$31 E 11100$ - Microeconomics: Pricing

Pauli Murto
Aalto University

Part 2: Monopoly pricing strategies
Lectures on 14.9., 19.9., and 21.9.2022

Objectives for the second part of the course

- So far we have discussed linear pricing for a homogenous product in a competitive market
- Typically sellers have some market power
- More instruments are then available for the seller:
- Different price for different individuals, or different market segments
- Different versions with different prices
- Different unit price for different quantities
- Different prices for individuals with different purchase histories
- Bundling of different products together
- We will analyze such strategies for a monopoly seller

Plan for the next three lectures

- Lecture 4: Personalized pricing and group pricing (September 14)
- Lecture 5: Menu pricing (September 19)
- Lecture 6: Bundling, price signalling (September 21)

Taxonomy of price discrimination

- Traditionally, price discrimination practices are classified as follows
- First degree price discrimination, or personalized pricing: each buyer gets an individual offer
- Second degree price discrimination, or menu pricing: consumers choose freely from a menu of offers
- Third degree price discrimination, or group pricing: seller can identify different market segments and price them separately
- How are new technologies changing relevance of different forms of price discrimination?
- In this lecture we will consider first and third degree price discrimination (since they are conceptually very similar)
- Second-degree price discrimination is conceptually different, since it relies on self-selection by consumers (next lecture)

Framework: Pricing in Monopoly

- The setup is a single firm setting its price in a given market
- Interpretations: true monopoly
\star Natural monopoly
\star Legal monopoly (patent, copyright, etc.)
* A unique product
- One large firm with a competitive fringe of small firms
\star Small firms' reactions can be interpreted as part of the demand curve
\star No game theory needed to analyze this
- We start by analyzing linear prices, then consider non-linear prices and price discrimination

Optimal Linear Price

- Large number of buyers represented by demand curve

$$
q=d(p)
$$

where $d^{\prime}(p)<0$.

- A single seller produces the good with cost function $c(q)$ for producing q units of the good.
- Monopolist chooses the price, and quantity is given by the demand curve.
- Prices are linear so that revenue is $p q$.
- The monopolist chooses p to maximize revenue net of cost.

Optimal Linear Price

- Monopolist's problem is

$$
\begin{gathered}
\max _{p, q \geq 0} p q-c(q) \\
\text { subject to } q=d(p) .
\end{gathered}
$$

- Substituting the constraint into the objective function gives:

$$
\max _{p} p d(p)-c(d(p)) .
$$

- Notice that this objective function is not always concave. Hence you should check all points at which the first-order condition holds and also the point where p is high enough to make $q=0$ and pick the point that results in the highest profit.
- First-order condition:

$$
p d^{\prime}(p)+d(p)-c^{\prime}(d(p)) d^{\prime}(p)=0
$$

- Dividing through by $d^{\prime}(p)$, and rearranging yields:

$$
\frac{p-c^{\prime}(d(p))}{p}=-\frac{d(p)}{p d^{\prime}(p)}
$$

- Writing $\varepsilon_{p}=-\frac{p d^{\prime}(p)}{d(p)}$ for the price elasticity of demand and $q=d(p)$ for the amount demanded, we have:

$$
\frac{p-c^{\prime}(q)}{p}=\frac{1}{\varepsilon_{p}}
$$

- In words, the percentage markup of the optimal monopoly price over marginal cost is the inverse of the elasticity of demand in the market.
- Less elastic demand leads to higher markup
- What are examples of markets with inelastic demand? Implications for multi-product firms?

Personalized Prices or First-Degree Price Discrimination

- Recall that the market demand is obtained by summing together all individual demand functions:

$$
d(p)=\sum_{i=1}^{l} d_{i}(p)
$$

where $d_{i}(p)$ is the individual demand function of buyer i.

- Suppose now that the seller knows all the $d_{i}(p)$ and can set individual prices p_{i} for each buyer.
- Let $\varepsilon_{P, i}$ be the price elasticity of the individual demand of buyer i.
- Optimal pricing is given by:

$$
\frac{p_{i}-c^{\prime}(q)}{p_{i}}=\frac{1}{\varepsilon_{P, i}}
$$

- Notice that the marginal cost depends on the aggregate demand.
- Special case: Unit Demands
- Good is sold in discrete units.
- Each buyer gets a utility v_{i} from the first unit, no additional utility from further units.
- Without loss of generality, rename the buyers so that

$$
v_{1} \geq v_{2} \geq \ldots \geq v_{l}
$$

- If each unit costs c to produce, sell to all buyers with $v_{i} \geq c$.
- If n units cost $c(n)$ to produce, then sell to the first n^{*} buyers, where

$$
n^{*}=\max \left\{n: v_{n} \geq c(n)-c(n-1)\right\}
$$

- Interpretation?
- For $i \leq n^{*}$, set $p_{i}=v_{i}$.
- With unit demands, monopolist extracts all consumer surplus in the market.
- This can be easily modeled also by assuming a continuum of consumers, with reservation value distributed over an interval on real line, e.g.: $v_{i} \sim U(0,1)$
- With more general individual demands, the consumers do get some consumer surplus with linear individual prices.
- But what if the monopolist can use a two-part tariff for each consumer:
- Let:

$$
\begin{aligned}
p_{i}\left(q_{i}\right) & =f_{i}+p_{i} q_{i} \text { if } q_{i}>0, \\
p_{i}(0) & =0 \text { if } q_{i}=0 .
\end{aligned}
$$

- f_{i} is the fixed purchase fee of i.
- p_{i} is the linear individual price for i.
- Why is this helpful for the monopolist? How should the f_{i} and p_{i} be set?
- The principle: choose p_{i} to maximize total surplus, and use f_{i} to exctract the consmer's surplus
- Do such two-part tariffs exist in reality?
- With two-part tariffs, the Pareto-efficient market outcome is obtained.
- Extreme distributional asymmetry. Sellers get all, buyers nothing.
- This is Pareto-efficient, but is this a good societal outcome?
- Relies on the seller's perfect knowledge of the preferences of the buyers.
- Is this realistic?
- What about arbitrage, e.g. resale between buyers?
- Always a question for models of price discrimination.
- Technological progress might make the model more relevant.
- Collect information on individual buyers through loyalty cards, social media etc.
- Tailor personal price offers available through loyalty card/on-line shopping.
- You can experiment by offering on-line offers or issuing coupons (price discounts) and observing the demand reactions.
- Combined with statistical analysis of all data in the database of the selling firm, this is a potentially successful pricing tool.

