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Special signals and test
functions



Signum function

Signum function

sgn 𝑡 = &
−1 𝑡 < 0
0 𝑡 = 0
1 𝑡 > 1

ç



Step function

• Unit step function (a.k.a. unit 
step function, Heaviside step 
function) 

Note that sometimes is defined to be u(0)=1/2

𝑢 𝑡 = -1 𝑡 ≥ 0
0 𝑡 < 0



Step function

Unit step function can also be defined as

this leads to u(0)=1/2

𝑢 𝑡 =
1 + sgn(𝑡)

2



Uses of the unit step function

Extracting part of another signal or cutting the signal

𝑥 𝑡 = -𝑒
!" 𝑡 ≥ 0
0 𝑡 < 0

⇔ 𝑥 𝑡 = 𝑒!"𝑢(𝑡)

Example:



Uses of the unit step function

Combinations of unit steps to create other signals

𝑥 𝑡 = &
0 𝑡 < 0
1 0 ≤ 𝑡 < 1
0 𝑡 ≥ 1

⇔ 𝑥 𝑡 = 𝑢 𝑡 − 𝑢(𝑡 − 1)

Example:



Uses of the unit step function

Derivatives of piecewise linear signals

𝑥 𝑡 = &
0 𝑡 < 0
𝑡 0 ≤ 𝑡 < 1
1 𝑡 ≥ 1

⇔ #$(")
#"

= 𝑢 𝑡 − 𝑢(𝑡 − 1)

1

𝑥 𝑡

1

1

𝑑𝑥(𝑡)
𝑑𝑡

1
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Problem

1. Express the derivative of the following triangular pulse using unit step 
function u(t)
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1 20−1−2

1

2



Rectangular pulse

• Unit rectangle pulse

• has unit energy

rect 𝑡 = 7
1 𝑡 ≤ '

(

0 𝑡 > '
(

𝐸 = ∫!)
) rect( 𝑡 𝑑𝑡 = ∫!'/(

'/( 1(𝑑𝑡 = 1



Gauss pulse

Gauss pulse (Gauss distribution)

• Has unit integral

;
!)

)

gauss 𝑡; 𝑇 𝑑𝑡 = ;
!)

)
1
2𝜋𝑇

𝑒!
'
(
"
+

%

= 1

gauss 𝑡; 𝑇 = '
(,+

𝑒!
&
%
'
(

%

Gauss pulse

Time



Dirac’s delta function

• Dirac delta function (δ function) is a 
generalized function or distribution, a 
function on the space of test functions. 

• Dirac delta function belongs to the 
mathematical space of test functions and 
distributions.

• Dirac function allow us to differentiate 
functions whose derivatives do not exist in 
the classical sense.

Paul Dirac (8 Aug 1902 – 20 Oct 1984) 
was an English theoretical physicist. 

"I have trouble with Dirac. This 
balancing on the dizzying path between 
genius and madness is awful."
Einstein



Dirac’s delta function (a.k.a unit 
impulse)
• Dirac’s delta function is a function equal to 

zero everywhere except for zero and whose 
integral over the entire real line is equal to 
one. ∫!)

) δ(t)𝑑𝑡 = 1

• It can be defined as a limit of a pulse whose 
width goes to zero

δ(t)= lim
-→/

'
,|-|

𝑒!
'
)

%



Uses of Dirac’s delta function

Differentiation of discontinuous functions

#$(")
#"

= 𝑥 01 − 𝑥(0!) δ(t)ç
𝑥(𝑡)

𝑥(0!)

𝑥(0")

Example: Discontinuity at t=0
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Problem

1. Let

Determine 
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𝑥 𝑡 = sgn 𝑡 = &
−1 𝑡 < 0
0 𝑡 = 0
1 𝑡 > 1

𝑦 𝑡 =
𝑑𝑥(𝑡)
𝑑𝑡



Uses of Dirac’s delta function

Sampling

$
!)

