Solution of homework 2

a. Draw the sketch of the 3-phases circuit and its corresponding single-phase equivalent circuit

Fig 1: two parallel connected 3 -phase loads. Both loads are wye-connected. In the exercise there is no mention of the source connection, but in 3-phases systems the voltage is always the line-to-line voltage, unless otherwise mentioned.

Fig 2: Single-phase equivalent circuit $V_{a}=\frac{V_{a b}}{\sqrt{3}}$
b. Calculate the source line current
$I_{a}=I_{z 1}+I_{z 2}$, where $\quad \begin{array}{rlrl}I_{z 1} & =20 \angle \operatorname{acos}(0,9) \\ & =20 \angle 25,84^{\circ} & & I_{z 2}=30 \angle-\operatorname{acos}(0,8) \\ & & =30 \angle-36,87^{\circ}\end{array}$, i.e.,

$$
\begin{aligned}
I_{a} & =20 \angle 25,84^{\circ}+30 \angle-36,87^{\circ} \\
& =43,014 \angle-12,46^{\circ} \mathrm{A}
\end{aligned}
$$

the rms value of the line current is $43,01 \mathrm{~A}$
c. Calculate the power factor of the whole load

From the above we can see that the angle of the current is $-12,46^{\circ}$. The power factor is thus: $\cos (-12,46)=0,976$. The minus sign means that the whole load is inductive (lagging current).

