USEFUL CONCEPTS AND FACTS FROM LINEAR ALGEBRA

Sergiy A. Vorobyov

Department of Signal Processing and Acoustics

Aalto University

Vectors

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_N \end{bmatrix}$$

Vector transpose and Hermitian transpose:

$$\mathbf{x}^T = [x_1, x_2, \dots, x_N]$$

$$\mathbf{x}^H = (\mathbf{x}^T)^* = [x_1^*, x_2^*, \dots, x_N^*]$$

Vector Euclidean norm:

$$||\mathbf{x}|| = \left\{ \sum_{i=1}^{N} |x_i|^2 \right\}^{1/2} = \sqrt{\mathbf{x}^H \mathbf{x}}$$

The scalar (inner) product of two complex vectors:

$$\mathbf{a}^H \mathbf{b} = \sum_{i=1}^N a_i^* b_i$$

Cauchy-Schwarz inequality

$$|\mathbf{a}^H \mathbf{b}| \le ||\mathbf{a}|| \cdot ||\mathbf{b}||$$

Orthogonal vectors:

$$\mathbf{a}^H \mathbf{b} = \mathbf{b}^H \mathbf{a} = 0$$

Example: consider the output of an LTI system (filter)

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k) = \mathbf{h}^T \mathbf{x}(n)$$

where

$$\mathbf{h} = \begin{bmatrix} h(0) \\ h(1) \\ \dots \\ h(N-1) \end{bmatrix}, \quad \mathbf{x}(n) = \begin{bmatrix} x(n) \\ x(n-1) \\ \dots \\ x(n-N+1) \end{bmatrix}$$

The set of vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is said to be *linearly independent* if

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_n \mathbf{x}_n = 0 \tag{*}$$

implies that $\alpha_i=0$ for all i. If any set of nonzero α_i can be found so that (*) holds, then the vectors are *linearly dependent*. For example, for nonzero α_1 ,

$$\mathbf{x}_1 = \beta_2 \mathbf{x}_2 + \dots + \beta_n \mathbf{x}_n$$

Example of linearly independent vector set:

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 , $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

Adding to this linearly independent vector set a new vector \mathbf{x}_3 , we obtain that the new set

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

becomes linearly dependent because

$$\mathbf{x}_1 = \mathbf{x}_2 + 2\mathbf{x}_3$$

Given N vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$, consider the set of all vectors that may be formed as a linear combination of the vectors \mathbf{x}_i ,

$$\mathbf{x} = \sum_{i=1}^{N} \alpha_i \mathbf{x}_i$$

This set forms a vector space and the vectors \mathbf{x}_i are said to span this space. If the vectors \mathbf{x}_i are linearly independent, they are said to form a basis for this space and the number of basis vectors N is referred to as the space dimension. The basis for a vector space is not unique!

<u>Matrices</u>

 $n \times m$ matrix:

$$\mathbf{A} = \{a_{ik}\} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nm} \end{bmatrix}$$

Symmetric square matrix:

$$\mathbf{A}^T = \mathbf{A}$$

Hermitian square matrix:

$$\mathbf{A}^H = \mathbf{A}$$

Some properties (apply to transpose $(\cdot)^T$ as well):

$$(\mathbf{A} + \mathbf{B})^H = \mathbf{A}^H + \mathbf{B}^H, \quad (\mathbf{A}^H)^H = \mathbf{A}, \quad (\mathbf{A}\mathbf{B})^H = \mathbf{B}^H \mathbf{A}^H$$

Column and row representations of an $n \times m$ matrix:

$$\mathbf{A} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_m] = egin{bmatrix} \mathbf{r}_1^H \ \mathbf{r}_2^H \ \vdots \ \mathbf{r}_n^H \end{bmatrix}$$

The rank of $\bf A$ is defined as a number of linearly independent columns in (*), or, equivalently, the number of linearly independent row vectors in (*). Important property:

$$rank{\mathbf{A}} = rank{\mathbf{A}}{\mathbf{A}}^{H} = rank{\mathbf{A}}^{H}{\mathbf{A}}$$