Third-Degree Price Discrimination or Group Pricing

- What if the monopolist can identify different group and use separate price for each group?
- Student/Pensioner/Disabled/Unemployed/Military Service discounts.
- Geographically separate markets (e.g. countries)
- What about differential insurance premiums based on sex/age etc.?
- Key assumption: membership in a market segment cannot be manipulated
- This is called third-degree price discrimination
- Can be thought of as a less extreme form of personalized pricing
- N market segments.
- Each with a demand curve $d_{n}(p)$.
- Since the markets are separate, optimal pricing formula is as before:

$$
\frac{p_{n}-c^{\prime}(q)}{p_{n}}=\frac{1}{\varepsilon_{P, n}} .
$$

- Implications are then clear: set higher prices for the segments with less elastic demand,
- What does this mean in terms of the examples listed above?
- What is the value for the seller of this form of price discrimination?
- What happens to the profit if there is more precise information available (i.e. finer grouping is possible)?
- What is the effect on consumer surplus?
- Let us next examine the effect of group pricing on welfare through an example
- Welfare effects of getting more refined information of consumers:
- Example
- Unit mass of consumers with unit demand
- Valuation θ uniformly distributed over $[0,1]$
- Buy if $\theta \geq p \rightarrow$ demand: $q=1-p$
- Zero marginal cost; profits: $p(1-p)$
- If uniform price: $p^{u}=1 / 2, \pi^{u}=1 / 4, C S^{u}=1 / 8, D L^{u}=1 / 8$

- Refined information

- Partition [0,1] into N subintervals of equal length
- Monopolist knows from which group each consumer comes \& can charge a different price for each group
- Take $\mathrm{N}=2$

$$
\begin{aligned}
& {[0,1 / 2] \rightarrow q_{1}=1 / 2-p_{1}} \\
& {[1 / 2,1] \rightarrow q_{2}=\max \left\{1 / 2,1-p_{2}\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& \pi(2)=\frac{1}{4}+\frac{1}{16}>\pi^{u} \\
& C S(2)=\frac{1}{8}+\frac{1}{32}>C S^{u} \\
& D L(2)=\frac{1}{32}<D L^{u}
\end{aligned}
$$

- Refined information (cont'd)
- N subintervals

Discussion and direction for the next lecture

- Both personal pricing (first-degree) and group pricing (third-degree) rely on the seller's ability to identify different buyers
- In the first-degree case, individual identification
- In the third-degree case, identification at the level of the segment
- When is grouping of consumers feasible?
- What if the buyer can manipulate the classification?
- Second-degree price discrimination or menu pricing
- Buyers self-select
- For the next lecture

Further readings on the topics discussed so far

- A review of the economics of price discrimination: Armstrong (2006): "Recent developments in the economics of price discrimination", Advances in Economics and Econometrics: Theory and Applications. Ninth World Congress of the Econometric Society (contains also a lot of analysis of oligopoly that we do not cover in this course).
- For an example of empirical work on international price discrimination, see e.g. Goldberg and Verboven (2001): "The evolution of price dispersion in the European car market", Review of Economic Studies.
- Recent advances in the theory of price discrimination include Aguirre, Cowan, and Vickers (2010): "Monopoly Price Discrimination and Demand Curvature", American Economic Review and Bergemann, Brooks and Morris (2015): "The Limits of Price Discrimination", American Economic Review.
- A recent empirical paper on welfare effects of price discrimination: Dube and Misra (2021): "Personalized Pricing and Consumer Welfare", SSRN working paper.

Lecture 5: Menu pricing

- So far, we have discussed price discrimination based on seller's direct information about buyer types
- But buyers' characteristics are to a large extent their private information
- Some buyers value higher quality more than others, for example
- Difficult for the seller to know the tastes of individual consumers
- Is there a profitable way to induce consumers self-select between different price-quality offers?
- In this lecture, we analyse this question with a simple theoretical model
- As a model of pricing, this is a model of second-degree price discrimination or menu pricing
- How to design a menu of alternative price-quality bundels that consumers may choose from?
- Or, how to design a non-linear pricing scheme, i.e. a set of different price-quantity bundles?
- But more broadly, this model is a classical example in information economics, within contract theory/mechanism design literature
- How to design an incentive scheme under asymmetric information?

Examples of Second-Degree Price Discrimination or Menu Pricing

- Quantity discounts: "3 for the price of 2" -offers at supermarkets
- Differential fixed fee, variable fee combinations:
- Pricing of different plans for smart phones.
- Gym membership fees vs single entry fee
- Quality versioning
- First-class, Business and Economy airfare.
- Book versions: hardcover and papeback
- Different speeds on broadband.
- Insurance with different deductibles.
- Damaged goods?

Figure 1: Hacked Remote Control of the DV740U (Courtesy of Area 450). Note the extra button in upper right portion of image.

Information Economics: Basic Model of Screening

- An uninformed party (principal) offers a menu of alternatives to an informed party (agent).
- The seller is the principal and the buyer is the agent.
- The menu consists of a list $\left\{\left(q^{\prime}, t^{\prime}\right)\right\}_{l=1}^{L}$.
- q stands for a physical allocation to the agent: could be quality or quantity
- t is the transfer that the agent makes to the principal: price
- Hence choosing $\left(q^{\prime}, t^{\prime}\right)$ means that the agent gets physical allocation q^{\prime} in exchange for paying t^{\prime}.
- Notice that this is not a per unit price but a total price for q^{\prime}.
- Agent's utility from q depends on her private type $\theta \in \Theta$.
- Assume here only two types: $\theta \in\left\{\theta^{H}, \theta^{L}\right\}$
- Quasilinear utility.
- Agent:

$$
u_{A}(\theta, q, t)=\theta v(q)-t
$$

- Principal:

