ELEC-A7200

Signals and Systems

Professor Riku Jäntti Fall 2022

Lecture 2 Special Signals Convolution

Special signals and test functions

Signum function

Signum function

$$\operatorname{sgn}(t) = \begin{cases} -1 & t < 0\\ 0 & t = 0 \\ 1 & t > 1 \end{cases}$$

Step function

• Unit step function (a.k.a. unit step function, Heaviside step function)

$$u(t) = \begin{cases} 1 & t \ge 0\\ 0 & t < 0 \end{cases}$$

Note that sometimes is defined to be u(0)=1/2

Step function

Unit step function can also be defined as

$$u(t) = \frac{1 + \operatorname{sgn}(t)}{2}$$

this leads to u(0)=1/2

Extracting part of another signal or cutting the signal

Example:

$$x(t) = \begin{cases} e^{-t} & t \ge 0\\ 0 & t < 0 \end{cases} \Leftrightarrow x(t) = e^{-t}u(t)$$

Combinations of unit steps to create other signals

Example:

$$x(t) = \begin{cases} 0 & t < 0 \\ 1 & 0 \le t < 1 \\ 0 & t \ge 1 \end{cases} \Leftrightarrow x(t) = u(t) - u(t - 1)$$

Derivatives of piecewise linear signals

$$x(t) = \begin{cases} 0 & t < 0 \\ t & 0 \le t < 1 \\ 1 & t \ge 1 \end{cases} \Leftrightarrow \frac{dx(t)}{dt} = u(t) - u(t-1)$$

Problem

1. Express the derivative of the following triangular pulse using unit step function u(t)

Aalto School of Electrical Engineering

Rectangular pulse

Unit rectangle pulse

$$\operatorname{rect}(t) = \begin{cases} 1 & |t| \le \frac{1}{2} \\ 0 & |t| > \frac{1}{2} \end{cases}$$

• has unit energy

$$E = \int_{-\infty}^{\infty} \operatorname{rect}^{2}(t) dt = \int_{-1/2}^{1/2} 1^{2} dt = 1$$

Aalto University School of Electrical Engineering

Gauss pulse

Gauss pulse (Gauss distribution)

gauss(t;T) =
$$\frac{1}{\sqrt{2\pi}T}e^{-\frac{1}{2}\left(\frac{t}{T}\right)^2}$$

• Has unit integral

Aalto University School of Electrical Engineering

$$\int_{-\infty}^{\infty} gauss(t;T)dt = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}T} e^{-\frac{1}{2}\left(\frac{t}{T}\right)^2} = 1$$

Dirac's delta function

- Dirac delta function (δ function) is a generalized function or distribution, a function on the space of test functions.
- Dirac delta function belongs to the mathematical space of test functions and *distributions*.
- Dirac function allow us to differentiate functions whose derivatives do not exist in the classical sense.

Paul Dirac (8 Aug 1902 – 20 Oct 1984) was an English theoretical physicist.

"I have trouble with Dirac. This balancing on the dizzying path between genius and madness is awful." Einstein

Dirac's delta function (a.k.a unit impulse)

- Dirac's delta function is a function equal to zero everywhere except for zero and whose integral over the entire real line is equal to one. $\int_{-\infty}^{\infty} \delta(t) dt = 1$
- It can be defined as a limit of a pulse whose width goes to zero

$$\delta(t) = \lim_{a \to 0} \frac{1}{\sqrt{\pi}|a|} e^{-\left(\frac{t}{a}\right)^2}$$

Aalto University School of Electrical Engineering

Uses of Dirac's delta function

Differentiation of discontinuous functions

Example: Discontinuity at t=0

$$\frac{dx(t)}{dt} = (x(0^+) - x(0^-))\delta(t)c$$

Problem

1. Let

$$x(t) = \operatorname{sgn}(t) = \begin{cases} -1 & t < 0\\ 0 & t = 0\\ 1 & t > 1 \end{cases}$$

Determine

$$y(t) = \frac{dx(t)}{dt}$$

Aalto School of Electrical Engineering

Uses of Dirac's delta function

Sampling

$$\int_{-\infty}^{\infty} x(t)\delta(t)dt = x(0)$$
$$\int_{-\infty}^{\infty} x(t-kT)\delta(t)dt = x(kT)$$

