The problems marked with an asterisk (*) are not discussed during the exercise. The solutions are given in MyCourses, and these problems belong to the course material.

1.

Take the Z-transform of the following sequences by using the definition

$$y(k) = 1, k = 0,1,2,3,...$$

$$y(k) = e^{-ak}$$
, $a = \text{constant}$ and $k = 0,1,2,...$

2.

a. Let $f(k) = a^k$, a constant. Show that $F(z) = \frac{z}{z-a}$.

b. In the Z-transform tables it is stated that $Z\left[e^{-kh/T}\right] = \frac{z}{z - e^{-h/T}}$. Is this the same as in part a. of the problem?

3.

Define the value of y(kh), while $k \to \infty$ (use the final-value theorem).

$$Y(z) = \frac{0.792z^2}{(z-1)(z^2-0.416z+0.208)}$$

Verify your result by using Matlab.

4.

Take the inverse-transform of the following expression

$$Y(z) = \frac{(1 - e^{-ah})z}{(z - 1)(z - e^{-ah})}, a \text{ constant.}$$

*5.

Prove that the following holds

$$Z\left\{\frac{1}{2}(kh)^{2}\right\} = \frac{h^{2}z(z+1)}{2(z-1)^{3}}$$

Hint: begin by transforming $Z\{kh\}$.

By using the Z-transform solve for y(k) from the following difference equation

$$y(k+2)-1.5y(k+1)+0.5y(k)=u(k+1)$$

where u(k) is the unit step at k = 0, y(0) = 0.5 and y(-1) = 1. Verify your solution.

Final-value theorem: If $\lim_{k\to\infty} y(kh)$ exists, then it holds

$$\lim_{k\to\infty} y(kh) = \lim_{z\to 1} (1-z^{-1})Y(z),$$

A sufficient (but not necessary) condition for the existence of $\lim_{k\to\infty}y(kh)$ is that $(1-z^{-1})Y(z)$ has no poles on or outside the unit circle.

Theorems of Z-transformation

Definition: $F(z) = Z\{f(kh)\} = \sum_{k=0}^{\infty} f(kh)z^{-k}$	
z-transformation	Sequence in time domain
F(z)	f(k)
$C_1F_2(z)+C_2F_2(z)$	$C_1f_2(k) + C_2f_2(k)$
$z^{-n}F(z)$	$q^{-n}f(k)$
$z^{n} \Big(F(z) - \sum_{j=0}^{n-1} f(jh) z^{-j} \Big)$	$q^n f(k)$
$F_1(z)F_2(z)$	$\sum_{n=0}^{k} f_1(n) f_2(k-n)$
If the limits of $f(kh)$ and $F(z)$ exist, they satisfy	
$\lim_{k \to \infty} \left\{ f(kh) \right\} = \lim_{z \to 1} \left\{ (1 - z^{-1}) \right\}$	$f(0) = \lim_{z \to \infty} F(z)$

Z-transformations and corresponding sequences

z-transformation	Sequence in time domain
1	$\delta(k)$
$\frac{z}{z-1}$	$1, k \ge 0.$
$\frac{hz}{(z-1)^2}$	kh
$\frac{hz}{(z-1)^2}$ $\frac{h^2z(z+1)}{(z-1)^3}$	$(kh)^2$
$\frac{z}{z - e^{-h/T}}$	$e^{ ext{-}kh/T}$
$\frac{z\sin(\omega h)}{z^2 - 2z\cos(\omega h) + 1}$	$\sin(\omega kh)$