$$
u_{P}(\theta, q, t)=t-c(q)
$$

- Here we interpret $v(q)$ as the utility from allocation q. Assume increasing utility with diminishing marginal utility: $v^{\prime}(q) \geq 0$, $v^{\prime \prime}(q) \leq 0$
- $c(q)$ is the cost of providing allocation (quantity or quality) q. Assume increasing convex cost: $c^{\prime}(q) \geq 0, c^{\prime \prime}(q) \geq 0$.
- Seller makes an offer $\left\{q^{\prime}, t^{\prime}\right\}_{l=1}^{L}$.
- She does not know the type of the buyer (but has a belief on the likelihoods of the different types).
- With two types, set $\lambda=\operatorname{Pr}\left\{\theta=\theta^{H}\right\}, 1-\lambda=\operatorname{Pr}\left\{\theta=\theta^{L}\right\}$.
- Buyer of type θ picks the pair $\left(q^{\prime}, t^{\prime}\right)$ that gives her the maximal utility or picks nothing if that gives higher utility.
- Since each type picks at most one pair, we can restrict the number of alternatives offered to be at most the number of different types of buyers.
- With two types of buyers $\theta \in\left\{\theta^{H}, \theta^{L}\right\}$, enough to consider two pairs $\left\{\left(q^{1}, t^{1}\right),\left(q^{2}, t^{2}\right)\right\}$.
- Call the pair chosen by θ^{i} as $\left(q^{i}, t^{i}\right)$ for $i \in\{H, L\}$.
- Examples: Insurance company screening privately known risk types, Monopoly bank screening projects with privately known success rate, Regulator screening public utilities with privately known marginal cost, etc.
- Since θ^{H} chooses $\left(q^{H}, t^{H}\right)$ over $\left(q^{L}, t^{L}\right)$, we have

$$
\theta^{H} v\left(q^{H}\right)-t^{H} \geq \theta^{H} v\left(q^{L}\right)-t^{L}
$$

- Similarly for θ^{L}

$$
\theta^{L} v\left(q^{L}\right)-t^{L} \geq \theta^{L} v\left(q^{H}\right)-t^{H}
$$

- These constraints are called incentive compatibility constraints.
- If the agent can secure a payoff of zero by not trading with the principal at all, then we also must have:

$$
\begin{aligned}
\theta^{H} v\left(q^{H}\right)-t^{H} & \geq 0 \\
\theta^{L} v\left(q^{L}\right)-t^{L} & \geq 0
\end{aligned}
$$

- These constraints are known as individual rationality or participation constraints.

Summary of the problem

The principal's problem is:

$$
\max _{\left\{\left(q^{H}, t^{H}\right),\left(q^{L}, t^{L}\right)\right\}} \lambda\left(t^{H}-c\left(q^{H}\right)\right)+(1-\lambda)\left(t^{L}-c\left(q^{L}\right)\right)
$$

subject to

$$
\begin{gathered}
\theta^{H} v\left(q^{H}\right)-t^{H} \geq \theta^{H} v\left(q^{L}\right)-t^{L} \\
\theta^{L} v\left(q^{L}\right)-t^{L} \geq \theta^{L} v\left(q^{H}\right)-t^{H} \\
\theta^{H} v\left(q^{H}\right)-t^{H} \geq 0 \\
\theta^{L} v\left(q^{L}\right)-t^{L} \geq 0
\end{gathered}
$$

- This is a simple model of adverse selection:
- The agent has private information at the time when the principal proposes the contract.
- This private information gives (at least some type of) the agent some surplus even if the principal make a take-it-or-leave-it offer.
- Model generates a genuine sharing of surplus.
- Will the outcome be socially efficient as in the case where the principal knows θ ?
- The more general theory framework encompassing this model is called Mechanism Design.
- Treated in research track Microeconomics 4 in detail.

First- vs. Second-degree price discrimination

- Recall from last lecture that under first-degree price discrimination the monopolist could use a two-paritt tariff to extract all surplus from a buyer, i.e. choose $\left(\widehat{q}^{i}, \widehat{t^{i}}\right)$ for $i \in\{H, L\}$ such that:

$$
\begin{array}{cl}
\widehat{q}^{i} \text { is efficient: } & c^{\prime}\left(\hat{q}^{i}\right)=\theta^{i} v^{\prime}\left(\widehat{q}^{i}\right), \\
\widehat{t}^{i} \text { captures suplus : } & \widehat{t}^{i}=\theta^{i} v\left(\widehat{q}^{i}\right) .
\end{array}
$$

- What goes wrong if the monopolist attempts this in the case where the type is not observable?
- Check if the incentive constraints hold

Analyzing the model

- We start with two observations:
- First, IC for H must bind.
- If not, then you can increase profit by increasing t^{H} a little
- Note, IR cannot bind for H, since she could get a positive payoff by choosing $\left(q^{L}, t^{L}\right)$
- Second, IR for L must bind
- If not, then you could increase profit by increasing both prices by the same amount
- Using these, we can solve the model
- Use IR of type L to solve

$$
t^{L}=\theta^{L} v\left(q^{L}\right)
$$

- Use IC of H to solve

$$
t^{H}=t^{L}+\theta^{H} v\left(q^{H}\right)-\theta^{H} v\left(q^{L}\right)=\theta^{H} v\left(q^{H}\right)-\left(\theta^{H}-\theta^{L}\right) v\left(q^{L}\right)
$$

- But then:

$$
\theta^{H} v\left(q^{H}\right)-t^{H}=\left(\theta^{H}-\theta^{L}\right) v\left(q^{L}\right)>0 \text { if } q^{L}>0
$$

- We call $\left(\theta^{H}-\theta^{L}\right) v\left(q^{L}\right)$ the information rent of the high type.
- Hence the maximization problem becomes:

$$
\begin{aligned}
& \max _{q^{H}, q^{L}}\left\{\lambda\left(\theta^{H} v\left(q^{H}\right)-\left(\theta^{H}-\theta^{L}\right) v\left(q^{L}\right)-c\left(q^{H}\right)\right)\right. \\
& \left.+(1-\lambda)\left(\theta^{L} v\left(q^{L}\right)-c\left(q^{L}\right)\right)\right\} .
\end{aligned}
$$

- FOC with respect to q^{H} :

$$
\theta^{H} v^{\prime}\left(q^{H}\right)=c^{\prime}\left(q^{H}\right) .
$$

- We see from this that q^{H} is chosen efficiently.
- FOC with respect to q^{L} :

$$
-\lambda\left(\theta^{H}-\theta^{L}\right) v^{\prime}\left(q^{L}\right)=(1-\lambda)\left(c^{\prime}\left(q^{L}\right)-\theta^{L} v^{\prime}\left(q^{L}\right)\right)
$$

- From this we see that q^{L} is smaller than the efficient level. This helps monopolist extract more profit from the high type.

