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Signum function

Signum function

-1 t<0
sgn(t) =4 0 t=0¢

1 t>1
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Step function

* Unit step function (a.k.a. unit
step function, Heaviside step
function)

(1 t=0
u(t)_{o t <0

Note that sometimes is defined to be u(0)=1/2
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Step function

Unit step function can also be defined as

1+ sgn(t)
2

u(t) =

this leads to u(0)=1/2
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Uses of the unit step function

Extracting part of another signal or cutting the signal

Example:

x(t) = {e(;t tt =0 o x(t) = e tu(t)
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Uses of the unit step function

Combinations of unit steps to create other signals

Example:

0 t =1

0 t <0
x(t) =41 0<t<1 ex(t)=ult)—u(-1)

u(t) < ult —1)

4
| |
u\r) ulr—1)
¢ S ’ +

!
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Uses of the unit step function

Derivatives of piecewise linear signals

0 t<o0 et
x(t) =4t 0<t<1 e Zi)zu(t)—u(t—l)
1 t=>1

y (t) dx(t)
1 1 T

Aalto University
School of Electrical

| Engineerin g




Problem

1. Express the derivative of the following triangular pulse using unit step
function u(t)

v

Aalto School of
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Rectangular pulse

* Unit rectangle pulse

1
( rect(r)

1 |t <

rect(t) = <

-1/2 0 1/2

N RN

0 |[t] >
\

* has unit energy

E = ffooo rect?(t)dt = f_lﬁz 1%2dt = 1
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Gauss pulse

Gauss pulse (Gauss distribution)

1 _1(5)2
gauss(t;T) = S € 27

« Has unit integral

1
V2T

fgauss(t;T)dt= f
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Dirac’s delta function

« Dirac delta function (d function) is a
generalized function or distribution, a
function on the space of test functions.

« Dirac delta function belongs to the
mathematical space of test functions and
distributions.

i i ] . Paul Dirac (8 Aug 1902 — 20 Oct 1984)
 Dirac function allow us to differentiate was an English theoretical physicist.

functions whose derivatives do not exist in e (o T [, T

the classical sense. balancing on the dizzying path between
genius and madness is awful."

Einstein
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Dirac’s delta function (a.k.a unit
impulse)

* Dirac’s delta function is a function equal to
zero everywhere except for zero and whose
integral over the entire real line is equal to

one. [ 8(t)dt =1

* It can be defined as a limit of a pulse whose
width goes to zero

1 (&)
o6(O)= lm Far (o
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Uses of Dirac’s delta function

Differentiation of discontinuous functions

Example: Discontinuity at =0

(x(0™) —x(07) )8()¢

x(t)
dx(t) 4

dt

x(07)

v

y
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Problem

1. Let
—1 t<O0
x(t) =sgn(t) =<0 t=0 t
1 t>1
Determine .
_dx(t)
y(t) = 0t
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Uses of Dirac’s delta function

Sampling
j x(t)6(t)dt = x(0)

Joo x(t — kT)6(t)dt = x(kT)

x(t) {x(kT), ke0,1,2,.}
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Problem

Let
a) x(t) = rect(t)

Simplify x(t)6(t)
b) x(t) = e~ t*

Simplify x(t)6(t — 1)
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Uses of the unit step function

Linear system modelling: Step response of linear systems

u(?)

Unit step l/l(t)

x(t)
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Uses of Dirac’s delta function

Linear system modelling: Impulse response of linear systems

A1)

Imprlse 5(1‘)

x(t)

v
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h(?)

