Aalto University School of Science

MS-E2135 Decision Analysis Lecture 1

- Decision trees
- Elicitation of probabilities

Motivation

. On Monday, you revisited key concepts of probability calculus

- Conditional probability
- Law of total probability
- Bayes' rule
\square We next address following questions

1. How to build a probability-based model to support decisions under uncertainty?
2. How to elicit subjective probabilities that are needed for these models?

Why probabilities for modeling uncertainty?

- Most decisions involve uncertainties
- "How many employees should be hired, when future demand is uncertain?"
- "Should I buy an old or a new car, assuming that I need a functional one and want to minimize total costs (incl. purchase price, maintenance \& repair, fuel, insurance, selling price)?"
- "Should I buy my first my apartment now or postpone this decision, given the uncertainties about interest rates, mortgage costs, income level and housing market?"
\square In decision analysis, uncertainties are modelled through probabilities
- Theoretically rigorous \rightarrow Sound rules for inference
- Understandable, explainable, compatible with statistical analyses
- Yet there are other models as well (e.g., evidence theory, fuzzy sets) well

Conditional probabilities

\square Probabilities of sequential, mutually exclusive and collectively exhaustive events can be represented as a tree

- The probability of a sequence of events is obtained my multiplying the probabilities on the path
$\square 0.95 \times 0.95 \times 0.02=1.805 \%$
- The total probability of being late is 7.985%
\square The operator is concerned with the unwanted financial consequences caused by the train being late (Cost 1)
- Numerical outcomes for states (consequences)
- The probability \mathbf{p} (the metro train is on time | metro driver is sick) can be made higher by calling extra ${ }^{\text {a }}$ personnel (help) at a cost (Cost 2)?
- Now the event probabilities depend on our decision

Decision trees

Decisions under uncertainty can be modeled as decision trees

- A decision tree consists of
- Decision nodes (squares) represent alternative actions the DM can choose.
- Chance nodes (circles; cf. states of nature) represent alternative realizations of uncertainties associated with the chance event. The probabilities following a chance node sum up to 1 .
- Consequence nodes (triangles; resulting consequences) at the end of the tree represent decision consequences (e.g., profit, cost, revenue, utility) associated with the path leading to the node.
D Decisions and chance events are displayed logically in the temporal sequence from left to right
- Only chance nodes whose outcomes are known can precede a decision node
- Each path through decisions and chance events represents a possible decision outcome

Solving a decision tree

- A decision tree is solved by starting from the leaves (consequence nodes) and reverting towards the root:
- At each chance node: compute the expected value of consequences at the node
- At each decision node: select the arc with the highest expected value
- The optimal strategy is defined by the selected options (arcs) at decision nodes
- A strategy maps available information to choices among alternative actions

Example: Decision tree (1/12)

- Your uncle is going to buy a tractor. He has two alternatives:

1. A new tractor ($17000 €$)
2. A used tractor ($14000 €$)

- The engine of the old tractor may be defect, which is hard to ascertain. Your uncle estimates a 15% probability for the defect.
- If the engine is defect, he has to buy a new tractor and gets $2000 €$ for the old one.
- Before buying the tractor, your uncle can take the old tractor to a garage for an evaluation, which costs $1500 €$.
- If the engine is OK, the garage can confirm it without exception.
- If the engine is defect, there is a 20% chance that the garage does not notice it.
- Your uncle maximizes expected monetary value

Example: Decision tree (2/12)

- Before making the decision to buy - and before any uncertainties can be resolved - your uncle will have to decide whether or not to take the old tractor to a garage for an evaluation.
- The decision node 'evaluation' is thus leftmost in the tree

Example: Decision tree (3/12)

- If the old tractor is evaluated, your uncle receives the evaluation results

Example: Decision tree (4/12)

- The next step is to decide which tractor to buy

w

Old

Example: Decision tree (5/12)

- However, the engine of the old tractor can be defect

- Now all chance nodes and decisions are in chronological order such that at each decision node, the path to the left indicates what is known to inform this decision

