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Decision Analysis
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• Decision trees
• Elicitation of probabilities
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Motivation

❑ On Monday, you revisited key concepts of probability calculus

o Conditional probability

o Law of total probability

o Bayes’ rule

❑ We next address following questions 

1. How to build a probability-based model to support decisions under uncertainty?

2. How to elicit subjective probabilities that are needed for these models?
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Why probabilities for modeling
uncertainty?
❑ Most decisions involve uncertainties

❑ “How many employees should be hired, when future demand is uncertain?”

❑ “Should I buy an old or a new car, assuming that I need a functional one and want to 
minimize total costs (incl. purchase price, maintenance & repair, fuel, insurance, 
selling price)?”

❑ “Should I buy my first my apartment now or postpone this decision, given the 
uncertainties about interest rates, mortgage costs, income level and housing market?”

❑ In decision analysis, uncertainties are modelled through probabilities

– Theoretically rigorous ➔ Sound rules for inference

– Understandable, explainable, compatible with statistical analyses

– Yet there are other models as well (e.g., evidence theory, fuzzy sets) well

8.9.2022
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Conditional probabilities

❑ Probabilities of sequential, 

mutually exclusive and 

collectively exhaustive

events can be represented

as a tree

❑ The probability of a 

sequence of events is 

obtained my multiplying the 

probabilities on the path
❑ 0.95 x 0.95 x 0.02 = 1.805 %

❑ The total probability of being 

late is 7.985 %
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Metro driver of 

a train is sick

Metro driver

not sick

The metro train

is on time

The metro train

is cancelled

The metro train

is on time

The metro train

is cancelled

Passenger is late 

Late

Late

Late

Not late

Not late

Not late

Not late

0.05

0.95

0.05

0.95

0.95

0.05

0.02

0.98

0.02

0.98

0.65

0.35

0.65

0.35

0.005%

0.245%

3.088%

1.663%

1.805%

88.445%

3.088%

1.663%The probability of being late on the condition 

that the train is cancelled



Call 

help?

What if…
❑ The operator is concerned 

with the unwanted financial 

consequences caused by the 

train being late (Cost 1)
❑ Numerical outcomes for states 

(consequences)

❑ The probability p(the metro 

train is on time | metro 

driver is sick) can be 

made higher by calling extra 

personnel (help) at a cost 

(Cost 2)?
❑ Now the event probabilities 

depend on our decision
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Metro driver of 

a train is sick

The metro train

is on time

The metro train

is cancelled

Passengers are

late from …

Late

Not late

Not late

0.05

0.05

0.95

0.02

0.98

0.65

0.35

0.1%;

Cost 1

4.9%

61.75%;

Cost 1

33.25%

no

The metro train

is on time

The metro train

is cancelled

Passengers are

late from …

Late

Not late

Not late

0.80

0.20

0.02

0.98

0.65

0.35

yes

1.6%;

Cost 1+2

78.4%

Cost 2

13.0%;

Cost 1+2

7%;

Cost 2



Decision trees

❑ Decisions under uncertainty can be modeled as 

decision trees

❑ A decision tree consists of
– Decision nodes (squares) represent alternative actions the DM can

choose.

– Chance nodes (circles; cf. states of nature) represent alternative 
realizations of uncertainties associated with the chance event.  
The probabilities following a chance node sum up to 1.

– Consequence nodes (triangles; resulting consequences) at the end of the
tree represent decision consequences (e.g., profit, cost, revenue, utility) 
associated with the path leading to the node. 

❑ Decisions and chance events are displayed

logically in the temporal sequence from left to 

right
– Only chance nodes whose outcomes are known can precede a decision 

node

❑ Each path through decisions and chance events 

represents a possible decision outcome 8.9.2022
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Take an umbrella

Do not take an 

umbrella

It will rain, p=0.4

It will not rain, p=0.6

It will rain, p=0.4

It will not rain, p=0.6
10

0

4
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Solving a decision tree

❑ A decision tree is solved by starting

from the leaves (consequence nodes) 

and reverting towards the root:

– At each chance node: compute the expected 
value of consequences at the node

– At each decision node: select the arc with the
highest expected value

❑ The optimal strategy is defined by the 

selected options (arcs) at decision

nodes 

❑ A strategy maps available information 

to choices among alternative actions
8.9.2022
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Take an umbrella

Do not take an 

umbrella

It will rain, p=0.4

It will not rain, p=0.6

It will rain, p=0.4

It will not rain, p=0.6 10

0

4
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▪ Your uncle is going to buy a tractor. He has two alternatives:

1. A new tractor (17 000 €)

2. A used tractor (14 000 €)

▪ The engine of the old tractor may be defect, which is hard to ascertain. Your uncle 

estimates a 15 % probability for the defect.