For any $n \times m$ matrix:

$$rank{\mathbf{A}} \le min{m, n}$$

The matrix $\bf A$ is said to be of full rank if

$$rank{\mathbf{A}} = min{m, n}$$

If the square matrix \mathbf{A} is of full rank, then there exists a unique matrix \mathbf{A}^{-1} , called the *inverse* of \mathbf{A} :

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

The matrix ${f I}$ is the so-called *identity matrix*:

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

The $n \times n$ matrix \mathbf{A} is called *singular* if its inverse does not exist (i.e., if $\operatorname{rank}\{\mathbf{A}\} < n$).

Some properties of inverse:

$$(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}, \quad (\mathbf{A}^H)^{-1} = (\mathbf{A}^{-1})^H$$

Determinant of a square $n \times n$ matrix (for any i):

$$\det \mathbf{A} = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det \mathbf{A}_{ik}$$

where \mathbf{A}_{ik} is the $(n-1) \times (n-1)$ matrix formed by deleting the ith row and the kth column of \mathbf{A} .

Example:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\det \mathbf{A} = a_{11} \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

Property: an $n \times n$ matrix ${\bf A}$ is *invertible* (nonsingular) if and only if its determinant is nonzero

$$\det \mathbf{A} \neq 0$$

Some additional important properties of determinant:

$$det{\mathbf{AB}} = det\mathbf{A} det\mathbf{B}$$
, $det{\{\alpha\mathbf{A}\}} = \alpha^n det\mathbf{A}$

$$\det \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} , \quad \det \mathbf{A}^T = \det \mathbf{A}$$

Another important function of matrix is trace:

$$\operatorname{trace}\{\mathbf{A}\} = \sum_{i=1}^{n} a_{ii}$$

Linear equations

Many practical DSP problems (such as signal modeling, Wiener filtering, etc.) require the solution to a set of linear equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n$$

In matrix notation

$$Ax = b$$

Case 1: square matrix \mathbf{A} (m=n). The nature of solution depends upon whether or not \mathbf{A} is singular. In the *nonsingular* case

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

If $\bf A$ is singular, there may be *no solution* or *many solutions*. Example:

$$x_1 + x_2 = 1$$

$$x_1 + x_2 = 2$$
 no solution

However, if we modify the equations:

$$x_1 + x_2 = 1$$

 $x_1 + x_2 = 1$ many solutions

Case 2: rectangular matrix \mathbf{A} (m < n). More equations than unknowns and, in general, no solution exist. The system is called overdetermined. In the case when \mathbf{A} is a full rank matrix, and, therefore, $\mathbf{A}^H \mathbf{A}$ is nonsingular, the common approach is to find least squares solution by minimizing the norm of the error vector

$$\begin{aligned} ||\mathbf{e}||^2 &= ||\mathbf{b} - \mathbf{A}\mathbf{x}||^2 \\ &= (\mathbf{b} - \mathbf{A}\mathbf{x})^H (\mathbf{b} - \mathbf{A}\mathbf{x}) \\ &= \mathbf{b}^H \mathbf{b} - \mathbf{x}^H \mathbf{A}^H \mathbf{b} - \mathbf{b}^H \mathbf{A}\mathbf{x} + \mathbf{x}^H \mathbf{A}^H \mathbf{A}\mathbf{x} \\ &= \left[\mathbf{x} - (\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H \mathbf{b} \right]^H (\mathbf{A}^H \mathbf{A}) \left[\mathbf{x} - (\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H \mathbf{b} \right] \\ &+ \left[\mathbf{b}^H \mathbf{b} - \mathbf{b}^H \mathbf{A} (\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H \mathbf{b} \right] \end{aligned}$$

The second term is *independent* of \mathbf{x} . Therefore, the LS solution is

$$\mathbf{x}_{\mathrm{LS}} = (\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H \mathbf{b}$$

