

ELEC-A7200 Signals and Systems

Professori Riku Jäntti Department of Communications and Networking

ELEC-A7200 Signals and systems

What is covered in the course?

- basic concepts of signals and systems
- basic methods of signal and system analysis
- basics of signal transmission
- basics of signal measurement

Where is this information needed?

- when something is measured
- when a signal is transmitted
- when the signals are filtered
- when the signals are generated
- when any system is controlled

TIM-material

- **Chapter 01: Introduction Signal Power and Energy**
- Chapter 02: Special Signals and Convolution
- **Chapter 03: Signal Space**
- **Chapter 04: The Fourier Series**
- **Chapter 05: Fourier Transform I**
- **Chapter 06: Fourier Transformation II**
- **Chapter 07: Sampling and Discrete Fourier Transform**
- Chapter 08: LTI Systems in the time domain (and Laplace Transform)
- Chapter 09: LTI Systems in the frequency domain.
- Chapter 10: Linear Filtering of Signals.
- **Chapter 11: Modulation and Memoryless Nonlinear Systems**
- **Chapter 12: Random Signals**

https://tim.aalto.fi/view/elec-a7200/syksy19/luku-00/en

How to study?

- The course is demanding!
- Allow enough time (approx. 10 h / week) for reading, understanding and completing the assignments.
- As you read the material, try to understand everything!
- If you don't understand, just ask
 - friends
 - assistants
 - professor
 - in slack
 - during exercises
- Give feedback also during the course
- We will try to improve the material based on your feedback.

Excercise sessions

Grading

Grading rule

- Weekly exercises in TIM system (30%)
- Two homework: (20%)
- Two midterm exams or a final exam (50%) [Traditional paper exams]
- Laboratory works: pass/fail
- Each course section must be passed individually in order to pass the course.

Objectives for the lecture

You will learn the basic concepts of signals and systems

- What is a signal?
- What is a system?
- What is a spectrum?
- What does signal filtering mean?

More in TIM.

NOTE! After today's lecture you are not supposed to know how to calculate anything! Solving problems is practiced with TIM & homework.

Aalto School o Electrical Engineering

What is a signal?

A signal x(t) is a function of time

Classification of signals

Signal amplitude can be real or complex

- All natural (measurable) signals are real
- Complex signal is a practical model for modulated signals
 s(t)=x_I(t)cos(ωt)+x_Q(t)sin(ωt)

 $s(t)=\text{Re}\{(x_{I}(t)-jx_{Q}(t))\exp(j\omega t)\}$

x(t)=x_I(t)-jx_Q(t) Baseband signal [kantataajuinen signaali] Complex signal

Consider examples of signals in a group.

Examples of time domain signals

Blood pressure

NB-IoT base station downlink base band signal (complex signal)

Ice thickness (time series)

Aalto School of Electrical Engineering

What is a system

What's not?

- System / Process [Järjestelmä/Prosessi] is an object that defines the relationships between a set of signals.
- System signals are often divided into input and output quantities.
- The input signals are system independent.
- The output signals contain information provided by the system.
- Typically there is a causal relationship between the input and output signals.

Consider examples of systems in a group.

What is not a system?

Examples of systems

Engineering

Signals and systems

Signals and systems - overall picture

Signals and systems - overall picture

Basic concepts

Signal power and energy Power and energy spectrum of the signal Filtering the signal

Signal power and energy

Chapter 1 in TIM

Signal power and energy

Basic circuit analysis: $P=u \cdot i$, $u=r \cdot i$

Signal power and energy

Circuit with 1 Ohm resistive load (R=1 Ω)

Instantaneous (apparent) power $P(t) = u(t)i^{*}(t) = \frac{1}{R}|u(t)|^{2} = |u(t)|^{2}$

Energy consumed at the resistor during the time interval $[t_0,t_1]$

$$E = \int_{-t_0}^{t_1} P(t) dt = \int_{-t_0}^{t_1} |u(t)|^2 dt$$

Average power consumption of the resistor during the time interval $[t_0,t_1]$

 $P = \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} P(t) dt = \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} |u(t)|^2 dt$

Generalized energy and power

Arbitrary signal s(t) (not necessarily current or voltage)