Conclusions from the abstract model

- This abstract framework allows us to make some observations, that turn out to hold very generally in this type of models:
- Higher types buy larger quantities, or better qualities, and earn a positive information rent
- Low type earns no rents and is indifferent between participating and not
- The allocation for the low type is distorted
- Profit maximizing solution hence trades off efficiency and rent extraction.

Applications

- We next consider the two main manifestations of screening by a monopolist seller:
- Quantity discounts
- Versioning:
- Vertical vs Horizontal Differentiation
- Quality Premia
- Damaged Goods

Numerical Example on Quantity Discounts

- To illustrate quantity discounts, let us specify the model as follows:
- $\theta^{H}=2, \theta^{L}=1$.
- $v(q)=\sqrt{q}$.
- $c(q)=c q$.
- $\operatorname{Pr}\left\{\theta=\theta^{H}\right\}=\frac{2}{5}$.
- Under full information, the monopolist sets:

$$
\theta^{i} v^{\prime}\left(\widehat{q}^{i}\right)=c^{\prime}\left(q^{i}\right) \text { for } i \in\{1,2\}
$$

Hence

$$
2 \times \frac{1}{2} \frac{1}{\sqrt{\widehat{q}^{H}}}=c
$$

or

$$
\widehat{q}^{H}=\frac{1}{c^{2}},
$$

and

$$
\hat{q}^{L}=\frac{1}{4 c^{2}} .
$$

- The corresponding transfers under full information are:

$$
\widehat{t}^{H}=\frac{2}{c}, \widehat{t}^{L}=\frac{1}{2 c} .
$$

- Consider now the case where θ is private information to the buyer. If the monopolist chose $\left\{\left(\widehat{q}^{H}, \widehat{t}^{H}\right),\left(\widehat{q}^{L}, \widehat{t}^{L}\right)\right\}$, type θ^{H} would choose $\left(\widehat{q}^{L}, \hat{t}^{L}\right)$. the resulting information rent to θ^{H} is

$$
\left(\theta^{H}-\theta^{L}\right) v\left(\hat{q}^{L}\right)=\frac{1}{2 c} .
$$

- Hence if $\left(\hat{q}^{L}, \widehat{t}^{L}\right)$ is available to the buyers, the maximal t^{H} that will induce θ^{H} to choose $\left(\hat{q}^{H}, t^{H}\right)$ over $\left(\widehat{q}^{L}, \hat{t}^{L}\right)$ is

$$
t^{H}=\widehat{t}^{H}-\left(\theta^{H}-\theta^{L}\right) v\left(\widehat{q}^{L}\right)=\frac{3}{2 c} .
$$

- The profit to the firm at $\left\{\left(\hat{q}^{H}, t^{H}\right),\left(\hat{q}^{L}, \hat{t}^{L}\right)\right\}$ is given by:

$$
\frac{2}{5}\left(\frac{3}{2 c}-\frac{1}{c}\right)+\frac{3}{5}\left(\frac{1}{2 c}-\frac{1}{4 c}\right)=\frac{7}{20 c} .
$$

- How can the monopolist improve profit?
- The only problem is the information rent going to θ^{H}.
- The rent $\left(\theta^{H}-\theta^{L}\right) v\left(q^{L}\right)$ can be reduced by decreasing q^{L}.
- For example, if $q^{L}=0$, then θ^{H} gets no information rent.
- Hence $\left\{\left(\widehat{q}^{H}, t^{H}\right),(0,0)\right\}$ is an incentive compatible offer.
- You can calculate the profit from this to be $\frac{2}{5 c}>\frac{7}{20 c}$.
- Even better: Choose q^{L} from the formula

$$
-\lambda\left(\theta^{H}-\theta^{L}\right) v^{\prime}\left(q^{L}\right)=(1-\lambda)\left(c^{\prime}\left(q^{L}\right)-\theta^{L} v^{\prime}\left(q^{L}\right)\right)
$$

- Plugging in the functional forms, the values for θ^{i} and $\lambda=\frac{2}{5}$, we get:

$$
-\frac{2}{5} \frac{1}{2 \sqrt{q^{L}}}=\frac{3}{5}\left(c-\frac{1}{2 \sqrt{q^{L}}}\right)
$$

or

$$
q^{L}=\frac{1}{36 c^{2}} .
$$

- Hence we can compute the optimal menu to be $\left\{\left(\widehat{q}^{H}, \hat{t}^{H}\right),\left(\widehat{q}^{L}, \widehat{t}^{L}\right)\right\}=\left\{\left(\frac{1}{c^{2}}, \frac{11}{6 c}\right),\left(\frac{1}{36 c^{2}}, \frac{1}{6 c}\right)\right\}$.
- Total profit is then

$$
\frac{22}{30 c}-\frac{2}{5 c}+\frac{3}{30 c}-\frac{3}{5 \cdot 36 c}=\frac{25}{60 c}>\frac{2}{5 c} .
$$

- Notice that if $\lambda \geq \frac{1}{2}$, it is optimal to set $q^{L}=0$ and to sell only to θ^{H} at the monopoly price.
- You can see this from the fact that the derivative of the monopolist's profit is negative in q^{L} for all $q^{L} \geq 0$.
- Finally, we can compute the implied per unit price in the two options:

$$
\begin{aligned}
\frac{t^{L}}{q^{L}} & =6 c \\
\frac{t^{H}}{q^{H}} & =\frac{11}{6} c
\end{aligned}
$$

Hence first q^{L} units are sold at a higher per unit price than the next $\left(q^{H}-q^{L}\right)$ units. We say, that the model shows quantity discounts in this case.