The best (LS) approximation of \mathbf{b} is given by

$$\hat{\mathbf{b}} = \mathbf{A}\mathbf{x}_{\mathrm{LS}} = \mathbf{A}(\mathbf{A}^H\mathbf{A})^{-1}\mathbf{A}^H\mathbf{b} = \mathbf{P}_{\mathbf{A}}\mathbf{b}$$

where

$$\mathbf{P}_{\mathbf{A}} = \mathbf{A}(\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H$$

is the so-called *projection matrix* with the properties

$$P_A a = a$$

if the vector ${f a}$ belongs to the column-space of ${f A}$ and

$$\mathbf{P_A}\mathbf{a} = 0$$

if this vector is orthogonal to the columns of ${f A}$ The minimum LS error

$$||e||_{\min}^{2} = ||\mathbf{b} - \mathbf{A}\mathbf{x}_{LS}||^{2}$$

$$= ||(\mathbf{I} - \mathbf{A}(\mathbf{A}^{H}\mathbf{A})^{-1}\mathbf{A}^{H})\mathbf{b}||^{2}$$

$$= ||(\mathbf{I} - \mathbf{P}_{\mathbf{A}})\mathbf{b}||^{2} = ||\mathbf{P}_{\mathbf{A}}^{\perp}\mathbf{b}||^{2} = \mathbf{b}^{H}\mathbf{P}_{\mathbf{A}}^{\perp}\mathbf{b}$$

where $\mathbf{P}_{\mathbf{A}}^{\perp} = \mathbf{I} - \mathbf{P}_{\mathbf{A}}$ is the projection matrix on the subspace orthogonal to the column-space of \mathbf{A} .

Alternatively, the LS solution is found from the *normal equations*

$$\mathbf{A}^H \mathbf{A} \mathbf{x} = \mathbf{A}^H \mathbf{b}$$

Case 3: rectangular matrix \mathbf{A} (n < m). Fewer equations than unknowns and, provided the equations are consistent, there are many solutions. The system is called underdetermined.

Special matrix forms

Diagonal square matrix:

$$\mathbf{A} = \operatorname{diag}\{a_{11}, a_{22}, \dots, a_{nn}\} = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & a_{nn} \end{bmatrix}$$

Exchange matrix:

$$\mathbf{J} = \begin{bmatrix} 0 & \cdots & 0 & 0 & 1 \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Toeplitz matrix:

$$a_{ik} = a_{i+1,k+1}$$
 for all $i, k < n$

Example:

$$\left[\begin{array}{cccc}
1 & 3 & 2 & 4 \\
2 & 1 & 3 & 2 \\
7 & 2 & 1 & 3 \\
1 & 7 & 2 & 1
\end{array}\right]$$

2.4 Quadratic and Hermitian forms

Quadratic form of a real symmetric square matrix ${f A}$:

$$Q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

Similarly, Hermitian form of a Hermitian square matrix ${f A}$:

$$Q(\mathbf{x}) = \mathbf{x}^H \mathbf{A} \mathbf{x}$$

Symmetric (Hermitian) matrices are positive semidefinite if $Q(\mathbf{x}) \geq 0$ for all nonzero \mathbf{x} .

Example: the matrix $\mathbf{A} = \mathbf{y}\mathbf{y}^H$ is positive semidefinite, where \mathbf{y} is an arbitrary complex vector:

$$Q(\mathbf{x}) = \mathbf{x}^H \mathbf{y} \mathbf{y}^H \mathbf{x} = |\mathbf{x}^H \mathbf{y}|^2 \ge 0$$

Eigenvalues and eigenvectors

Consider the *characteristic equation* of an $n \times n$ matrix \mathbf{A} :

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

This is equivalent to the following set of homogeneous linear equations

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{u} = 0$$

Therefore, the matrix ${\bf A}-\lambda {\bf I}$ is singular. Hence,

$$p(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

where $p(\lambda)$ is the so-called *characteristic polynomial* with n roots λ_i $(i=1,2\ldots,n)$ being the *eigenvalues* of ${\bf A}$.