Example: Decision tree (6/12)

- We next need the probabilities for all outcomes of the chance nodes

Remember: Law of total probability

\square If $E_{1}, \ldots, E_{\mathrm{n}}$ are mutually exclusive so that $E_{\mathrm{i}} \cap E_{\mathrm{j}},=\varnothing, i \neq j$ and exhaustive so that $\mathrm{A}=\mathrm{U}_{i} E_{i}$, then

$$
\mathrm{P}(A)=\mathrm{P}\left(A \mid E_{1}\right) \mathrm{P}\left(E_{1}\right)+\ldots+\mathrm{P}\left(A \mid E_{\mathrm{n}}\right) \mathrm{P}\left(E_{\mathrm{n}}\right)
$$

This law is frequently employed through

- Probabilities $\mathrm{P}(A \mid B), \mathrm{P}\left(A \mid B^{c}\right)$, and $\mathrm{P}(B)$ are known
- These can be used to compute $\mathrm{P}(A)=\mathrm{P}(A \mid B) \mathrm{P}(B)+\mathrm{P}\left(A \mid B^{c}\right) \mathrm{P}\left(B^{c}\right)$

Remember: Bayes’ rule

Bayes' rule: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)}$

- Follows from

1. The definition of conditional probability: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}, P(B \mid A)=\frac{P(B \cap A)}{P(A)}$,
2. Commutative laws: $P(B \cap A)=P(A \cap B)$.

Example: Decision tree (6/12)

Example: Decision tree (7/12)

- "Your uncle estimates a 15% probability for the defect." $\rightarrow P($ Defect $)=0.15$
- "If the engine is OK, the garage can confirm it without exception." $\rightarrow \mathrm{P}($ result "OK" | No defect) $=1$
- "If the engine is defect, there is a 20% chance that the garage does not notice it." $\rightarrow P$ (result "OK" | Defect) $=0.20$

$$
\begin{aligned}
& P(\text { result "OK") }=P(\text { result "OK" } \mid \text { No defect }) \cdot P(\text { No defect })+P(\text { result "OK" } \mid \text { Defect }) \cdot P(\text { Defect }) \\
& =1.0 \cdot 0.85+0.20 \cdot 0.15=0.88
\end{aligned} \begin{array}{r}
P(\text { result "defect") }=1-P(\text { result "OK" })=0.12 \\
P(\text { Defect } \mid \text { result " } \mathrm{OK} ")=\frac{P(\text { result "OK" } \mid \text { Defect }) \cdot P(\text { Defect })}{P(\text { result "OK" })}=\frac{0.20 \cdot 0.15}{0.88} \approx 0.034 \\
P(\text { No defect } \mid \text { result "OK" })=1-0.034=0.966 \\
P(\text { Defect } \mid \text { result "defect" })=\frac{P(\text { result "defect" } \mid \text { Defect }) \cdot P(\text { Defect })}{P(\text { result "defect" })}=\frac{0.80 \cdot 0.15}{0.12}=1.00 \\
P(\text { No Defect } \mid \text { result "defect" })=1-1=0
\end{array}
$$

Example: Decision tree (8/12)

- Compute monetary values for each end node
- Evaluation + new = $1500+17000=18500$
- Evaluation + old with defect $=1500+14000-2000+17000=30500$
- Evaluation + old without defect $=1500+14000=15500$
- No evaluation + new = 17000
- No evaluation + old with defect =14000-2000 + 17000 = 29000
- No evaluation + old without defect = 14000

Example: Decision tree (9/12)

- We now have a fully specified decision tree representation of the problem

Example: Decision tree (10/12)

- Starting from the right, compute the expected monetary values for each decision
- Place the value of the better (=best) decision to the decision node

Example: Decision tree (11/12)

- Starting from the right, compute expected monetary values for each decision
- Place the value of the better decision to the decision node

Example: Decision tree (12/12)

- The optimal solution is to buy the old tractor without evaluating it

How much should we pay for the sample information by the garage?