Endogenous Quality Choice

- Let us modify the model slightly.
- Here, it is more natural to interpret q as quality.
- $\theta^{H}=2, \theta^{L}=1$.
- $v(q)=q$.
- $c(q)=\frac{1}{2} q^{2}$.
- $\operatorname{Pr}\left\{\theta=\theta^{H}\right\}=\frac{2}{5}$.
- The full information quantities and transfers are $\left\{\left(\widehat{q}^{H}, \widehat{t}^{H}\right),\left(\widehat{q}^{L}, \widehat{t}^{L}\right)\right\}=\{(2,4),(1,1)\}$. The information rent to θ^{H} is $\left(\theta^{H}-\theta^{L}\right) q^{L}=1$.
- $\{(2,3),(1,1)\}$ is incentive compatible and yields expected profit of $\frac{2}{5}(3-2)+\frac{3}{5}\left(1-\frac{1}{2}\right)=\frac{7}{10}$.
- By offering $\{(2,4),(0,0)\}$, the profit is increased to $\frac{8}{10}$.
- Again, the optimal offer to θ^{L} can be calculated from

$$
-\lambda\left(\theta^{H}-\theta^{L}\right) v^{\prime}\left(q^{L}\right)=(1-\lambda)\left(c^{\prime}\left(q^{L}\right)-\theta^{L} v^{\prime}\left(q^{L}\right)\right) .
$$

or

$$
-\frac{2}{5}=\frac{3}{5}\left(q^{L}-1\right) \Leftrightarrow q^{L}=\frac{1}{3} .
$$

- The profit at $\left\{\left(2, \frac{11}{3}\right),\left(\frac{1}{3}, \frac{1}{3}\right)\right\}$ is $\frac{2}{5}\left(\frac{11}{3}-2\right)+\frac{3}{5}\left(\frac{1}{3}-\frac{1}{18}\right)=\frac{2}{3}+\frac{1}{5}-\frac{3}{90}=\frac{75}{90}=\frac{5}{6}$.
- Notice that now the "per unit price" of the first $\frac{1}{3}$ quality units is 1 whereas for the higher quality level $q^{H}=2$, the per unit price is $\frac{11}{6}$. We say that this model of vertical quality differentiation displays quality premia.
- An extreme form of quality differentiation happens when the seller damages her goods intentionally and perhaps at a cost
- Various examples of such strategies are discussed in Deneckere and McAfee (1996): "Damaged goods", Journal of Economics and Management Strategy.

To sum up:

- We demonstrated in the simple two-type model two features of non-linear pricing:
- Quantity discounts
- Quality premia.
- Do these properties hold more generally?
- For quantity discounts: Maskin and Riley (1984), " Monopoly with Incomplete Information", Rand Journal of Economics.
- For quality premia: Mussa and Rosen (1978), "Monopoly and Product Quality", Journal of Economic Theory.

Further readings

- For a text-book treatment of menu pricing, see e.g. Belleflamme and Peitz: "Industrial Organization", chapter 9.
- Screening models are also analyzed in advanced microeconomics text books, such as Jehle and Reny: "Advanced Microeconomic Theory" Chapter 8, or Mas-Colell, Whinston and Green: "Microeconomic Theory", Chapter 13.
- For a much deeper discussion about the type of models treated in this lecture, see Salanie: "The Economics of Contracts", MIT Press, or Bolton and Dewatripont: "Contract Theory", MIT Press.
- Seminal articles on monopoly pricing under asymmetric information are Mussa and Rosen (1978): "Monopoly and Product Quality", Journal of Economic Theory, and Maskin and Rilery (1984): "Monopoly with Incomplete Information", Rand Journal of Economics.

Bundling

- So far, we have considered menus with one good
- When the firm is producing multiple goods, another alternative is to bundle them together
- Why would a firm want to do that?
- Potential reasons to bundle separate goods:
- Complementary products
\star A very natural reason for bundling. Extreme example: right and left shoes
- Anti-competitive behavior
* Extending market power across markets, entry deterrence (Microsoft: OS and other software products)
* Competitive authorities take a grim view of this.
- Price discrimination strategy that increases rent extraction opportunities for the seller.
* Exploit different buyers differential willingness to pay
\star We will consider this next.

Bundling: Examples

- Subscriptions for cable TV channels.
- Do you want to sell larger packages of channels at a discount relative to sum of individual channel prices?
- Do you offer individual channels at all?
- If only a large package is available, we talk about pure bundling.
- If buyers can select packages or individual channels, we talk about mixed bundling.
- Mobile handsets and operator contracts.
- Different regulations apply in different countries.

Bundling: Examples

- Bundling of computer operating system with other software (Windows with IE, Office etc.)
- Online and paper newspaper (HS, NYTimes,...).
- Hotel room with or without breakfast, with or without free wifi etc.
- Selling packages of academic journals to university libraries.
- Copy machines and maintenance contracts (Kodak), elevator sales and maintenance contracts (Kone), computer mainframes and consulting contracts (IBM).

Simple Example of Bundling

- Suppose a monopolist sells two different goods in a single market consisting of buyers with different valuations for the goods.
- The valuations are private information to the buyers.
- For simplicity, assume that the buyers have either a high or a low willingness to pay for each of the products.
- Let $v^{i} \in\left\{v^{H}, v^{L}\right\}$ with $v^{H}>v^{L}$ denote a buyer's willingness to pay for product i with $i \in\{1,2\}$.

Simple Example Continued

- We can write a table for the probabilities of valuations as follows:

$v^{1} \backslash v^{2}$	v^{H}	v^{L}
v^{H}	π^{H}	$\frac{1}{2} \pi^{M}$.
v^{L}	$\frac{1}{2} \pi^{M}$	π^{L}.

