Heat Capacity

* What does it take to cool down specimens?
e Stability of temperature against heat loads AT = 2 AQ
. e C
* Helps in calibrating thermometers
* Relationship between heat capacity and thermal conductivity
* [dentify the nature of the system under study CocT"
* Indicator for phase transitions in physical systems

e i)
c .
mol'K Sources:

30F P.V.E. McClintock, D.J. Meredith,
and J.K. Wigmore,

20 Low-Temperature Physics: an introduction
for scientists and engineers (1992)

F. Pobell,

Matter and Methods at Low Temperatures
(2007)
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Basic relations

Heat needed (dQ) to change temperature (d7)

— at constant volume:  C,, = (dQ/dT)y
— at constant pressure:  C, = (dQ/dT),

The difference between Cy and C, 1s related to thermal expansion:

10 YCy Ao AV
J— — 2 —_ — —_— — —

(linear expansion coefficient a and bulk modulus #)
The difference becomes insignificant at low temperatures!

Heat capacity i1s related to entropy:

T
ds C
T - —
dQ =TdS; C=T—_: { -
The integral remains finite only if C — 0 when 7'— 0



Sources of heat capacity

* Mobile entities
— phonons (lattice vibrations)
— conduction electrons 1n metals
— gas or fluid particles (or quasiparticles)

* Immobile entities
— magnetic moments
— electric dipoles or quadrupoles
— tunneling states in amorphous lattice



Heat capacity and thermal conductivity

Thermal conductivity «; (due to carrier type i) 1s proportional to
heat capacity of the carriers (kinetic theory): Q= —kAVT

i, = Vad U, JdT, v, = VsCil, = VsCv2r, 0 = L r(@holgsa)

where v; 1s the speed of the carriers (phonons, electrons, etc.),
¢; 1s their mean free path and 7, = ¢;/v; 1s the mean collision time.

When heat capacity 1s due to mobile entities and the cooling time 7,
1s limited by the conductivity of the sample, 7, actually does not
depend on heat capacity!

T, =R,C; oc Ci/x; o |1/(v;{)

Determining factors are the speed and scattering properties of the
carriers.



General method

Total energy U =] E dN/dE g(E) dE
=> heat capacity C =dU/dT

To find the heat capacity of a given system
— 1dentify the mechanism storing thermal energy
— deduce the dispersion relation
+ availlable states are often counted 1n reciprocal space =

— choose the proper distribution function g(FE)
(Boltzmann/Bose-Einstein/Fermi-Dirac)
— take care of proper normalization N = [dN/dE g(E)dE
— determine the degeneracy factor
— evaluate average energy (energy/particle)
+ density of states dN/dE 1s needed =

— differentiate with respect of temperature (dg/dT)



Examples

Lattice vibrations (kinetic and potential energy of atomic nuclei)
— classical description 1s meaningful at high temperatures only
— Einstein's quantum hypothesis improves on that
— Debye's phonon model 1s more accurate at low T
— turnover occurs at “Debye temperature” 7, ~ 100 K

Conduction electrons in metals
— degenerate Fermi gas
— excitations only close to Fermi energy are important
— Fermi temperature 7= Er/kz ~ 10 000 K

Phonons and electrons can be treated separately
(Born-Oppenheimer approximation): C=C,, + C,
« Note that 7, may be different from 7, «



Phonons (background)

a
Simple model: W‘WW‘ W W
FLR=+k (I - a) m k m

Equation of motion for particle » with displacement u,:
mdu ldt*=ku, ,+u, ,—2u)

Try wave-like solution:
un:uoei(thrqxn) :>eiqa

Get dispersion relation:

w=+2 \/(k/m) sin (1/2qa) 2n/a nla - 0 4 n/a 2t/

The dispersion curve of a ball-and-spring model
of a one-dimensional monatomic lattice



Chain of atoms

Hamiltonian
Equation is :

Solving the
Secular Eqn:

We obtain

q _ T T T T T
H = Z(EiACiA Cia + EiBCiB Cis _tCiA Cis _tCiA Ciis _tCiB Gt h-C-)
i

A 1K) = 0 t(1+e")
t(1+e™?) 0

e(k)  -t(l+e™®)
td+re™)  -g(k)

£(K) = +4/2t(L+ cos(ka))

uA‘k>A

Ug [K)

Two atom basis leads to the basic features of
the graphene bandstructure

B

}zdk)‘k)

where,

k) =ualk), +uelk)y

rgy




O Optical phonons do not

i oy contribute at low T
v Thermal expansion can
R be neglected (C, = C,)

1 L 1 " | L L L I 1 1 n
0 02 04 06 08 1010 OB 06 04 Q2 00 Ol 02 Q304 Q%

{000) {0o1)  (011) (000) (111)

Roducod Wave Vecor Harmonic approximation
Figure 2.5 Phonon dispersion curves of GaAs determined by inelastic neutron scattering. The .
points (000) etc. refer to the reciprocal lattice directions of the phonons. (After Waugh and ]_S excellent

Dolling, 1963.) The curves refer to different lattice models.