Energy signal case

$$E = \lim_{T \to \infty} \int_{-T}^{T} |s(t)|^2 dt$$

A signal is called energy signal if $\Omega < E < \infty$

Power signal case

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \left| s(t) \right|^2 dt$$

A signal is called power signal if $0 < P < \infty$

Periodic signals are power signals

A periodic signal has the property

 $x(t) = x(t+T_0), \quad t \in \mathbb{R}$

 T_0 denotes the duration of a period and $1/T_0$ is the nominal frequency

To calculate average power it is sufficient to look at one period of time. The location of the period can be chosen arbitrarily $P = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |x(t)|^2 dt \quad \forall t_0 \in \mathbb{R}$ $= \frac{1}{T_0/2} \int_{T_0/2}^{T_0/2} |x(t)|^2 dt$

Pulses ja attenuating signals are energy signals

Pulse

E.g. the unit pulse

Attenuating signal

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$$

 \sim

Aalto-yliopisto Sähkötekniikan korkeakoulu

Think of examples in the group of the energy signals and the power signals

Are there signals that are not power nor energy signals?

Signals in frequency domain

What's a spectrum?

Chapters 4-6 in TIM

Chapter 4

Time and frequency domains

Kuva 3: Aika- ja taajuustasojen suhde (Lähde: Hewlett-Packard Company, Application Note 1286-1. 1997).

Periodic signals are composed of harmonic frequency components

Playing harmonic frequencies with a guitar

https://en.wikipedia.org/wiki/Harmonic

Periodic signals are composed of harmonic frequency components

Real periodic signal can be written as

Periodic signals are composed of harmonic frequency components

https://en.wikipedia.org/wiki/Fourier series

Aalto School of Electrical Engineering

One-sided power spectrum

If x (t) is real, then its Fourier series can be written as:

$$\mathbf{x}(t) = \mathbf{x}_0 + \sum_{k=1}^{\infty} 2|x_k| \cos\left(\frac{2\pi k}{T_0}t + \arg\{x_k\}\right)$$

One-sided power spectrum

Two-sided power spectrum

In general case, the Fourier-series can be written as

One and two sided power spectrum

Problem

1. The two-sided power spectrum of a periodic signal is

- **Determine its average power** a)
- b) Draw its single-sided power spectrum

Signals in time and frequency domain

Signal generator

Oscilloscope showing the signal in time domain

Spectrum analyzer showing the signal in frequency domain

Signals in time and frequency domain

A square wave generated by a signal generator

E.g.

- Digital clock signal
- Alternating voltage generated by the switching power supply
- Test signal

Signals in time and frequency domain

The result of the spectrum analyzer.

Line spectrum calculated from a Fourier series presentation

The values predicted by theory are very close to those measured values!

The theory can be used to confirm that the measuring equipment is correctly calibrated!

Fourier Transform

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt$$

Inverse Fourier Transform

Fourier Transform

Chapters 5-6

Spectrum

1

1.5

0.5

0

Hz

Systems in time domain

Impulse response and Convolution integral

Luku 8

Linear Time Invariant (LTI) Systems [Lineaariset aikainvariantit järjestelmät]

Differential equation describing the time dynamics of a linear time invariant system

Linear Time Invariant (LTI) Systems

Examples of first order systems

$$\frac{dy(t)}{dt} = -ay(t) + bx(t)$$

Impulse response of a LTI system

• Impulse h(t)

Impulse reponse

Modeling of acoustics in a concert hall

x(t)

http://www.openairlib.net/anechoicdb/conten
t/operatic-voice

Impulse response of a church hall

 $h(t) = \sum h_k \delta\left(t - \tau_k\right)$

http://www.openairlib.net/aurali
zationdb/content/st-patrickschurch-patrington-model

Singing in the church hall

 $y(t) = \int x(\tau)h(t-\tau)d\tau$

Convolution in chapter 2 + FFT in chapter 7

Engineering

Systems in frequency domain

Chapters 9-10

Frequency response of a LTI system

How much the system attenuates sinusoidal signal having angular frequency 1 rad/s? How about 100 rad/s?

Aalto School o Electrical Engineering

Filters

In signal processing, a filter is a device or process that removes some unwanted components or features from a signal.

The low-pass filter attenuates the high frequencies but lets the low pass through.