For each eigenvalue λ_i , the matrix $\mathbf{A} - \lambda_i \mathbf{I}$ is singular, and, therefore, there will be at least one nonzero *eigenvector* that solves the equation

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

Since for any eigenvector \mathbf{u}_i any vector $\alpha \mathbf{u}_i$ will be also an eigenvector, the eigenvectors are often *normalized*:

$$||\mathbf{u}_i|| = 1, \quad i = 1, 2, \dots, n$$

Property 1: The eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ corresponding to distinct eigenvalues are linearly independent.

Property 2: If $rank\{A\} = m$, then there will be n - m independent solutions to the homogeneous equation $\mathbf{A}\mathbf{u}_i = 0$. These solutions form the so-called *null-space* of \mathbf{A} .

Property 3: The eigenvalues of a Hermitian matrix are *real*.

Proof: From the characteristic equation $\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$, we have

$$\mathbf{u}_i^H \mathbf{A} \mathbf{u}_i = \lambda_i \mathbf{u}_i^H \mathbf{u}_i \tag{*}$$

Taking the Hermitian transpose of (*), we have

$$\mathbf{u}_i^H \mathbf{A}^H \mathbf{u}_i = \lambda_i^* \mathbf{u}_i^H \mathbf{u}_i \tag{**}$$

Since **A** is Hermitian $(\mathbf{A} = \mathbf{A}^H)$, (**) becomes

$$\mathbf{u}_i^H \mathbf{A} \mathbf{u}_i = \lambda_i^* \mathbf{u}_i^H \mathbf{u}_i \tag{***}$$

Finally, comparison of (*) and (***) shows that λ_i are real.

Property 4: A Hermitian matrix is positive definite if and only if the eigenvalues of \mathbf{A} are positive.

Similar property holds for *positive semidefinite*, *negative definite*, or *negative semidefinite* matrices.

A useful relationship between matrix determinant and eigenvalues:

$$\det\{\mathbf{A}\} = \prod_{i=1}^{n} \lambda_i$$

Therefore, any matrix is *invertible* (nonsingular) if and only if *all of its* eigenvalues are nonzero.

Property 5: The eigenvectors of a Hermitian matrix corresponding to distinct eigenvalues are *orthogonal*, i.e., if $\lambda_i \neq \lambda_k$, then $\mathbf{u}_i^H \mathbf{u}_k = 0$.

Proof: Let λ_i and λ_k be two *distinct* eigenvalues of **A**. Then

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$
 and $\mathbf{A}\mathbf{u}_k = \lambda_k \mathbf{u}_k$

Multiplying these equations by \mathbf{u}_k^H and \mathbf{u}_i^H , respectively, yields

$$\mathbf{u}_k^H \mathbf{A} \mathbf{u}_i = \lambda_i \mathbf{u}_k^H \mathbf{u}_i, \quad \mathbf{u}_i^H \mathbf{A} \mathbf{u}_k = \lambda_k \mathbf{u}_i^H \mathbf{u}_k \tag{*}$$

Taking the Hermitian transpose of the second equation of (*) and remarking that ${\bf A}$ is Hermitian (i.e., ${\bf A}^H={\bf A}$ and $\lambda_k^*=\lambda_k$), yields

$$\mathbf{u}_k^H \mathbf{A} \mathbf{u}_i = \lambda_k \mathbf{u}_k^H \mathbf{u}_i \tag{**}$$

Now, subtracting (**) from the first equation of (*) leads to

$$0 = (\lambda_i - \lambda_k) \mathbf{u}_k^H \mathbf{u}_i$$

Since the eigenvalues are distinct (i.e., $\lambda_i \neq \lambda_k$), we have that

$$\mathbf{u}_k^H \mathbf{u}_i = 0$$

which proofs the *orthogonality* of eigenvectors.

Remark: Although proven above for the distinct eigenvalue case, this property can be *extended* to any $n \times n$ Hermitian matrix with *arbitrary* (not necessarily distinct) eigenvalues.