I st Brillouin zone

Region of interest at low T

Group velocity: ,
v, = doldq = aN(kim)

. . . The di ion curve of a ball-and-spring model
(Contlnuum ap p rOXImatlon) Lfa omis:ncnsional(:nonalomic lart)ticg:s =



Classical treatment

kinetic and potential energy: |
1

E = Em (viJroozxz)
Bolzmann distribution:

—Elk,T

glE)=e
Average energy:

}fE e—E/kBdedvx
E — 00

;’O‘f e T gy dv. )

3D (x, y, z) per mole (V,):

U=3N,E E =kgT
Heat capacity:
dU
C = ﬁ — 3NA kB
J
= 24.94
mol K

3+3 degrees of freedom (kin+pot in 3D), 2 k;T each
=> Dulong-Petit law: C=3N,k; (molar heat capacity)



Quantum viewpoint (Einstein)

energy as quanta in a set of harmonic oscillators:
E = (n—l—%)h(x)

Bose-Einstein distribution:

1
g(E) = holk,T
e —

1

Simple assumption: @ = w, (Einstein 1907)

+=)hw, U= E dN/dE g(E) dE
(h(DE/k T)2ehwE/kBT C=dU/dT
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Einstein's model

(Rw gk, T) T

<ehwE/kBT_ 1 )2

C=3N,k,
Consistent with Dulong-Petit:
— 3N kg

T — o0

Looks fine at intermediate temperatures
WHEN appropriate w, 1s chosen

Fails at 7"— 0 (vanishes exponentially, 1.e. too fast)
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Heat capacity of diamond

Dulong-Petit o ® <
C,

® TD ~
Debye o 2000 K

®
)
L, — Einstein

0 2 4 | |

0
0.5 T/T, 1.0

Figure 2.6 The original data on the low-temperature heat capacity of diamond used by Einstein
(1907) to support his quantum theory of the heat capacity of solids. The data are compared
with — — —— classical theory, —————— Einstein theory, and .............. Debye theory.




Debye's theory

i(qlx1+%xz+% x3) _ i[ql(x1+L)+q2(x2+L)+q3(x3-I-L)]

“phonons in a box” & e =¢e
periodic boundary conditions !¢t Lral) —

2T 41t
L==%2 =0, = +
ql Tl'l’l ) qz 5 L ) L ’

.. constant density of states 1,27y _ 7

. o 3
in g-space L~ 8m

4t 3V VW

3 4 81 61

Number of phonon modes (up to g): N =
(continuum approx. @ = vyq)

2.3
=> greatest needed o = w,, s _6mVvN W,
Wp V v 1p I
B

3 independent modes (2 transverse, 1 longitudinal)
N oscillators => 3 N phonon modes
=> density of states dN _3Vw’

dw 2100y°
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phonon energy

& heat capacity

with

Having f x'e

oe—

1)’

Debye's result

U= d—Ng(w)hoodw
, dw
3Vh w’
21_[ hw/kT d(k)
7 TIT A
C=9N k,(—) A
A B TD { <x_1)2
L= A w
k,T
41t => _ 12 4
=75 10 C = 5 T N kg,

14



Real 1 T T
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Fig. 3.2. (a) Specific heat of solid Ar, Kr and Xe. The horizontal line is the classical
Dulong—Petit value [3.11]. (b) Specific heat solid of Ar as a function of 7% at T' < 2K

3.1,3.12]



Conduction electrons

Free electron model, dispersion relation:

-
E, = k
| = 5ok
“electron waves 1n a box” e A o
k.,.=0,=% T T (Ak)* = (T)
Fermi wavevector, - cnergy, - temperature (remember spin degeneracy)
2 2 21/3
3,2 A~ 3TN Er
k,=V3TNIV , E,= , T.=—L
d d 2me< V ) d k.
Density of states: AN _3y/E__ ™ /omE o
dE 2 \E: 7=°K° 7o
Fermi-Dirac distribution (u ~ E): N
9(E) = eE—keT ¢ 00



=> Sommertfeld result

. . *_HE) " mievaes ™ (2 ERY
collect the 1ngredlents: [t R CL (g) " (“”O(mb)

dN dg e dN >
E— dE ~ kiT =vT
f Ear dE o Y
For free electrons: . — T

=L N ky—
5 V4 BTF

The real situation 1s more
complex but 1t boils
down to evaluating
the density of states
at the Fermi surface!