Ideal low-pass, band-pass, high-pass and band-stop filters

- Low-pass filter |H(f)|Afpassband
- High-pass filter |H(f)|A stopband
- Aalto School of Electrical Engineering

Band-pass filter

Band-stop filter

Department of Communications and Networking

Practical filters

Practical filters

Example: Commerical Butterworth filter chip

Low Clock-to-Cutoff-Frequency Ratio Error TLC04/MF4A-50...±0.8% TLC14/MF4A-100...±1%

- Filter Cutoff Frequency Dependent Only on External-Clock Frequency Stability
- Minimum Filter Response Deviation Due to External Component Variations Over Time and Temperature
- Cutoff Frequency Range From 0.1 Hz to 30 kHz, V_{CC±} = ±2.5 V
- 5-V to 12-V Operation
- Self Clocking or TTL-Compatible and CMOS-Compatible Clock Inputs
- Low Supply-Voltage Sensitivity
- Designed to be Interchangeable With National MF4-50 and MF4-100

http://fi.mouser.com/images/texasinstruments/lrg/TI_SOIC_8.jpg

Problem

Give an example of an application where you need

- a low-pass filter
- a bandpass filter
- a high-pass filter

Filters

Filters are needed

- To remove high frequency components before sampling (antialiasing filter)
- To reconstruct original continuous time signal from samples •
- To generate desired pulse shape
- To maximize signal-to-noise ratio by using matched filter
- To separate desired signal from unwanted signals e.g. at the • radio receiver
- To reduce out-of-band interference ٠
- To separate uplink and downlink signals using Duplex filter

. . .

https://en.wikipedia.org/wiki/Audio_power_amplifier#/media/File:Unitra_ws-503_arch1_%281%29.jpg

Memoryless nonlinear systems

Such as amplifiers

Chapter 11

Distortion and intermodulation

- Memoryless non-linear components cause
 - Distortion (give rise to harmonic components)
 - Intermodulation (cause mixed frequencies)

https://en.wikipedia.org/wiki/Distortion http://en.wikipedia.org/wiki/File:Distortion_effect.ogg

Distortion and intermodulation

Example: microphone preamplifier

Singe tone test

Two tone test

http://neon.skydan.in.ua/AF.php

Aalto School o Electrical Engineering

Luku 11

https://www.google.fi/search?q=FM+Radio&source=Inms&tbm=isch&sa=X &ved=0ahUKEwi9i9Kopc_NAhXGO5oKHbapC5cQ_AUICCgB&biw=1280& bih=953#imgrc=RmLLd5iFdjpjaM%3A

Modulation

Modulation

- The aim of a *modulation* is to transfer an analog baseband (or lowpass) signal at a different frequency.
- The reverse process is called *demodulation*.
- Modulation is done by varying one or more properties of a periodic waveform, called the carrier signal, with a modulating signal that typically contains information to be transmitted.

Linear modulation:

- v(t) control carrier amplitude **Nonlinear modulation:**
- v(t) control carrier phase or frequency

Example: Amplitude modulation (linear modulation)

ADC OUT IN

Sampling

Sampling theorem Discrete Fourier Transform

Sampling

- Let us take samples from a continuous signal with fixed time ۲ interval
 - T_s sampling interval $f_s=1/T_s$ sampling frequency { $x(kT), k \in 0, 1, 2, ...$ } x(t)

Nyquist theorem: Let x(t) be band limited signal with bandwidth B then the signal can be reconstructed from the samples without error if $f_s \ge 2B \triangleq f_N$ (Nyquist frequency).

Frequency components that exceeds the Nyquist frequency appear as a lower frequency component after sampling.

Because of this phenomenon called aliasing, all signals must be lowpass filtered before sampling (analog-to-digital conversion)

The sinusoidal signal has a frequency of 2 GHz. What should be the sampling rate be to prevent aliasing?

Discrete and Fast Fourier Transform

 In practice, the energy spectrum is measured by sampling the signal and applying a discrete Fourier transform (FFT) algorithm to the samples.

Fast Fourier Transform (FFT) is an efficient algorithm to calculate discrete Fourier Transform.

Random signals and noise

Noise

Chapter 12

Stochastic processes and noise in time domain

The value of a random signal cannot be accurately predicted. We can only give the probability for its amplitude to be on certain interval.

$$\Pr(x(t) \le x) = F_x(x;t)$$

Random signal is called stationary if its statistical properties do not change in time.

Thermal noise a.k.a. White noise

Thermal noise (Johnson-Nyquist noise) is

the electronics noise generated by the thermal agitation of the charge carriers (usually electons) inside electrical conductor.

Thermal noise power

 $P = 4k_B T \Delta f$

- k_B Bolzmann's constant
- T Temperature in Kelvins
- Δf Bandwidth in Hz

Thermal noise power at 300K for 1 Hz band ins -174 dBm

Thermal noise voltage follows Gaussian distribution with zero mean and *P* variance

Noise power density

All measured signals contain noise.

https://en.wikipedia.org/wiki/Colors of noise

Department of Communications and Networking 5.9.2022

Noise can be reduced by filtering

Department of Communications and Networking 5.9.2022

Aalto School of Electrical Engineering