- Here π^{H} stands for the probability that a buyer has valuation v^{H} for both of the goods, π^{L} for the probability that valuation is v^{L} for both goods and π^{M} for the probability of mixed valuations.
- The case where $\pi^{M}=0$ stands for perfectly correlated valuations across the goods. The case $\pi^{H}=\pi^{L}=0$ stands for negatively (perfectly) correlated values.
- If $\pi^{H} \pi^{L}=\frac{1}{4}\left(\pi^{M}\right)^{2}$, we have independently distributed values across products. (For example if $\pi^{H}=\pi^{L}=\frac{1}{2} \pi^{M}=1 / 4$).

Simple Example Continued

- Let's assume that the valuations of the buyers across the two goods are additive so that her willingness to pay for both goods is $v^{1}+v^{2}$.
- The monopolist must decide whether to sell the two goods separately at prices p^{1} and p^{2}, or whether to engage in pure bundling, i.e. sell them as a package at price $p^{1,2}$ or whether to give the buyers the option of either buying separately or as a package.
- Clearly in the last case, we must have $p^{1,2}<p^{1}+p^{2}$ if buyers cannot be prevented from buying the two goods separately.

Simple Example Continued

- What is the optimal strategy under positively correlated values?
- What is the optimal strategy under negatively correlated values?
- What is the optimal strategy under independent values?

Simple Example Continued

- In the case of perfectly correlated valuations all buyers have high value for both products, or low value for both products.
- It does not matter whether monopolist sells them separately or as a bundle - every buyer buys both or nothing in any case.
- In the case of pure negative correlation, $\pi^{H}=\pi^{L}=0$, and so all consumers have valuation $v^{H}+v^{L}$ for the bundle consisting of both goods.
- Seller extracts all surplus by selling as a bundle at price $v^{H}+v^{L}$!
- This is clearly not possible by separate pricing.
- What about the independent case?
- For example, let $\pi^{H}=\pi^{L}=\frac{1}{2} \pi^{M}=1 / 4$ and $2 v^{L}<v^{H}<3 v^{H}$.
- Compute profit with bundle price $v^{H}+v^{L}$ and compare to separate pricing.
- Bundling increases profits, but buyers retain some rents.

Bundling with independent valuations in a richer setup*

- We saw that bundling can increase profits even with independent valuations
- Intuition: Bundling reduces consumer heterogeneity and thereby allows better rent extraction
- For more detailed analysis, we move to a slightly richer setting
- An additional insight: mixed bundling can be even more profitable than pure bundling (sell separately + as a "discount price"-bundle)
*The presentation here is dense; consider this as extra material. For a more detailed presentation of the next 10 slides, please consult pages 271-281 in the Belleflamme and Peitz book (see course syllabus for full reference)
- A monopolist sells two products $i \in\{1,2\}$.
- There is a continuum of buyers that have independent valuations for the two products. v^{i}.
- Each v^{i} is distributed on $[0,1]$
- Each v^{i} has a distribution function $F^{i}\left(v^{i}\right)$ with a density $f^{i}\left(v^{i}\right)$.
- Suppose the monopolist sets prices separately for the two products: p^{1}, p^{2}.
- Assume that production cost is zero (so that valuation is really the net valuation over production cost).
- At price p^{i}, the monopolist's profit in market i is:

$$
p^{i}\left(1-F^{i}\left(p^{i}\right)\right)
$$

where $\left(1-F^{i}\left(p^{i}\right)\right)$ is the fraction of buyers with valuation above p^{i}.

- First order condition for optimal price:

$$
p^{* i} \text { solves }\left(1-F^{i}\left(p^{* i}\right)\right)-p^{* i} f^{i}\left(p^{* i}\right)=0 .
$$

- Is it optimal for the monopolist to offer prices $\left(p^{* 1}, p^{* 2}\right)$ with $p^{* 1,2}=p^{* 1}+p^{* 2}$?
- Consider a change to prices $\left(p^{* 1}+\varepsilon, p^{* 2}, p^{* 1,2}\right)$.
- In words, keep all other prices unchanged, just increase the price of good 1 by ε.
- What happens to total profit?
- No change to buyers with $v^{1}<p^{* 1}$.
- No change for buyers with $v^{1}>p^{* 1}$ and $v^{2}>p^{* 2}$.
- Loss of sales to buyers with $p^{* 1}<v^{1}<p^{* 1}+\varepsilon$ if $v^{2}<p^{* 2}$.
- Gain in revenue of ε on those with $v^{1}>p^{* 1}+\varepsilon, v^{2}<p^{* 2}-\varepsilon$.
- Gain in revenue of $p^{* 2}$ on those with $v^{1}>p^{* 1}, p^{* 2}-\varepsilon<v^{2}<p^{* 2}$.
- Counting together the changes:

$$
\begin{aligned}
& -\varepsilon p^{* 1} f^{1}\left(p^{* 1}\right) F^{2}\left(p^{* 2}\right)+\varepsilon\left(1-F^{1}\left(p^{* 1}+\varepsilon\right)\right) F^{2}\left(p^{* 2}-\varepsilon\right) \\
& +p^{* 2}\left(1-F^{1}\left(p^{* 1}\right)\right) \varepsilon f^{2}\left(p^{* 2}\right)
\end{aligned}
$$

- Since $F^{2}\left(p^{* 2}-\varepsilon\right)=F^{2}\left(p^{* 2}\right)-\varepsilon f^{2}\left(p^{* 2}\right)$, $F^{1}\left(p^{* 1}+\varepsilon\right)=F^{1}\left(p^{* 1}\right)+\varepsilon f^{1}\left(p^{* 1}\right)$, and $\left(1-F^{1}\left(p^{* 1}\right)\right)-p^{* 1} f^{1}\left(p^{* 1}\right)=0$ (by monopolist's first order condition in the choice of $p^{* 1}$), we have after ignoring terms of order ε^{2} the net change as:

$$
p^{* 2}\left(1-F^{1}\left(p^{* 1}\right)\right) \varepsilon f^{2}\left(p^{* 2}\right)>0
$$

- Hence increasing one of the original separate monopoly prices results in an increase in profit.