▪ If the engine is defect, he has to buy a new tractor and gets 2000 € for the old 

one.

▪ Before buying the tractor, your uncle can take the old tractor to a garage for an 

evaluation, which costs 1 500 €.

▪ If the engine is OK, the garage can confirm it without exception.

▪ If the engine is defect, there is a 20 % chance that the garage does not 

notice it.

▪ Your uncle maximizes expected monetary value

Example: Decision tree (1/12)
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▪ Before making the decision to buy – and before any uncertainties 

can be resolved – your uncle will have to decide whether or not 

to take the old tractor to a garage for an evaluation.

▪ The decision node ‘evaluation’ is thus leftmost in the tree

Evaluation

No evaluation

Example: Decision tree (2/12)
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▪ If the old tractor is evaluated, your uncle receives the evaluation results

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

Example: Decision tree (3/12)
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▪ The next step is to decide which tractor to buy

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

Example: Decision tree (4/12)
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▪ However, the engine of the old tractor can be defect

▪ Now all chance nodes and decisions are in chronological order such 

that at each decision node, the path to the left indicates what is known 

to inform this decision

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

No defect

Defect

No defect

Defect

No defect

Defect

Example: Decision tree (5/12)
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▪ We next need the probabilities for all outcomes of the chance nodes

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

No defect

Defect

No defect

Defect

No defect

Defect

P(result ”OK”)

P(result ”Defect”)

P(”Defect” | result ”OK”)

P(”No defect” | result ”OK”)

P(”Defect” | result ”Defect”)

P(”No defect” | result ”Defect”)

P(”Defect”)

P(”No defect”)

Example: Decision tree (6/12)



Remember: Law of total probability
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❑ If E1,…,En are mutually exclusive so that Ei  Ej,= , i  j and 

exhaustive so that A = 𝑖ڂ 𝐸𝑖, then

P(A)=P(A|E1)P(E1) + … + P(A|En)P(En)

❑ This law is frequently employed through 

– Probabilities P(A|B), P(A|Bc), and P(B) are known

– These can be used to compute P(A)=P(A|B)P(B)+P(A|Bc)P(Bc)



Remember: Bayes’ rule

❑ Bayes’ rule: 𝑃 𝐴 𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
=

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)

❑ Follows from

1. The definition of conditional probability: 𝑃 𝐴 𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
, 𝑃 𝐵 𝐴 =

𝑃(𝐵∩𝐴)

𝑃(𝐴)
,

2. Commutative laws: 𝑃 𝐵 ∩ 𝐴 = 𝑃 𝐴 ∩ 𝐵 .

8.9.2022
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Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

No defect

Defect

No defect

Defect

No defect

Defect

P(result ”OK”)

P(result ”Defect”)

P(”Defect” | result ”OK”)

P(”No defect” | result ”OK”)

P(”Defect” | result ”Defect”)

P(”No defect” | result ”Defect”)

P(”Defect”)

P(”No defect”)

Example: Decision tree (6/12)
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▪ “Your uncle estimates a 15 % probability for the defect.” ➔ P(Defect)=0.15

▪ “If the engine is OK, the garage can confirm it without exception.” 

➔ P(result “OK” | No defect)=1

▪ “If the engine is defect, there is a 20 % chance that the garage does not 

notice it.” ➔ P(result “OK” | Defect)=0.20

𝑃(result "OK") = 𝑃(result "OK"|No defect) ⋅ 𝑃(No defect) + 𝑃(result "OK"|Defect) ⋅ 𝑃(Defect)
= 1.0 ⋅ 0.85 + 0.20 ⋅ 0.15 = 0.88

𝑃(result "defect") = 1 − 𝑃(result "OK") = 0.12

𝑃(Defect|result "OK") =
𝑃(result "OK"|Defect) ⋅ 𝑃(Defect)

