11, \dots\}.$
- $N(3) = \{4, 5, 6, 7, 12, 13, 14, 15, \dots\}.$
- Call G = (V, E) the Rado graph.
- It has property $P_{i,j}$ for all i,j.
- So up to isomorphism, $G(\aleph_0, p)$ is the Rado graph with probability one.

Guiding questions

MS-E1050

- 0: Introductions
- 1_2. Racics
- 3: Matching
- A: Connectiv
- .. comicci.
- 5: Plana
- 6. Colourin
- O. Dandami
- 9: Extremality
- 10: Ram

- How many edges can G have, if |V(G)| = n and $\omega(G) < k$?
- How many edges can G have, if |V(G)| = n and $\chi(G) < k$?
- How many edges can G have, if |V(G)| = n and G has no subgraph isomorphic to H?
- How many vertices can G have, if G has no subgraph isomorphic to H_1 and \bar{G} has no subgraph isomorphic to H_2 ?
- How many edges can G have, if |V(G)| = n and G has no minor isomorphic to H?

MS-E1050

- : Introductions
- 3: Matchings
- 4: Connectivi
- ...
-
- o. coloui....
- 8: Randomn
- 9: Extremality
- 10: Ramsey

- How many edges can G have, if |V(G)| = n and $\omega(G) < k$?
- How many edges can G have, if |V(G)| = n and $\chi(G) < k$?
- Remarkably (?) the answers to these two questions are the same.
- Let $T_r(n)$ be the complete r-partite graph with all parts the same size ± 1 , and $t_r(n) = |E(T_r(n))|$.

MS-E1050

Ragnar Freij-Hollant

0: Introductions

o. merodaceions

1-2: Dasics

3: Matching

. . . .

.. . circonon

8: Randomne

9: Extremality

10: Ram

Let $T_r(n)$ be the complete r-partite graph with all parts the same size ± 1 , and $t_r(n) = |E(T_r(n))|$.

• Clearly, $\chi(T_r(n)) = \omega(T_r(n)) = r$.

Theorem

■ Any graph with n vertices and $> t_r(n)$ edges contains a clique of size r + 1.

MS-E1050

Ragnar Freij-Hollant

u: introduct

1–2: Basics

.

4: Connectivit

5: Plar

6: Colourin

8: Randomne

9: Extremality

10: Ram

Theorem

■ Any graph with n vertices and $> t_r(n)$ edges contains a clique of size r + 1.

Proof.

- By induction on r.
- Consider an edge-maximal G without K_{r+1} .
- Consider $H = G \setminus Q$ where $Q \cong K_r$.

MS-E1050

Ragnar Freij-Hollanti

Telj-Holland

- l-2: Basics
- 1-2. Dasics
- 4: Connectiv
- 5: Planarit
- 6: Colourin
- 7: Perfection
- O. Dandania
- 9: Extremality
- J. Extremium

Theorem

■ Any graph with n vertices and $> t_r(n)$ edges contains a clique of size r + 1.

Proof.

$$|E(G)| = \#(Q-Q)$$
-edges $+\#(Q-H)$ -edges $+\#(H-H)$ -edges $\stackrel{I.H.}{\leq} \binom{r}{2} + (n-r)(r-1) + t_r(n-r)$
 $= t_r(n).$

Szemeredi's regularity lemma: paraphrazing

MS-E1050

- U: Introduct
- 1-2: Basics
- 3: Matching
-
- E. Dian
- b: Colourin
- 7. Doubout
- 8. Randomne
- 9: Extremality
- 10: Ramsey

- "All really large graphs on M nodes, can be approximated by random graphs constructed as follows:
- Subdivide the M vertices into $k \leq M$ parts $V_1, \ldots V_k$.
- For $v_i \in V_i$, $v_j \in V_j$, assign $v_i v_j \in E$ with probability p_{ij} ."