»(®)

| Impulseresponseh(t)
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Discrete convolution
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Discrete convolution

Definition for discrete convolution

x(n) @ h (n) = Z h(n — k)x(k)

k=—o

Convolution commutes: x(n) @ h (n) = h (n) @ x(n) = Yi-_o h(k)x(n — k)

But why?
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Applications of discrete
convolution

Multiplication of polynomials

x(z) = xg + x12 + - xnz"
h(Z) = hO + hlz + .- hNZM

y(z) = x(2)h(2) = yo + y12 + - yyepz¥ M
where
= Zg:o hn—k xk; n = 0,1,2, ,N + M

with the assumption that x; and h;, are zero for
indeces that are not given.
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Applications of discrete
convolution

Modelling of linear time invariant discrete time systems.

 Digital filters
« In signal processing, a digital filter is a system that performs
mathematical operations on a sampled, discrete-time signal to
reduce or enhance certain aspects of that signal.
« The applications of digital filters include the mitigation of the
noise, removal of interfering signals, passing of certain

frequency components and rejection of others, shaping of the
signal spectrum etc.

 Digital control systems

Aalto Un
Scho IfEIt cal
l Engineerin



Discrete convolution: Digital
filtering

Finite impulse response (FIR) filter

x(n) -1 z' correspond to one sample delay

\4
N
|

y(n) = box(n) + bix(n — 1) +byx(n — 2) + bsx(n — 3)

Impulse x(n) = {(1)’ Z ;:t 8 response => {y(n),n = 0,1,2,3} = {by, b1, b2,b3} £ {h(n)}
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Discrete convolution: Digital
filtering

Infinite Impulse Response Filter (lIR)

> yin] In time domain, the response of a digital filter
for arbitrary input signal x(n) is given by
discrete convolution between the input and
Impulse response:

x[n]

e}

ym = > k- Kx(k)

k=—o0
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Discrete convolution: FIR filter
example

* Impulse response of FIR filter . |nput signal

{(h(m)n=0123} =, 15,3} (x(m),n =0,1,2,3) = {1, 1, 1, O}

7 Aalto University
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Discrete convolution: FIR filter
example

n=-1

(k)

‘Mirror image’

‘j Nooverlap => y(n) = z h(n—k)x(k) =0
k=—o0

h(-1-k)



Discrete convolution: FIR filter

example o
n=0 o | | 1'

Multiply together => y(0) = h(0)x(0) = 0.25 1 =0.25

_h(=k)
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Discrete convolution: FIR filter

k

example o

n=1

141
12F
b
08}
06}
04}
02}
K :
0 1

Multiply and sum =>y(1) = h(1)x(0) + h(0)x(1) = 0251+ 11 =125

h(1—-k)
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Discrete convolution: FIR filter

(k)

example

nN=—

y(n)

7 Aalto University
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y(2) = h(2)x(0) + h(1)x(1) + h(0)x(2) = 1.75



Discrete convolution: FIR filter

(k)

example

nN=—

ymw
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Discrete convolution: FIR filter
example

nN=—

(k)

y(4) = h(3)x(1) + h(2)x(3) = 0.6250

_ h(4 —k)
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Discrete convolution: FIR filter
example

n=5

(k)

y(5) = h(3)x(2) = 0.125

h(5—k)
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Discrete convolution: FIR filter
example

nN=—

(k)

No overlap



Discrete convolution: FIR filter

example
FIR filter output




Problem

Plot the discrete convolution

y() =x(m) ®h(m) = h(n—Kx(k)

k=—

‘h(n) | | 1x(n)

Aalto School of
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The convolution integral
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The convolution integral

The convolution integral is defined as

x(t) Q@ h(t) = f h(t — t)x(t)dt

Convolution commutes: x(t) @ h (t) = h (t) @ x(t) = [, h(D)x(tr)dT

But why?
Aalto Un
A School of Elect ical
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Applications of the convolution
integral

Modeling of linear time variant continuous time systems such as
electronic circuits or mechanical systems.