𝑃(result "OK")
=
0.20 ⋅ 0.15

0.88
≈ 0.034

𝑃(No defect|result "OK") = 1 − 0.034 = 0.966

𝑃(Defect|result "defect") =
𝑃(result "defect"|Defect) ⋅ 𝑃(Defect)

𝑃(result "defect")
=
0.80 ⋅ 0.15

0.12
= 1.00

𝑃(No Defect|result "defect") = 1 − 1 = 0

Example: Decision tree (7/12)
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▪ Compute monetary values for each end node

▪ Evaluation + new = 1500 + 17000 = 18500

▪ Evaluation + old with defect = 1500 + 14000 – 2000 + 17000 = 30500

▪ Evaluation + old without defect = 1500 + 14000 = 15500 

▪ No evaluation + new = 17000

▪ No evaluation + old with defect = 14000 – 2000 + 17000 = 29000

▪ No evaluation + old without defect = 14000

Evaluation

No evaluation

Result: “OK”

Result: “Defect”

New

Old

New

Old

New

Old

No defect

Defect

No defect

Defect

No defect

Defect

Example: Decision tree (8/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect

Defect

No defect

Defect

1

0

-30 500

-15 500

-29 000

-14 000

New

Old

-18 500

No defect

Defect0.034

0.966

-30 500

-15 500

New

Old

-18 500

▪ We now have a fully specified decision tree representation of the problem

Example: Decision tree (9/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect

Defect

No defect

Defect

1

0

-30 500

-15 500

-29 000

-14 000

New

Old

-18 500

No defect

Defect0.034

0.966

-30 500

-15 500

EMV(New | result “ok”)= -18500

Old

-18 500

▪ Starting from the right, compute the expected monetary values for 

each decision

▪ Place the value of the better (=best) decision to the decision node

EMV(Old | result “ok”)= 0.034 x -30500 +

0.966 x -15500= -16010

-16010

Example: Decision tree (10/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect

Defect

No defect

Defect

1

0

-30 500

-15 500

-29 000

-14 000

New

Old

-18 500

No defect

Defect
-30 500

-15 500

-18500

Old

-18 500

▪ Starting from the right, compute expected monetary values for each 

decision

▪ Place the value of the better decision to the decision node

-16010

New

-16010

-18500
-18500

-30500

-16250

-17000-16250

0.88 x -16010 + 0.12 x -18500 = 

-16309

-16309

-16250

Example: Decision tree (11/12)
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Evaluation

Result: “OK”

Result: “Defect”

No evaluation

0.88

0.12

0.15

0.85

New

Old

-17 000

No defect

Defect

No defect

Defect

1

0

-30 500

-15 500

-29 000

-14 000

New

Old

-18 500

No defect

Defect
-30 500

-15 500

-18500

Old

-18 500

▪ The optimal solution is to buy the old tractor without evaluating it

-16010

New

-16010

-18500
-18500

-30500

-16250

-17000-16250

-16309

-16250

Example: Decision tree (12/12)



… How much should we pay for the 
sample information by the garage?
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❑ The expected monetary value was higher without evaluating the old tractor

❑ Determine the evaluation cost c so that you are indifferent between

1. Not taking the old tractor for an evaluation (EMV = -16250€)

2. Taking the old tractor for an evaluation

❑ Indifference, when EMVs equal: -16250 = -14809 – c => c = 1441€

❑ Expected value of sample information = Expected value with sample 
information – Expected value without sample information 
= -14809€ - (-16250€) = 1441€

Evaluation

Result: “OK”

Result: “Defect”

0.88

0.12
No defect

Defect

New

Old

-17 000 - c

No defect

Defect
-29 000 - c

-14 000 - c

-17000 - c

Old

-17 000 - c

-14510 - c

New

-14510 - c

-17000 - c
-17000 - c

-29000 - c

-14809 - c

-29 000 - c

-14 000 - c



Expected value of perfect information

You are participating in a gambling game, where Mia has tossed 

a coin. Mia knows the result of the toss.

You can choose between heads or tails. If you choose correctly, 

Bernard will pay you 50€. Otherwise you pay Bernard 50€. You 

are maximizing EMV.

Mia suggests that you could offer her money and she’d tell you 

the correct choice. How much would you at most pay her?

8.9.2022
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Expected value of perfect information

You can choose between heads or tails. If you choose correctly, 

Bernard will pay you 50€. Otherwise you pay Bernard 50€. You 

are maximizing EMV.