ϵ -regular pairs

MS-E1050

Ragnar Freij-Hollant

- 0: Introduct
- 1-2: Basics
- 3: Matchine
- 4. C.....
-
- J. 1 lanam
- 6: Colouring
- 7: Periection
- 8: Randomne
- 9: Extremality
- 10: Rams

■ For $A, B \subseteq V(G)$ with $A \cap B = \emptyset$, let

$$d(A,B) = \frac{\#A - B\text{-edges}}{|A||B|} \in [0,1].$$

■ A, B is an ϵ -regular pair if, for all

$$X \subseteq A, Y \subseteq B$$
 with $|X| > \epsilon |A|$ and $|Y| > \epsilon |B|$

it holds that

$$|d(X,Y)-d(A,B)|<\epsilon.$$

ϵ -regular partitions

MS-E1050

Ragnar Freij-Hollant

0: Introduction

1_2. Racice

3: Matching

J. Watering

4: Connection

5. Plan

J. Flaii

6: Colourin

8. Randomne

9: Extremality

10: Ramsey

- Fix $\epsilon > 0$. A partitioning $V(G) = V_0 \sqcup V_1 \sqcup \cdots \sqcup V_k$ is ϵ -regular if:
 - $|V_1| = |V_2| = \cdots = |V_k|.$
 - $|V_0| < \epsilon |V|.$
 - The number of *not* ϵ -regular pairs amonng V_1, \ldots, V_k is $< \epsilon k^2$.

Szemeredi's regularity lemma

MS-E1050

Ragnar Freij-Hollant

u: Introducti

1–2: Basics

J. Waterings

4: Connectiv

J. Flanani

: Colourin

7: Perfectio

8: Randomn

9: Extremality

10: Ram

Theorem

- For all $\epsilon > 0$ and all m, there exists M such that:
- Every graph G admits an ϵ -regular partition into k parts with m < k < M
- Proof strategy: start with an arbitrary partition into *m* parts.
- For each *not* ϵ -regular pair V, U in the partition, subdivide both U and V into two parts.
- Choose a common refinement of such subdivisions. We now have a partition into 2^{m-1} parts.

Szemeredi's regularity lemma

MS-E1050

- o: miroducti
- 1–2: Basics
- J. Materings
- 4: Connectiv
- 5: Plan
- 6. Colourin
- 7 5 6 11
- 8: Randomness
- 9: Extremality
- 10: Ramsey

- Choose a common refinement of such subdivisions. We now have a partition into 2^{m-1} parts.
- Show that the *potential* q of the partition has now increased by at least ϵ^5 , where

$$q(V_1, \ldots V_k) = \sum_{i,j} \frac{|V_i||V_j|}{|V|^2} d^2(V_i, V_j).$$

- The potential is increasing under refinement, and satisfies 0 < q < 1, so the "algorithm" terminates after at most ϵ^{-5} refinements.
- The number of parts is thus bounded from above by $M = M(m, \epsilon)$.

Regularity graphs

MS-E1050

- 0: Introductions
- I=2. Basin
- 3. Matching
- A. Commontivit
- 5: Dlanavit
- J. Flanani,
- 6: Colouring
- 7. Danfaatie
- o. Randonnic.
- 9: Extremality

Erdös-Stone's theorem

MS-E1050

Ragnar Freij-Hollant

0: Introducti

- 1-2. Basics
- 3: Matching
- 4. Connectiv
- 5. Plana
- 0: Colourin
- 7: Periection
- 8: Randomne
- 9: Extremality

Theorem (Erdös, Stone, 1946)

■ For every $2 \le r \le m$, $\gamma > 0$, there exists an integer N such that every graph with $n \ge N$ vertices and at least $t_{r-1}(n) + \gamma n^2$ edges contains $T_r(m)$ as a subgraph.

Lemma (Paraphrased)

■ If G contains R as a regularity graph with critical edge density d > 0 and $|G|/|R| \ge 2s/d^{\Delta}$, then every subgraph $H \subseteq R_s$ with maximal degree $< \Delta$ is also a subgraph of G.

Erdös-Stone's theorem

MS-E1050

Ragnar Freij-Hollant

- U: Introducti
- 1–2: Basics
- J. Matchings
- 4: Connectiv
- 5: Plan
- 6. Calaunia

- 8: Randomne
- 9: Extremality
- 10: Ram

Theorem (Erdös, Stone, 1946)

■ For every $2 \le r \le m$, $\gamma > 0$, there exists an integer N such that every graph with $n \ge N$ vertices and at least $t_{r-1}(n) + \gamma n^2$ edges contains $T_r(m)$ as a subgraph.

Sketch.

- Consider an ϵ -regular partition into $> 1/\gamma$ parts, and a regularity graph with critical edge density γ .
- This regularity graph has n' vertices and $> t_{r-1}(n')$ edges, so contains a K_r subgraph.
- This yields a $T_r(m)$ subgraph in R_s (where s = m/n'), so also in G.