Uniform distribution

- Assuming that $v^{i}: s$ are drawn from the uniform distribution on $[0,1]$, the model can be solved explicitly
- Start by deriving optimal monopoly prices for individual products, and compute associated profit
- Then consider optimal price if only pure bundling possible:
- What is the demand function for the bundle?
- What is the optimal price and associated profits?
- Finally, consider the mixed bundle.
- Derive the demands for products 1 and 2 and for the bundle with some prices $p^{1}, p^{2}, p^{1,2}$
- Argue that it is optimal to choose $p^{1}=p^{2}:=p$
- Find optimal p and $p^{1,2}$
- What kind of welfare effects can you identify?

Many Items for Sale

- What if the seller has more than two different products?
- Continue with the basic setting above.
- n items for sale.
- Valuation of each buyer for a collection $\{1, \ldots, k\}$ of the items is $v^{1}+\ldots+v^{k}$.
- Assume that each v^{i} is an independent draw from the uniform distribution on $[0,1]$.
- In other words, $F^{\prime}\left(v^{i}\right)=v^{i}$ for all i and all $0 \leq v^{i} \leq 1$.
- Easy to calculate the optimal monopoly price for single items to be $\frac{1}{2}$.
- We saw already that with $n=2$, a local improvement in profits possible through bundling.
- One can compute the optimal mixed bundling solution explicitly (turns out, $p^{1}=p^{2}=\frac{2}{3}, p^{1,2}=\frac{4-\sqrt{2}}{3} \approx 0.86$)
- What about $n=3$? Can be done but gets harder
- $n=4$? Can be done numerically.
- Is $n \rightarrow \infty$ even harder?
- To get full optimum, yes, but to get qualitative features of optimum, not so
- What can we say about the random variable $v=v^{1}+\ldots+v^{n}$?
- If the v^{i} are independent, all with variance σ^{2} and mean μ, then v has variance $n \sigma^{2}$.
- With uniform, $\mu=\frac{1}{2}, \sigma^{2}=\frac{1}{12}$.
- On the other hand, the expected value of v is $n \mu$.
- Hence the willingness to pay per item $\frac{v}{n}$ has mean μ and variance $\frac{\sigma^{2}}{n}$.
- How does the aggregate demand function for a bundle of n goods change as n grows?
- Go back to your reading assignment 3...

Other modifications of the model

- Interrelated products
- Bundle of products will become more attractive to buyers
- At the same time, advantage of bundling strategy to the seller as compared to separate selling may diminish
- Correlated values
- As our simple example above suggested, negative correlation makes bundling strategy more profitable
- Bundling and competition
- Bundling can soften or increase competition.
- See e.g. Belleflamme and Peitz: "Industrial Organization", Chapter 11.3.
- Marginal costs of production
- Our example above has zero marginal cost (good approximation for information goods such as software)
- A higher marginal cost of production makes bundling less attractive relative to separate selling (why?)

Conclusion on Price Discrimination

- Price discrimination can take many different forms as we have seen
- We have not covered all possibilities (e.g. behavior based pricing is increasingly relevant, see Fudenberg and Villas-Boas (2006), "Behavior-Based Price Discrimination and Customer Recognition", Handbook on Economics and Information Systems.)
- Basic motive for monopolist seller: transform consumer surplus into profit.
- Sometimes at the expense of efficiency.
- How successful this can be depends on:
- Buyers' possibilities for undoing differentiation: breaking bundles and resale etc.
- Legislative concerns.
- Not covered here, but also important: strategic product design.
- Compatibility with competitors.
- Differentiation to relax price competition.

Informed seller - uninformed buyers

- So far we have analyzed situations where buyers are better informed than the seller: they have private information on their own taste
- We now consider the opposite situation
- Seller has private information about the quality of the product
- Does this lead to efficient trade?
- Is seller's private information beneficial to her?
\star Problem is that buyers are suspicious about quality
- Can the seller signal credibly the true quality level?

Setup

- A single seller offers a product of two potential qualities $q \in\left\{q^{L}, q^{H}\right\}$
- Assume the quality is given, and privately known by the seller (seller's type).
- Buyers do not know the quality, and assign probability λ for high quality so that expected quality is:

$$
\lambda q^{H}+(1-\lambda) q^{L} .
$$

- (Opportunity) cost of selling is $c^{i}, i=L, H$. Assume $c^{H}>c^{L}$.
- A mass of identical buyers with unit demand and reservation utility equal to the quality of the product $v^{i}=q^{i}, i=L, H$.
- The consumers prefer a higher quality: $q^{H}>q^{L}$.
- Assume: $q^{i}>c^{i}$ for $i=L, H$. In other words, trading is always efficient.

Setup

- Formally, we can models this as a three stage game:
- 1. stage: Nature draws the true value q from the known distribution (i.e. with probability λ we have $q=q^{H}$ and with $1-\lambda$ we have $q=q^{L}$). Only the seller observes the true q.
- 2. stage: Seller decides whether and which price to post
- 3. stage: Buyer forms beliefs about q and makes purchase decision (buy / do not buy)
- Contrast: in the screening model, the uninformed player moves first (seller postes a menu of contracts)
- Here: the informed party moves first. This opens the possibility for signalling.
- How do the buyers form their beliefs? Let us illustrate...

Expectations and belief formation

- Suppose that the buyers expect that both types of seller set the same price p
- Then the belief by the buyer upon observing p is that with probability λ we have $q=q^{H}$, and hence expected quality is

$$
\lambda q^{H}+(1-\lambda) q^{L} .
$$

- This is called pooling: both types use the same strategy
- Suppose that only low types offer a price p (and high types withdraw from the market)
- The belief by the buyer upon observing price p is that quality is $q=q^{L}$ for sure
- Or, low type could offer p^{\prime} and high type would offer $p^{\prime \prime} \neq p^{\prime}$
- Then the buyer would know the quality upon observing price: separating case
- The point is: the strategy of the seller affects the belief of the buyer

Possible equilibria

- Pooling equilibrium?
- Then price must be $p=\lambda q^{H}+(1-\lambda) q^{L}$ (why?)
- Such an equilibrium is feasible if

$$
c^{H}<\lambda q^{H}+(1-\lambda) q^{L}
$$

otherwise high type would withdraw.