The expected monetary value was higher without evaluating the old tractor
\square Determine the evaluation cost c so that you are indifferent between

1. Not taking the old tractor for an evaluation (EMV $=-16250 €$)
2. Taking the old tractor for an evaluation

\square Indifference, when EMVs equal: $-16250=-14809-c=>c=1441 €$

- Expected value of sample information = Expected value with sample information - Expected value without sample information

$$
=-14809 €-(-16250 €)=1441 €
$$

Expected value of perfect information

You are participating in a gambling game, where Mia has tossed a coin. Mia knows the result of the toss.

You can choose between heads or tails. If you choose correctly, Bernard will pay you $\mathbf{5 0 €}$. Otherwise you pay Bernard $50 €$. You are maximizing EMV.

Mia suggests that you could offer her money and she'd tell you the correct choice. How much would you at most pay her?

Expected value of perfect information

You can choose between heads or tails. If you choose correctly, Bernard will pay you $50 €$. Otherwise you pay Bernard $50 €$. You are maximizing EMV.
EMV without perfect information $=0.5 \times 50 €+0.5 \times(-50 €)=0 €$

Mia suggests that you could offer her money and she'd tell you the correct choice. How much should you at most pay her?
EMV with perfect information $=1 \times 50 €+0 \times(-50 €)=50 €$

You should pay at most $50 €-0 €=50 €$

Example: expected value of perfect information

- You consider three investment alternatives: high-risk stock, low-risk stock, and savings account
- Savings account: certain payoff of $500 €$
- Stocks:
- $200 €$ brokerage fee
- Payoffs depend on market conditions

	Up	Same	Down
High-risk	1700	300	-800
Low-risk	1200	400	100
Probability	0.5	0.3	0.2

Decision tree

Source: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to Decision Analysis, 2nd edition, Duxbury Press, Belmont.

Example: investing in the stock market

- The expected monetary values (EMVs) for the alternatives are
- HRS: $0.5 \cdot 1500+0.3 \cdot 100-0.2 \cdot 1000=580$
- LRS: $0.5 \cdot 1000+0.3 \cdot 200-0.2 \cdot 100=540$
- Savings Account: 500
\rightarrow It is optimal* to invest in high-risk stock

Decision tree

Source: Clemen, R.T. (1996): Making Hard Decisions: An Introduction to Decision Analysis, 2nd edition, Duxbury Press, Belmont.

Expected value of perfect information

Decision tree

Reversed decision tree: you know the state of the world when making the decision(s)

Expected value of perfect information

Expected value of perfect information

How much would the expected value increase, if:

- Additional information about the uncertainties were to be received before the decision
- The decision would be made according to this information?
- Note: this analysis can be carried out before any information is obtained
- Perfect information: complete information about how the uncertainties will play out - "we decide knowing what the state of the world is"
- Expected value of perfect information $=$

Expected value with perfect information - Expected value without perfect information
\square Expected value of perfect information is computed by solving a restructured decision tree in which all chance nodes precede all decision nodes

Probability assessment

\square Go to the course's MyCourses site

- https://mycourses.aalto.fi/mod/feedback/view.php?id=925354
- Use a few minutes to answer
\square Do not communicate with others
Do not look up the answers on the internet

Question 2 should read (the text is too long for the MyCourses module)

Consider two bags X and Y. Bag X contains 30 white balls and 10 black balls, whereas bag Y contains $\mathbf{3 0}$ black balls and 10 white balls. Suppose that you select one of these bags at random, and randomly draw five balls one-by-one by replacing them in the bag after each draw. Suppose you get four white balls and one black. What is the probability that you selected bag X with mainly white balls?

Estimation of probabilities

How to elicit probabilities for decision trees?