Problem

Let

a) $x(t) = \operatorname{rect}(t)$ Simplify $x(t)\delta(t)$ b) $x(t) = e^{-t^2}$ Simplify $x(t)\delta(t-1)$

Aalto School of Electrical Engineering

Linear system modelling: Step response of linear systems

Uses of Dirac's delta function

Linear system modelling: Impulse response of linear systems

Discrete convolution

Discrete convolution

Definition for discrete convolution

$$x(n) \otimes h(n) = \sum_{k=-\infty}^{\infty} h(n-k)x(k)$$

Convolution commutes: $x(n) \otimes h(n) = h(n) \otimes x(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$

Aalto University School of Electrical Engineering

Applications of discrete convolution

Multiplication of polynomials

$$\begin{aligned} x(z) &= x_0 + x_1 z + \cdots x_N z^N \\ h(z) &= h_0 + h_1 z + \cdots h_N z^M \end{aligned}$$

$$y(z) = x(z)h(z) = y_0 + y_1z + \cdots + y_{N+M}z^{N+M}$$

where

$$y_n = \sum_{k=0}^n h_{n-k} x_k, \ n = 0, 1, 2, ..., N + M$$

with the assumption that x_k and h_k are zero for indeces that are not given.

Applications of discrete convolution

Modelling of linear time invariant discrete time systems.

- Digital filters
 - In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal.
 - The applications of digital filters include the mitigation of the noise, removal of interfering signals, passing of certain frequency components and rejection of others, shaping of the signal spectrum etc.
- Digital control systems

Discrete convolution: Digital filtering

Finite impulse response (FIR) filter

Impulse
$$x(n) = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$$
 response $\Rightarrow \{y(n), n = 0, 1, 2, 3\} = \{b_0, b_1, b_2, b_3\} \triangleq \{h(n)\}$

Discrete convolution: Digital filtering

Infinite Impulse Response Filter (IIR)

In time domain, the response of a digital filter for arbitrary input signal x(n) is given by discrete convolution between the input and Impulse response:

$$y(n) = \sum_{k=-\infty}^{\infty} h(n-k)x(k)$$

Discrete convolution: FIR filter example

Impulse response of FIR filter

Input signal

 $\{x(n), n = 0, 1, 2, 3\} = \{1, 1, 1, 0\}$

Discrete convolution: FIR filter example y(n)x(k)1.6 **n=3** 0.9 1.4 0.8 1.2 0.7 1 0.6 0.5 0.8 0.4 0.6 0.3 0.4 0.2 0.2 0.1 k 0 1 2 3 2 0 1 3 y(3) = h(3)x(0) + h(2)x(1) + h(1)x(2) = 1.625h(3-k)Aalto University School of Electrical

Engineering

Discrete convolution: FIR filter example y(n)x(k)1.6 **n=4** 0.9 1.4 0.8 1.2 0.7 1 0.6 0.8 0.5 0.4 0.6 0.3 0.4 0.2 0.2 0.1 k Λ 0 1 2 3 4 0 2 3 1 y(4) = h(3)x(1) + h(2)x(3) = 0.6250h(4-k)Aalto University

Discrete convolution: FIR filter example y(n)x(k)1.6 n=5 0.9 1.4 0.8 1.2 0.7 0.6 0.8 0.5 0.4 0.6 0.3 0.4 0.2 0.2 0.1 k 0 0 2 3 1 4 5 0 1 2 3 y(5) = h(3)x(2) = 0.125h(5 - k)Aalto University

Aalto University School of Electrical Engineering

Discrete convolution: FIR filter example y(n)x(k)1.6 **n=6** 0.9 1.4 0.8 1.2 0.7 0.6 0.8 0.5 0.4 0.6 0.3 0.4 0.2 0.2 0.1 k 0 2 3 1 4 5 6 0 2 3 1 y(6) = 0

h(6-k)

Aalto University School of Electrical Engineering No overlap

Discrete convolution: FIR filter example

FIR filter output

Problem

Plot the discrete convolution

$$y(n) = x(n) \otimes h(n) = \sum_{k=-\infty}^{\infty} h(n-k)x(k)$$

Aalto School of Electrical Engineering

13.9.2022

The convolution integral

The convolution integral

The convolution integral is defined as

$$x(t) \otimes h(t) = \int_{-\infty}^{\infty} h(t-\tau)x(\tau)d\tau$$

Convolution commutes: $x(t) \otimes h(t) = h(t) \otimes x(t) = \int_{-\infty}^{\infty} h(\tau)x(t\tau)d\tau$

Aalto University School of Electrical Engineering

Applications of the convolution integral

Modeling of linear time variant continuous time systems such as electronic circuits or mechanical systems.