« Analog filtering
In signal processing, an analog filter is an electronic circuit that

operate on a continuous time signal to reduce or enhance

certain aspects of that signal.
The applications of analog include those of the digital filters as
well as the anti-aliasing filtering before sampling

« Continuous time control systems
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The convolution integral: Linear
time Iinvariant systems

Linear time invariant system is described by a differential equation

dn n—1 dm m—1
V() =—a,— = ()= —a,y(t) +by ——u(t) +b —-

dt Lde"! dt” dr"

n degree of the system

For any physical system m<n (strictly proper system)

u()+---+b u(t)

R i), l(t) ng“ k
E 0(f) @:é) : )91(1) (e——T X (3
ix(t) Xl(;) iXz(;)
i(t) v(t)
: Mechanical B
—— echanica A
WE Electric circuits systems (1) @:J_I:(» X0
V(Z) (i)
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The convolution integral: analog
filtering

RC-filter for removing high frequency components

x(t)

R

Aalto University

A? &
| Engineerin g
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1)

d 1 1
—i(t)=——1(t)+—x(t
‘jfl() 1RCZ() RX()
—y(t)=—Ii(t

dty() C()

Impulse response:

x(H=6(t) = y(t) = e'R_lctu(t) 2 h(t)

Corresponds physically charging the capacitator
and then observing it discharge



The convolution integral: analog
filtering

RC-filter for removing high frequency components

x(t)

R

Aalto University

General input signal

x(t) = y(t) = h(t — T)x(7)dt
(1) L

= Jh(r)x(t—r)dr



The convolution integral: RC Filter
step response example

* Impulse response of FIR filter . |nput signal

h(t) = e tu(t) x(t) = u(t)

\
\
\\
\
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The convolution integral: RC Filter
step response example

e Case1:t<0 « Case 2: 0
t<o0 t>0
| —X(t7) | | —x(t1)
\ S ! ]
| X(t-=7)h(7) x(t-n)h(r)
\\\ L\
f A
A ‘ 5
t t
No overlap between x(t- t) and h(t) Integrate for the overlap region from 0 to ¢

7 Aalto University => _y(t)=0
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The convolution integral
step response example

Step response for t<0

y(t) = J h(t)x(t —1)dT =0

Step response for t>0
t

: RC Filter

y(t) = J h(t)x(t —t)dt = f et -ldr=1—-e""



The convolution integral: RC Filter

step response example
RC=1

| x(t) »(t)

R C
T




Problem

Calculate the following convolution integral

() = j h(D)x(t — 1)dr
when h(t) = x(t) = u(t) -

Aalto School of
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Convolution with Dirac’s delta
function

Convolution integral

f 6(0)x(t — 1)dt =x(t)

f S(t—T)x(t—1t)dt =x(t—T)

—00



Convolution with Dirac’s delta
function: Multi-path channel

Channel impulse response

h(T) = hOS(T - T0)+ h16(T - T1)+. .. hL_16(T — TL—l) - object
multipath component scattering eseking anian
Transmitted signal . N
x@) i o
H H ‘ diffractiol
Recelved SIg nal reflection
r ‘ flecti

y(t) = j h()x(t — 7)dt ,
J YT | ===
o hoX(T _ TO)+ h1X(T _ T1)+. - hL_1X(T _ TL—1) nnnnnnnnnnnn g antenna
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Impulse reponse

Modeling of acoustics in a concert hall

Singing in
anechoic studio

x(?)

http://www.openairlib.net/anechoicdb/conte
nt/operatic-voice
Impulse

response of a
church hall

h(y=> hdo(t-1,)

http://www.openairlib.net/aural
izationdb/content/st-patricks-
church-patrington-model

Singing in the
church hall

y(t) = T x(D)h(t—1)dr

A

Aalto School of
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Problem

Calculate the following convolution integral

y(t) = j h(t)x(t — t)dt

rect(t)

when h(t) = 6(t — 1) and x(t) = rect(t)

-1/2

0 1/2
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Todays lecture

1. Special functions
« Signum, unit step, Dirac’s delta function

2. Discrete convolution
3. The convolution integral
...applications to linear systems
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