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Today

* Markov decision processes
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Learning goals

* Understand MDPs and related concepts
* Understand value functions

* Be able to implement value iteration for determining
optimal policy
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Markov decision process

MDP
Environment observable
Z=S

Defined by dynamics
P<St+l|st’at)

observation z reward r action a

And reward function
rt:r(st ’at)

Solution, for example

Represented as policy
a=mn(s
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Markov property

* “Future is independent of past given the present”

* State sequence S is Markov iff < “ifand only i’
P(S.1S,)=P(S.iS;...,S,)

* State captures all history
* Once state is known, history may be thrown away
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Marko\[ process No “decision” here!

* Markov process is a memoryless random process that
generates a state sequence S with the Markov property

* Defined as (S,T) 0.1
— S: set of states T

— T:5SXxS - [0,1] state transition functlon
. T,(s,s')=P(s,,,=s'|s,=s)
04 0.3
* P can be represented as a transition
[ > ,

probability matrix

* State sequences called episodes 0,1 7 ! 1.0

A” gi!f;’o‘f'éifv Ej:fft"ﬁcal How to calculate probability of a particular episode?
ngineerin . . .y
Starting from A, what is the probability of A,B,C?



Markov reward process

* Markov reward process =
Markov process with rewards
* Definedby (S, T,r, y)

— S, T :as above
— 'S - 9% reward function
— y [0,1]: discount factor

 Accumulated rewards in finite
(H steps) or infinite horizon

H o0

t t
Doy 2y,
t=0 t=0

Still no “decision”!

e Return G: accumulated rewards from time t

H
A” Aalto University G 2 : k
School of Electrical p—
Engineering t y rt+k+]_

k=0

Why discount?
Return of (A,B,C), y=0.9?



State value function for
Markov reward processes

* State value function V(s) is
expected cumulative reward
starting from state s

V(s)=E[G/s,=s]

* Value function can be defined
by the Bellman equation

V(s)=E[G,s,=s]
V(s)=E[r+yV(s..)|s.=s]

A!! Sehool of Electrical What is the value function for y=07?

Engineering What is the value function for y=0.5?



Markov decision process (MDP)

* Markov decision process

defined by (S,A, T, R, y)

— S, y:as above

— A: set of actions (inputs)

- T:SxAxS - [0,1]
T.s,a,s')=P(s,,,=s'ls,=s,a,=a)

— R: SxA - % reward function
r.(s,a)=r(s,=s,a,=a)

* Goal: Find policy n(s) that maximizes
expected cumulative reward

Grid world

+1

-1

Agent tries to move forward:
P(success) = 0.8

P(left) = 0.1
P(right) = 0.1
0.1
0.8
> 08
01 4 01
0.1
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Policy

* Deterministic policy n(S): S - A'ls
mapping from states to actions

* Stochastic policy n(als): S,A - [0,1]
IS a distribution over actions given
states

* Optimal policy m*(s) is a policy that is
better or equal than any other policy
(in terms of cumulative rewards)

— There always exists a deterministic
optimal policy for an MDP

Grid world

+1

-1

Agent tries to move forward:
P(success) = 0.8

P(left) = 0.1
P(right) = 0.1
0.1
0.8
> 08
01 4 01
0.1
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MDP value function

+1

* State-value function of an MDP is -1
the expected return starting from
state s and following policy w

V.(s)=E.[G/]s=s]

. _Can be_ decomposed into . X
Immediate and future f ?
components using Bellman
expectation equation ! e

V. (s)=E [r+yV,(s.)ls=s]
Va(s)=r(s,m(s))+y 2, T(s,m(s),s")V.(s")

Aalto Un : :
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Action-value function

* Action-value function Q is expected

return starting from state s, taking
action a, and then following policy ©

'

Q.(s,a)=E,[Gs;=s,a,=d]

* Using Bellman expectation equation
Qﬂ(s’a):Eﬂ[rt-l-y QR(St+1’at+1|St:S’at:a)]
Q.(s,a)=r(s,a)+Yy ZS,T(S,G,S')QTE(S',TE(S'»
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Optimal value function

* Optimal state-value function is maximum value function
over all policies

V*(s)=max_V (s)

* Optimal action-value function is maximum action-value
function over all policies

Q*(s,a)=max_Q_(s,a)

* All optimal policies achieve optimal state- and action-value
functions

School of Electrical
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Optimal policy vs optimal value function
* Optimal policy for optimal action-value function
n*(s)=argmax_Q* (s,a)

* Optimal action for optimal state-value function
n*(s)=argmax E_[r(s,a)+yV~*(s')]
n*(s)=arg maxa(r(s,a)+y ZS, T(s,a,s')V™(s ))
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Value iteration

Do you notice that this is an expectation?

* Starting from V(s)=0 Vs z/
iterate T T ~<_
Vi+1(s)=maxa(r(s,a)+y’\ S T(s,a,s')Vi*(s')i)

-
— . -
e

until convergence

* Value iteration converges to V*(s)

Compare to

G*(s)=min,|l(s,a)+G" (f(s,a))|

from last week!
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Iterative policy evaluation
* Problem: Evaluate value of policy n
* Solution: Iterate Bellman expectation back-ups

¢ V3V >.. .2V,
* Using synchronous back-ups: From slide 11

— For all states s
— Update V,,,(s) from V.(s’) /
— Repeat

wi(s)=r(s,m(s))+y 2 T(s,m(s),s")Vils')

)
Vils)=3, wlals)[r(s,a)+y X, T(s,a,5")V,(s")
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V Greedy policy
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Policy improvement and policy iteration

* Given a policy &, it can be improved by
— Evaluating V _
— Forming a new policy by acting greedily with respecttoV _

* This always improves the policy

* Iterating multiple times called policy iteration
— Converges to optimal policy
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Computational limits — Value iteration

* Complexity O(|A||S|?) per iteration
* Effective up to medium size problems (millions of states)

* Complexity when applied to action-value function
O(|Al?[S[?) per iteration
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Summary

* Markov decision processes represent environments with
uncertain dynamics

* Deterministic optimal policies can be found using state-
value or action-value functions

* Dynamic programming is used in value iteration and
policy iteration algorithms
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Next week: From MDPs to RL

* Readings
— Sutton & Barto Ch. 5-5.4, 5.6, 6-6.5
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