)
𝑥(𝑡)δ(𝑡)𝑑𝑡 = 𝑥(0)

$
!)

)
𝑥(𝑡 − 𝑘𝑇)δ(𝑡)𝑑𝑡 = 𝑥(𝑘𝑇)

( )x t { }( ), 0,1,2,...x kT kÎ

T
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Problem

Let 
𝑎) 𝑥(𝑡) = rect(𝑡)
Simplify 𝑥 𝑡 𝛿 𝑡
𝑏) 𝑥(𝑡) = 𝑒!"!

Simplify 𝑥 𝑡 𝛿 𝑡 − 1
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Uses of the unit step function

Linear system modelling: Step response of linear systems

Linear time
Invariant

system

u(t) y(t)

R

C y(t)x(t)

Unit step Step response y(t)u(t)



Uses of Dirac’s delta function

Linear system modelling: Impulse response of linear systems

• Impulssivaste h(t)

• Esim. RC suodatin

Linear time
Invariant

system

d(t) h(t)

R

C y(t)x(t)

Impulse d(t) Impulse response h(t)



Discrete convolution



Discrete convolution

Definition	for	discrete	convolution

𝑥(𝑛) ⊗ ℎ (𝑛) = ?
23!)

)

ℎ 𝑛 − 𝑘 𝑥(𝑘)

But why?

ç

Convolution commutes: 𝑥 𝑛 ⊗ℎ 𝑛 = ℎ 𝑛 ⊗𝑥 𝑛 = ∑#$!%% ℎ 𝑘 𝑥(𝑛 − 𝑘)



Applications of discrete 
convolution
Multiplication of polynomials

𝑥 𝑧 = 𝑥* + 𝑥+𝑧 + ⋯𝑥,𝑧,
ℎ 𝑧 = ℎ* + ℎ+𝑧 + ⋯ℎ,𝑧-

𝑦 𝑧 = 𝑥 𝑧 ℎ 𝑧 = 𝑦* + 𝑦+𝑧 + ⋯𝑦,.-𝑧,.-

where

𝑦/ = ∑01*/ ℎ/20 𝑥0, 𝑛 = 0,1,2, … ,𝑁 + 𝑀

with the assumption that 𝑥0 and ℎ0 are zero for 
indeces that are not given.



Applications of discrete 
convolution
Modelling of linear time invariant discrete time systems. 
• Digital filters

• In signal processing, a digital filter is a system that performs 
mathematical operations on a sampled, discrete-time signal to 
reduce or enhance certain aspects of that signal.

• The applications of digital filters include the mitigation of the 
noise, removal of interfering signals, passing of certain 
frequency components and rejection of others, shaping of the 
signal spectrum etc.

• Digital control systems



Discrete convolution: Digital 
filtering
Finite impulse response (FIR) filter

z-1 correspond to one sample delay

𝑦 𝑛 = 𝑏0𝑥 𝑛 + 𝑏1𝑥 𝑛 − 1 +𝑏2𝑥 𝑛 − 2 + 𝑏3𝑥 𝑛 − 3

𝑥 𝑛

Impulse 𝑥 𝑛 = :1, 𝑛 = 0
0, 𝑛 ≠ 0 response =>   {𝑦 𝑛 , 𝑛 = 0,1,2,3} = {𝑏0, 𝑏1, 𝑏2,𝑏3} ≜ {ℎ 𝑛 }



Discrete convolution: Digital 
filtering
Infinite Impulse Response Filter (IIR)

𝑦(𝑛) = @
#$!%

%

ℎ 𝑛 − 𝑘 𝑥(𝑘)

In time domain, the response of a digital filter
for arbitrary input signal x(n) is given by
discrete convolution between the input and 
Impulse response:



Discrete convolution: FIR filter 
example
• Impulse response of FIR filter • Input signal