Eigendecomposition

For an $n \times n$ matrix **A**, we may perform an eigendecomposition:

$$\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{-1} \tag{*}$$

To do this, let us write the set of equations

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i, \quad i = 1, 2, \dots, n$$

in the form

$$\mathbf{A}[\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n] = [\lambda_1 \mathbf{u}_1, \lambda_2 \mathbf{u}_2, \dots, \lambda_n \mathbf{u}_n], \text{ or, equivalentely}$$

$$\mathbf{AU} = \mathbf{U}\Lambda \quad \text{with} \quad \Lambda = \text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$$
 (**)

and nonsingular U. Multiplying (**) on the right by U^{-1} , we get (*).

For a Hermitian matrix, the following property holds because of the orthonormality of eigenvectors:

$$\mathbf{U}^H\mathbf{U} = \mathbf{I}$$

Hence, \mathbf{U} is unitary (i.e., $\mathbf{U}^H = \mathbf{U}^{-1}$), and, therefore, the eigendecomposition takes the form

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^H$$

or, equivalently,

$$\mathbf{A} = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^H$$

Using the unitary property of \mathbf{U} , it is easy to find matrix inverse via eigendecomposition:

$$\mathbf{A}^{-1} = (\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{H})^{-1}$$
$$= (\mathbf{U}^{H})^{-1}\boldsymbol{\Lambda}^{-1}\mathbf{U}^{-1}$$
$$= \mathbf{U}\boldsymbol{\Lambda}^{-1}\mathbf{U}^{H}$$

Equivalently

$$\mathbf{A}^{-1} = \sum_{i=1}^{n} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^H$$

Hence, the inverse does not affect eigenvectors but transforms eigenvalues λ_i to $1/\lambda_i$.

2022

In many applications, matrices may be very close to singular (ill-conditioned) and, therefore, their inverse may be unstable. We may wish to stabilize the problem by adding a constant to each term along diagonal (the so-called diagonal loading):

$$\mathbf{A} = \mathbf{B} + \alpha \mathbf{I}$$

This operation leaves eigenvectors unchanged but changes eigenvalues:

$$\mathbf{A}\mathbf{u}_i = \mathbf{B}\mathbf{u}_i + \alpha\mathbf{u}_i = (\lambda_i + \alpha)\mathbf{u}_i$$

where λ_i and \mathbf{u}_i are the eigenvalues and eigenvectors of \mathbf{B} :

$$\mathbf{B}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

We can reformulate the trace of $\bf A$ in terms of eigenvalues:

$$\operatorname{trace}\{\mathbf{A}\} = \sum_{i=1}^{n} \lambda_i \tag{*}$$

Similarly,

$$\operatorname{trace}\{\mathbf{A}^{-1}\} = \sum_{i=1}^{n} \frac{1}{\lambda_i}$$

This property can be easily proven using the eigendecomposition and the property $\operatorname{trace}\{\mathbf{A}+\mathbf{B}\}=\operatorname{trace}\{\mathbf{A}\}+\operatorname{trace}\{\mathbf{B}\}.$ In several applications (such as adaptive filtering), we need some simple and close upper bound for the maximal eigenvalue λ_{\max} . From (*), we obtain that

$$\lambda_{\max} \leq \operatorname{trace}\{\mathbf{A}\}$$

Singular value decomposition

For a nonsquare $n \times m$ matrix \mathbf{A} , we may perform the SVD instead of eigendecomposition:

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^H$$

or, equivalently

$$\mathbf{A} = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{v}_i^H \quad \text{if } n < m$$

and

$$\mathbf{A} = \sum_{i=1}^{m} \lambda_i \mathbf{u}_i \mathbf{v}_i^H \quad \text{if } n > m$$

where \mathbf{u}_i and \mathbf{v}_i are the $n \times 1$ and $m \times 1$ left and right singular vectors, respectively, and λ_i are singular values.