Erdös-Stone's theorem

MS-E1050

Ragnar Freij-Hollant

o. milioduc

1-2: Basics

3: Matching

4: Connectiv

5: Planari

6: Colourin

8: Randomne

9: Extremality

10: Rams

Theorem

- For every $2 \le r \le m$, $\gamma > 0$, there exists an integer N such that every graph with $n \ge N$ vertices and at least $t_{r-1}(n) + \gamma n^2$ edges contains $T_r(m)$ as a subgraph.
- So morally, all graphs with large enough size and edge density

$$> \frac{t_{r-1}(n)}{n} + \gamma \approx \frac{r-2}{1} + \gamma$$

contains all r-colourable graphs as subgraphs.

MS-E1050

Ragnar Freij-Hollant

- 1 2 0 0
- 1–2: Basics
- 5: Materings
- 4: Connectiv
- 5: Plana
- 6. Colourir
- o. Colodin
- o. Randonnic
- 9: Extremality
- 10: Rams

- For $n \in \mathbb{N}$ and a graph H, let ex(n, H) be the largest number of edges in an n vertex graph with no H subgraph.
- In particular, $ex(n, K_r) = t_{r-1}(n)$

Corollary

For every graph H,

$$\lim_{n\to\infty}\frac{\mathrm{ex}(n,H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}.$$

MS-E1050

Ragnar Freij-Hollant

- o. mirroduci
- 1–2: Basics
- 3: Matching
- 4: Connect
- 5: Planarit
- b: Colourin
- 7: Perfection
- 8: Randomne
- 9: Extremality
- 10: Ram

Corollary

■ For every graph H,

$$\lim_{n\to\infty}\frac{\mathrm{ex}(n,H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}.$$

So

$$ex(n, H) = \begin{cases} \Theta(n^2) & \text{if } H \text{ not bipartite} \\ o(n^2) & \text{if } H \text{ bipartite} \end{cases}$$

MS-E1050

Ragnar Freij-Hollant

o. milioduc

1–2: Basics

3: Matching

4. 6.......

4. Connecti

J. Flallallt

6: Colourin

7. Ferrection

8: Randomn

9: Extremality

10: Rams

Corollary

■ For every graph H,

$$\lim_{n\to\infty}\frac{\mathrm{ex}(n,H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}.$$

Proof.

- Let $\chi(H) = r$.
- $H \nsubseteq T_{r-1}(n)$ for all n but $H \subseteq T_r(m)$ for large enough m.
- So

$$t_{r-1}(n) \leq \operatorname{ex}(n, H) \leq \operatorname{ex}(n, T_r(m)).$$

MS-E1050

Ragnar Freij-Hollant

U: Introduc

1-2: Basics

3: Matching

A: Connecti

5: Plar

6. Calaunia

o. Colourn

....

o: Randonnie

9: Extremality

or realis

Corollary

For every graph H,

$$\lim_{n\to\infty}\frac{\mathrm{ex}(n,H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}.$$

Continued.

Erdös-Stone:

$$t_{r-1}(n) \le ex(n, H) \le ex(n, T_r(m)) = t_{r-1}(n) + o(n^2).$$

i

$$\frac{r-2}{r-1} \leftarrow \frac{t_{r-1}(n)}{\binom{n}{n}} \leq \frac{\exp(n,H)}{\binom{n}{n}} \leq \frac{t_{r-1}(n) + o(n^2)}{\binom{n}{n}} \to \frac{r-2}{r-1}.$$

MS-E1050

Ragnar Freij-Hollant

0: Introductio

1–2: Basics

o. macanings

4: Connectivit

5: Planari

6: Colourin

7: Perfection

8: Randomne

9: Extremality

10: Ram

• What is the growth rate of ex(n, H) for bipartite graphs?

Theorem

$$c_1 n^{2-\frac{2}{r-1}} \le \exp(n, K_{r,r}) \le c_2 n^{2-\frac{1}{r}}$$

for some universal constants c_1, c_2 .

Conjecture (Erdös-Soós)

• For any tree T with k edges, $ex(n, T) = \frac{n(k-1)}{2}$.

Ramsey

MS-E1050

- 0: Introductions
 - -2: Basic
- 3: Matching
- A: Connectivity
- 5: Planarity
- o: Planarity
- b: Colouring
- _ _ . .
- 8: Randomnes
- 9: Extremality
- 10: Ramsey