{ℎ 𝑛 , 𝑛 = 0,1,2,3} = {&
'
, 1, &

(
, &
)
} {𝑥 𝑛 , 𝑛 = 0,1,2,3} = {1, 1, 1, 0}



Discrete convolution: FIR filter 
example
n=-1

k

𝑦(𝑛) = @
#$!%

%

ℎ 𝑛 − 𝑘 𝑥 𝑘 = 0

ℎ −1− 𝑘

𝑥(𝑘)

No overlap   => 

‘Mirror image’



Discrete convolution: FIR filter 
example
n=0

k

𝑦 0 = ℎ 0 𝑥 0 = 0.25 ∗ 1 =0.25

ℎ −𝑘

𝑥(𝑘)

Multiply together =>

𝑦(𝑛)



Discrete convolution: FIR filter 
example
n=1

k

𝑦 1 = ℎ 1 𝑥 0 + ℎ 0 𝑥 1 = 0.25 ∗ 1 + 1 ∗ 1 = 1.25

ℎ 1 − 𝑘

𝑥(𝑘)

Multiply and sum =>

𝑦(𝑛)



Discrete convolution: FIR filter 
example
n=2

k

𝑦 2 = ℎ 2 𝑥 0 + ℎ 1 𝑥 1 + ℎ 0 𝑥 2 = 1.75

ℎ 2 − 𝑘

𝑥(𝑘)
𝑦(𝑛)



Discrete convolution: FIR filter 
example
n=3

k

𝑦 3 = ℎ 3 𝑥 0 + ℎ 2 𝑥 1 + ℎ 1 𝑥 2 = 1.625

ℎ 3 − 𝑘

𝑥(𝑘)
𝑦(𝑛)



Discrete convolution: FIR filter 
example
n=4

k

𝑦 4 = ℎ 3 𝑥 1 + ℎ 2 𝑥 3 = 0.6250

ℎ 4 − 𝑘

𝑥(𝑘)
𝑦(𝑛)



Discrete convolution: FIR filter 
example
n=5

k

𝑦 5 = ℎ 3 𝑥 2 = 0.125

ℎ 5 − 𝑘

𝑥(𝑘)
𝑦(𝑛)



Discrete convolution: FIR filter 
example
n=6

k

𝑦 6 = 0

ℎ 6− 𝑘

𝑥(𝑘)

No overlap

𝑦(𝑛)



Discrete convolution: FIR filter 
example
FIR filter output

n
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Problem

Plot the discrete convolution
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𝑦 𝑛 = 𝑥(𝑛)⊗ℎ (𝑛) = @
#$!%

%

ℎ 𝑛 − 𝑘 𝑥(𝑘)

1 2 3
n

0
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1
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𝑥(𝑛)ℎ(𝑛)



The convolution integral



The convolution integral

The	convolution	integral	is	defined	as

𝑥(𝑡) ⊗ ℎ (𝑡) = $
!)

)

ℎ 𝑡 − 𝜏 𝑥 𝜏 𝑑𝜏

But why?

Convolution commutes: 𝑥 𝑡 ⊗ℎ 𝑡 = ℎ 𝑡 ⊗𝑥 𝑡 = ∫!%
% ℎ 𝜏 𝑥 𝑡𝜏 𝑑𝜏



Applications of the convolution 
integral
Modeling of linear time variant continuous time systems such as 
electronic circuits or mechanical systems.
• Analog filtering

• In signal processing, an analog filter is an electronic circuit that 
operate on a continuous time signal to reduce or enhance 
certain aspects of that signal.