- Analog filtering
 - In signal processing, an analog filter is an electronic circuit that operate on a continuous time signal to reduce or enhance certain aspects of that signal.
 - The applications of analog include those of the digital filters as well as the anti-aliasing filtering before sampling
- Continuous time control systems

The convolution integral: Linear time invariant systems

Linear time invariant system is described by a differential equation

$$\frac{d^{n}}{dt^{n}}y(t) = -a_{1}\frac{d^{n-1}}{dt^{n-1}}y(t) - \dots - a_{n}y(t) + b_{0}\frac{d^{m}}{dt^{m}}u(t) + b_{1}\frac{d^{m-1}}{dt^{m-1}}u(t) + \dots + b_{m}u(t)$$

n degree of the system For any physical system *m*<*n* (*strictly proper system*)

School of Elect
 Engineering

The convolution integral: analog filtering

RC-filter for removing high frequency components

$$\frac{d}{dt}i(t) = -\frac{1}{RC}i(t) + \frac{1}{R}x(t)$$
$$\frac{d}{dt}y(t) = \frac{1}{C}i(t)$$

Impulse response:

$$\mathbf{x}(t) = \delta(t) \Rightarrow y(t) = e^{-\frac{1}{RC}t}u(t) \triangleq h(t)$$

Corresponds physically charging the capacitator and then observing it discharge

The convolution integral: analog filtering

RC-filter for removing high frequency components

The convolution integral: RC Filter step response example

Impulse response of FIR filter
 Input signal

 $h(t) = e^{-t}u(t)$

x(t) = u(t)

The convolution integral: RC Filter step response example

• Case 1: t ≤ 0

Case 2: t>0

The convolution integral: RC Filter step response example

Step response for t≤0

$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau = 0$$

Step response for t>0

$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau = \int_{0}^{t} e^{-t} \cdot \mathbf{1} d\tau = 1 - e^{-t}$$

The convolution integral: RC Filter step response example

Aalto University School of Electrical Engineering

Problem

Calculate the following convolution integral

$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$

when h(t) = x(t) = u(t)

Aalto School of Electrical Engineering

Convolution with Dirac's delta function

Convolution integral

$$\int_{-\infty}^{\infty} \delta(\tau) x(t-\tau) d\tau = x(t)$$
$$\int_{-\infty}^{\infty} \delta(\tau-T) x(t-\tau) d\tau = x(t-T)$$

Convolution with Dirac's delta function: Multi-path channel

Channel impulse response

 $h(\tau) = h_0 \delta(\tau - \tau_0) + h_1 \delta(\tau - \tau_1) + \dots h_{L-1} \delta(\tau - \tau_{L-1})$

Transmitted signal

 $x(\tau)$

Received signal

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

= $h_0 x(\tau - \tau_0) + h_1 x(\tau - \tau_1) + \dots + h_{L-1} x(\tau - \tau_{L-1})$

Impulse reponse

Modeling of acoustics in a concert hall

Singing in anechoic studio

x(t)

http://www.openairlib.net/anechoicdb/conte
nt/operatic-voice

Impulse response of a church hall

ofa

$$h(t) = \sum_{k} h_k \delta\left(t - \tau_k\right)$$

http://www.openairlib.net/aural izationdb/content/st-patrickschurch-patrington-model

Singing in the church hall

$$y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$

Convolution in chapter 2 + FFT in chapter 7

Aalto School of Electrical Engineering

50

Problem

Calculate the following convolution integral

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

when $h(\tau) = \delta(\tau - 1)$ and $x(t) = \operatorname{rect}(t)$

Aalto School of Electrical Engineering

Todays lecture

- 1. Special functions
 - Signum, unit step, Dirac's delta function
- 2. Discrete convolution
- 3. The convolution integral
- ...applications to linear systems

f 🖸 y 🖻 🌲 in.

aalto.fi