- Equilibrium with adverse selection?
- Low type sets price $p=q^{L}$ and high type withdraws
- Such an equilibrium is feasible if $q^{L}<c^{H}$.
- For $q^{L}<c^{H}<\lambda q^{H}+(1-\lambda) q^{L}$, both types of equilibria co-exist

Equilibrium prices for different opportunity cost of high type

Discussion

- When quality is not observed by the buyers, high-quality products may not be offered for sale at all
- What if there are more than two quality levels?
- Full unraveling is possible, so that only the very lowest possible quality survives in the market
- This is the logic in the famous "market for lemons" by Akerlof
- Why is fully separating equilibrium not possible here?
- A low type would mimic.
- Is it possible in some circumstances for the high type seller to signal high quality by choosing a high price?
- Yes, but to make this work, mimicking must be more costly for the low type. We come back to this shortly...

Voluntary information disclosure

- A natural question to ask is: what if there is a credible way for the firms to publicly disclose their quality level?
- Low type does not want to disclose
- High type naturally wants to disclose
- But then, if a buyer sees a seller who does not want to disclose, what should she conclude about quality?
- What if there are more than two types?
- Unraveling result: all types disclose their quality, see Milgrom (1981): "Good news and bad news: Representation theorems and applications", Bell Journal of Economics.
- This follows from an induction argument
- Asymmetric information problem is solved
- But is such credible and costless disclosure feasible in reality?

Endogenous quality and moral hazard

- What if quality choice is endogenous?
- Assume the model as before, but in the beginning the seller can choose quality level
- Benchmark case: quality choice is observable
- Since seller can extract all surplus, quality choice is efficient
- If $q^{H}-c^{H}>q^{L}-c^{L}$, then seller chooses high quality
- What if quality choice is unobservable?
- Seller always chooses low quality (why?)
- This is a very simple model of moral hazard
- Instead of hidden type (as in adverse selection), we have hidden action

Signalling by price

- Let us now return to the idea that seller can signal its quality by price
- For this to work, signal must be credible, in other words, buyers must believe that high price truly signals high quality
- For this to be the case, mimicking high quality must be too costly for the low quality producer
- Possible reasons for such costs are, for example:
- Repeat purchasing (true quality will be revealed in time) and reputational effects
- Existence of some better informed consumers (increasing price will mean low quality producer will lose all such consumers)

A model with some informed consumers: price signalling

- We will next demonstrate how signaling can work in a simple setting
- Assume the model as above with a mass of identical consumers with unit demand
- For simplicity, let $c^{H}=c^{L}:=c$, and let $c<q^{L}<q^{H}$
- But now we assume that fraction γ of consumers know the true quality q
- Signalling models have typically multiple equilibria. Here we want to construct one.
- We want to construct a separating equilibrium: price posted by seller will reveal the true quality
- First consider a potential equilibrium, where high type chooses price $p^{H}=q^{H}$ and low type chooses price $p^{L}=q^{L}$
- If this is an equilibrium, then the buyers expect correctly that they get quality q^{H} at price p^{H} and q^{L} at price p^{L}
- Is this an equilibrium? We have to check if any player wants to deviate
- A high type gets the best possible deal, so naturally she does not want to deviate
- But a low type might want to mimick the high type. She wants to do that if

$$
\begin{aligned}
(1-\gamma)\left(q^{H}-c\right) & >q^{L}-c \\
& \Longleftrightarrow \\
\gamma & <\frac{q^{H}-q^{L}}{q^{H}-c}:=\bar{\gamma} .
\end{aligned}
$$

- So, if $\gamma \geq \bar{\gamma}$, such deviations are not profitable. In that case, a fully separating equilibrium exists, where both types of seller can extract all surplus from the buyers
- What if $\gamma<\bar{\gamma}$?
- We can still construct a fully separating equilibrium, but the high type must lower its price to make mimicking less attractive for the low type
- If high type sets price \bar{p}^{H}, low type is indifferent between choosing r^{L} and p^{H} if

$$
\begin{aligned}
(1-\gamma)\left(\bar{p}^{H}-c\right) & =q^{L}-c \\
& \Longleftrightarrow \\
\bar{p}^{H} & =c+\frac{q^{L}-c}{1-\gamma}
\end{aligned}
$$

- To make sure this is an equilibrium, we must now also consider what happens if high type (or low) type deviate by setting price above \bar{p}^{H}
- To make sure that pricing above \bar{p}^{H} is not profitable, we can assume that any deviation to higher prices would be interpreted by the buyers as low quality: they will not buy
- This is not really "assumption" about model, this is part of equilibrium description
- Formally, to define a "Perfect Bayesian Equilibrium" in a game like this, we must define beliefs of the buyers for all possible prices (also "out-of-equilibrium" prices) in such a way that sellers set optimal prices and all beliefs are consistent with their behavior
- Signalling models have typically a large number of different equilibria. Our purpose here is to construct just one equilibrium.
- See additional material of game theory for this
- To summarize this model:
- when γ is sufficiently high, there is an equilibrium where high type sets price $p^{H}=q^{H}$ and low type sets price $p^{L}=q^{L}$
- When γ is smaller, there is still a separating equilibrium, where high type must lower price in order to prevent low type from mimicing

Summary of models with privately informed seller

- When seller has private information about quality of product, this may lead to market break-down (adverse selection)
- This may also lead to choice of too low quality by sellers (moral hazard)
- Voluntary disclosure of quality can be helpful, if technologically feasible
- Signalling by prices can also work, if mimicking is sufficiently costly for a low quality producer
- This is the case, e.g., when some consumers are informed about the quality
- This makes high price less attractive for the low type, since she would lose all informed consumers
- Signalling can also work through other channels than prices:
- For example, high quality firm can signal through costly advertising, even when advertising is not directly informative (see literature starting with Nelson (1974): "Advertising as information", Journal of Political Economy)

Further readings

- For a more detailed analysis of bundling, see McAfee, McMillan, and Whinston (1989): "Multiproduct Monopoly, Commodity Bundling, and Correlation of Values", Quarterly Journal of Economics.
- Classical information economics papers relating to the case, where seller knows quality better than buyers are Akerlof (1970): "The Market for Lemons: Quality Uncertainty and the Market Mechanism", Quarterly Journal of Economics, and Spence (1973): " Job market signaling", Quarterly Journal of Economics.