• The applications of analog include those of the digital filters as 
well as the anti-aliasing filtering before sampling

• Continuous time control systems



The convolution integral: Linear 
time invariant systems
Linear time invariant system is described by a differential equation

1 1

1 0 11 1( ) ( ) ( ) ( ) ( ) ( )
n n m m

n mn n m m

d d d dy t a y t a y t b u t b u t b u t
dt dt dt dt

- -

- -= - - - + + + +! !

n degree of the system
For any physical system m<n (strictly proper system) 

m

x(t)

q2(t)q1(t)
k

q2(t)q1(t)
B

Electric circuits Mechanical
systems



The convolution integral: analog 
filtering
RC-filter for removing high frequency components

R

C y(t)x(t)
1( ) ( )d y t i t

dt C
=

1 1( ) ( ) ( )d i t i t x t
dt RC R

= - +

Impulse response:

x(t)=δ(t) ⇒ 𝑦 𝑡 = 𝑒!
#
$%"𝑢(𝑡) ≜ ℎ(𝑡)

Corresponds physically charging the capacitator
and then observing it discharge



The convolution integral: analog 
filtering
RC-filter for removing high frequency components

R

C y(t)x(t)

General input signal

x(t) ⇒ 𝑦 𝑡 = 6
!&

&

ℎ 𝑡 − 𝜏 𝑥 𝜏 𝑑𝜏

= 6
!&

&

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏



The convolution integral: RC Filter 
step response example
• Impulse response of FIR filter • Input signal

ℎ 𝑡 = 𝑒!*𝑢(𝑡) 𝑥 𝑡 = 𝑢(𝑡)

t t



The convolution integral: RC Filter 
step response example
• Case 1: t ≤ 0 • Case 2: t>0

t t
No overlap between x(t- t) and h(t)
=> y(t)=0

Integrate for the overlap region from 0 to t



The convolution integral: RC Filter 
step response example
Step response for t≤0

𝑦 𝑡 = ;
!)

)

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏 = 0

Step response for t>0

𝑦 𝑡 = *
:;

;

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏 =;
𝟎

𝒕

𝑒!" J 𝟏𝑑𝜏 = 1 − 𝑒!"



The convolution integral: RC Filter 
step response example
RC=1

R

C y(t)x(t)
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Problem

Calculate the following convolution integral

when ℎ 𝑡 = 𝑥 𝑡 = u(𝑡)
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𝑦 𝑡 = K
!%

%

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏



Convolution with Dirac’s delta 
function
Convolution integral

K
!%

%

𝛿 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏 = 𝑥 𝑡

5
%&

&

𝛿 𝜏 − 𝑇 𝑥 𝑡 − 𝜏 𝑑𝜏 = 𝑥(𝑡 − 𝑇)



Convolution with Dirac’s delta 
function: Multi-path channel
Channel impulse response

Transmitted signal

Received signal

ℎ 𝜏 = ℎ+𝛿 𝜏 − 𝜏+ + ℎ'𝛿 𝜏 − 𝜏' +… ℎ(%'𝛿 𝜏 − 𝜏(%'

𝑥 𝜏

𝑦 𝑡 = K
!%

%

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

= ℎ)𝑥 𝜏 − 𝜏) + ℎ!𝑥 𝜏 − 𝜏! +… ℎ"#!𝑥 𝜏 − 𝜏"#!
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Impulse reponse

Modeling of acoustics in a concert hall
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( )( ) k k
k

h t h td t= -å

Singing in 
anechoic studio

Impulse 
response of a 
church hall

Singing in the 
church hall

( ) ( ) ( )y t x h t dt t t
¥

-¥

= -ò

x(t)

Convolution in chapter 2
+ FFT in chapter 7

http://www.openairlib.net/anechoicdb/conte
nt/operatic-voice

http://www.openairlib.net/aural
izationdb/content/st-patricks-
church-patrington-model
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Problem

Calculate the following convolution integral

when ℎ 𝜏 = 𝛿 𝜏 − 1 and 𝑥 𝑡 = rect(𝑡)
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𝑦 𝑡 = K
!%

%

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏



Todays lecture

1. Special functions
• Signum, unit step, Dirac’s delta function

2. Discrete convolution
3. The convolution integral
…applications to linear systems



aalto.fi