EMV without perfect information = 0.5 x 50€ + 0.5 x (-50€) = 0€

Mia suggests that you could offer her money and she’d tell you 

the correct choice. How much should you at most pay her?

EMV with perfect information = 1 x 50 € + 0 x (-50€) = 50€

You should pay at most 50€ - 0€ = 50 €

8.9.2022
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Example: expected value of perfect
information
❑ You consider three investment alternatives: 

high-risk stock, low-risk stock, and savings

account

❑ Savings account: certain payoff of 500€

❑ Stocks: 

– 200€ brokerage fee

– Payoffs depend on market conditions

8.9.2022
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Up Same Down

High-risk 1700 300 -800

Low-risk 1200 400 100

Probability 0.5 0.3 0.2

Decision tree

Source: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to 

Decision Analysis, 2nd edition, Duxbury Press, Belmont.



Example: investing in the stock market

❑ The expected monetary values

(EMVs) for the alternatives are

– HRS: 0.5∙1500+0.3∙100-0.2∙1000=580

– LRS: 0.5∙1000+0.3∙200-0.2∙100=540

– Savings Account: 500

→   It is optimal* to invest in high-risk

stock

8.9.2022
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Decision tree

Source: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to 

Decision Analysis, 2nd edition, Duxbury Press, Belmont.

EMV=580€

EMV=540€

EMV=500€

* Assuming you are risk-neutral !!! – risk attitudes will be 

discussed later on in this course



Expected value of perfect information

8.9.2022
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Decision tree

EMV=580€

EMV=540€

EMV=500€

Reversed decision tree: you know the state of the

world when making the decision(s)

Expected value 

without perfect 

information 

=580€

Expected value 

with perfect 

information =

0.5∙1500+0.3∙500

+0.2∙500=1000€

Expected value of perfect information

= 1000€ - 580€ = 420€



Expected value of perfect information

❑ How much would the expected value increase, if: 
– Additional information about the uncertainties were to be received before the decision

– The decision would be made according to this information?
– Note: this analysis can be carried out before any information is obtained

❑ Perfect information: complete information about how the

uncertainties will play out – “we decide knowing what the state of the

world is” 
❑ Expected value of perfect information = 

Expected value with perfect information – Expected value without perfect information

❑ Expected value of perfect information is computed by solving

a restructured decision tree in which all chance nodes precede

all decision nodes
8.9.2022
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Probability assessment

❑ Go to the course’s MyCourses site

– https://mycourses.aalto.fi/mod/feedback/view.php?id=925354

❑ Use a few minutes to answer

❑ Do not communicate with others

❑ Do not look up the answers on the internet

8.9.2022
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https://mycourses.aalto.fi/mod/feedback/view.php?id=925354


Question 2 should read (the text is too 
long for the MyCourses module)

Consider two bags X and Y. Bag X contains 30 white balls and 10 
black balls, whereas bag Y contains 30 black balls and 10 white 
balls. Suppose that you select one of these bags at random, and 
randomly draw five balls one-by-one by replacing them in the 
bag after each draw. Suppose you get four white balls and one 
black. What is the probability that you selected bag X with 
mainly white balls?

8.9.2022
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Estimation of probabilities

❑ How to elicit probabilities for decision trees?

1. If possible, use objective data

2. If  objective data is not available, obtain subjective probability
estimates from experts through
o Betting approach

o Reference lottery

o Direct judgement

Subjective probabilities reflect the respondent’s beliefs

8.9.2022
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Betting approach

❑ Goal: to estimate the probability of event A 
– E.g., A= “GDP growth is above 2% in 2023” or

A= “There will be a NATO military base in Finland   
within the next five years”

❑ Betting approach: 
– Bet for A: win X € if A happens, lose Y € if not 

– Expected monetary value 𝑋 ∙ 𝑃 𝐴 − 𝑌 ∙ 1 − 𝑃 𝐴

– Bet against A: lose X € if A happens, win Y € if not
– Expected monetary value −𝑋 ∙ 𝑃 𝐴 + 𝑌 ∙ 1 − 𝑃 𝐴

– Adjust X and Y until the respondent is indifferent between
betting for or against A

– Assuming risk-neutrality(*, the expected monetary values of 
betting for or against A must be equal: 