1. If possible, use objective data
2. If objective data is not available, obtain subjective probability estimates from experts through

- Betting approach
- Reference lottery
- Direct judgement

Subjective probabilities reflect the respondent's beliefs

Betting approach

\square Goal: to estimate the probability of event A

- E.g., $\mathrm{A}=$ "GDP growth is above 2% in 2023 " or
$\mathrm{A}=$ "There will be a NATO military base in Finland within the next five years"

\square Betting approach:

- Bet for A: win X € if A happens, lose $\mathrm{Y} €$ if not
- Expected monetary value $X \cdot P(A)-Y \cdot[1-P(A)]$
- Bet against A: lose $\mathrm{X} €$ if A happens, win $\mathrm{Y} €$ if not
- Expected monetary value $-X \cdot P(A)+Y \cdot[1-P(A)]$
- Adjust X and Y until the respondent is indifferent between betting for or against A
- Assuming risk-neutrality ${ }^{*}$, the expected monetary values of betting for or against A must be equal:
$X \cdot P(A)-Y \cdot[1-P(A)]=-X \cdot P(A)+Y \cdot[1-P(A)] \Rightarrow P(A)=\frac{Y}{X+Y}$

Reference lottery

- Lottery:
- Win X if A happens
- Win Y if A does not happen
- $\quad \mathrm{X}$ is preferred to Y
\square Reference lottery:

- Win X with (known) probability p
- Win Y with (known) probability (1-p)
- Probability p can be visualized with, e.g., a wheel of fortune
- Adjust p until the respondent is indifferent between the two lotteries:

$$
X \cdot P(A)+Y \cdot[1-P(A)]=X \cdot p+Y \cdot[1-p] \Rightarrow P(A)=p
$$

- Here, the respondent's risk attitude does not affect the results (shown later)

Reference lottery: example

- Event A: "Finland beats Sweden in the track-and-field competitions"

The respondent chooses the reference lottery:

$$
10 \cdot P(A)<10 \cdot \frac{5}{6}
$$

Chooses
the lottery:
$P(A)>\frac{1}{2}$

The respondent chooses the lottery: $10 \cdot P(A)>10 \cdot \frac{1}{6}$

These four answers put the probability estimate of A in the range ($0.5,0.67$). Further questions should reveal the respondent's estimate for $P(A)$

Estimation of continuous probability distributions

\square A continuous distribution can be approximated by estimating several event probabilities (X is preferred to Y)
\square Example:

- Goal: Assess the probability distribution for the GDP growth (Δ GDP) in Finland in 2023
- Means: Elicit the probability p for five different reference lotteries

Estimation of continuous probability distributions

\square Often experts are asked to assess the descriptive statistics of the distribution directly, e.g.,

- The feasible range (min, max)
- Median f_{50} (i.e., $\left.\mathrm{P}\left(\mathrm{X}<f_{50}\right)=0.5\right)$
- Other quantiles (e.g., $5 \%, 25 \%, 75 \%, 95 \%$)
\square In the previous example:
- "The 5% and 95% quantiles are $f_{5}=-3 \%$ and $f_{95}=4 \%$ "
- "The change in GDP is just as likely to be positive as it is to be negative"
- "There is a 25% chance that the change in GDP is below -1% "
- "There is a 25% chance that the change in GDP is above 1.5% "

Summary

Decision trees provide support for decisions under uncertainty

- Which decision alternative has the best expected consequences?
- How much should one be willing to pay for perfect information or (imperfect) sample information about how the uncertainties are resolved?
\square Subjective probability assessments are required
- Probability elicitation techniques require some effort

Next time

- Are 'experts’ capable of giving good (probability) estimates?
- What kind of elicitation biases should we be aware of?
- How to model the DM's preferences over risky alternatives?
- What if the DM does not maximize expected monetary value, but has an attitude towards risk?
- Would you

1. choose $\mathbf{5 0 0 0} €$ for sure OR
2. participate in 50-50 lottery between $\mathbf{O} €$ and $\mathbf{1 2 0 0 0} €$?

- What were the magic numbers in the umbrella example?