𝑋 ∙ 𝑃 𝐴 − 𝑌 ∙ 1 − 𝑃 𝐴 = −𝑋 ∙ 𝑃 𝐴 + 𝑌 ∙ 1 − 𝑃 𝐴 ⇒ 𝑃 𝐴 =
𝑌

𝑋 + 𝑌

8.9.2022
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Bet for A

Bet 

against A

A

Not A

A

X

-Y

-X

YNot A

*)A strong assumption



Reference lottery

❑ Lottery:
– Win X if A happens

– Win Y if A does not happen

– X is preferred to Y

❑ Reference lottery:
– Win X with (known) probability p

– Win Y with (known) probability (1-p)

– Probability p can be visualized with, e.g., a wheel of fortune

❑ Adjust p until the respondent is indifferent between the two lotteries:
𝑋 ∙ 𝑃 𝐴 + 𝑌 ∙ 1 − 𝑃 𝐴 = 𝑋 ∙ 𝑝 + 𝑌 ∙ 1 − 𝑝 ⇒ 𝑃 𝐴 = 𝑝

❑ Here, the respondent’s risk attitude does not affect the results (shown later)

8.9.2022
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Lottery

Ref. 

lottery

A

Not A

p

X

Y

X

Y1-p



Reference lottery: example

❑ Event A: “Finland beats Sweden in the track-and-field competitions”

36
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Lottery

Ref. 

lottery

A

Not A

10 €

0 €

⚀⚁⚂⚃⚄

⚅

10 €

0 €

Lottery

Ref. 

lottery

A

Not A

⚀⚁⚂

⚃⚄⚅

10 €

0 €

10 €

0 €

Lottery

Ref. 

lottery

A

Not A

⚀⚁⚂⚃

⚄⚅

10 €

0 €

10 €

0 €

Lottery

Ref. 

lottery

A

Not A

⚁⚂⚃⚄⚅

⚀

10 €

0 €

10 €

0 €

The respondent 
chooses the 
reference lottery:

𝟏𝟎 ∙ 𝑷 𝑨 < 𝟏𝟎 ∙
𝟓

𝟔

The respondent 
chooses the lottery:

𝟏𝟎 ∙ 𝑷 𝑨 > 𝟏𝟎 ∙
𝟏

𝟔

Chooses 
the lottery:

𝑷 𝑨 >
𝟏

𝟐

Chooses the 
reference 
lottery:

𝑷 𝑨 <
𝟐

𝟑

These four answers put the probability estimate of A in the 

range (0.5, 0.67). Further questions should reveal the 

respondent’s estimate for P(A)



Estimation of continuous probability 
distributions
❑ A continuous distribution can be approximated by estimating several event

probabilities (X is preferred to Y)

❑ Example:
– Goal: Assess the probability distribution for the GDP growth (ΔGDP) in Finland in 2023

– Means: Elicit the probability p for five different reference lotteries

8.9.2022
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X
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X

Y

X
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Estimation of continuous probability 
distributions
❑ Often experts are asked to assess the descriptive statistics of the 

distribution directly, e.g., 
– The feasible range (min, max)

– Median f50 (i.e., P(X<f50)=0.5)

– Other quantiles (e.g., 5%, 25%, 75%, 95%)

❑ In the previous example:
– ”The 5% and 95% quantiles are f5 =-3% and  f95 = 4%”

– ”The change in GDP is just as likely to be positive as it is to be negative”

– ”There is a 25% chance that the change in GDP is below -1%”

– ”There is a 25% chance that the change in GDP is above 1.5%”
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Summary

❑ Decision trees provide support for decisions under uncertainty
– Which decision alternative has the best expected consequences?

– How much should one be willing to pay for perfect information or (imperfect) 
sample information about how the uncertainties are resolved?

❑ Subjective probability assessments are required
– Probability elicitation techniques require some effort
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Next time

• Are ‘experts’ capable of giving good (probability) estimates?

• What kind of elicitation biases should we be aware of?

• How to model the DM’s preferences over risky alternatives?

• What if the DM does not maximize expected monetary value, 
but has an attitude towards risk?

• Would you

1. choose 5000 € for sure OR

2. participate in 50-50 lottery between 0 € and 12000 €?

• What were the magic numbers in the umbrella example?

8.9.2022
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