¥ hcp

Figure 3.3 The Fermi surfaces of (a) potassium, body-centred cubic and monovalent: the Fermi
surface is a free electron sphere to an accuracy of better than 1° 4. {b) copper, face-centred cubic and
monovalent; the Fermi surface lies closer to the Brillouin zone boundary than for potassium and is
distorted; (c) ber!lhum hexagonal close-packed and divalent: electrons spill into the 2nd and 3rd
Brillouin zones. The ‘cigar’ contains electrons, whilst the ‘coronet’ contains holes (Loucks and
Cutler, 1964).
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Examples

Contribution from both phonons & conduction electrons

C/T [mJ mol! K2]

C

C=yT+pT’ => == y+B T’
1.6 T T T T T T T Properties of some metals. In some cases a mean average is given if two
; ) 2 isotopes are present. For the two compounds included (Aulns and PrNis) the data
144+ in Cu: 7/ ~ IBT at4 K are for the element in italics.
isotope/ p Vin 0p v TF P273K
1.2F T compound [gem™®]  [em® mol™] [K] [mJmol™'K™?] [10*K] [uQ cm]
2TAl 2.70 9.97 428  1.35 13.5 2.65
1.01 ] 63,65y 8.93 7.11 344  0.691 8.12 1.68
93Nb 8.58 10.9 277 7.79 6.18 12,5
0.8 1 107,109 o 10.50 10.3 227 0.640 6.36 1.59
06 < ¢ ; . 13,151 7.29 15.7 108 1.69 10.0 8.37
1 1 | 1 1 117,119¢g
: ++7Sn 7.31 16.3 200 1.78 11.7 11.0
°c 2z 4 ¢ 28 , 1012 1418 195pt 21.47 9.10 239 6.49 10.3 10.6
(LY 197 Ay 19.28 10.2 162 0.689 6.41 2.24
Fig. 3.4. Specific heat C' of copper divided by 203,205 11.87 17.2 78 147 9.46 18.0
. 2
the temperature 7" as a function of 7 [3.4] Aulng 10.3 41.5 187 315 9.96 6.3
PrNis 8.0 51.0 230 40 - 80
: : 2
Room temperature; phonons dominate T T

T <1 K; conduction electrons dominate

C_



Superconductors

Phonons — NO CHANGE

Electrons — JUMP at T.
AC~143yT,
BCS supercond.

expat T <T,
C o o PTIT)

Carried by normal
quasiparticles

4 T T T T T T T —T
10 F -
i FAC
3 | 5'.l‘(3‘} C -
T | &
'_x I~ Cs | -1 ':c
5 T
E 2f I 4 8
2 ' 2
Q | Cn 1 £
&
1h i
L 4
AL
0 L L 1
0 0.5 1.0 15 2.0
(a) T K] (b)

Cos/yT, = 9.17 exp(—1.5T,/T)

o 03} 4
iy
¥
0.1} J
0.03| 4
0.01
1.0 2.0 3.0 4.0 5.0
(c) TJT

c

Fig. 3.5. (a) Specific heat of Al in the superconducting (Cs) and normal-conducting
(Ch) states [3.20]. (b) Specific heat C' of Hg divided by temperature 1" as a function of
T2 in the normal (A) and superconducting (®) states. The straight lines correspond
to (3.9,3.13) with p = 72K and v = 1.82mJmol ' K™2 [3.21]. For the measure-
ments in the normal conducting states, a magnetic field B > B had to be applied to
suppress the superconducting state. (¢) Electronic specific heat Ces of superconduct-
ing V (®) and Sn (O) divided by v7% as a function of 7. /7. The full line represents

(3.17) [3.22]
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Amorphous solids

Tunneling between configurations of nearly equal energies 1s

believed to be responsible for the heat capacity that remains at
very low temperatures in amorphous solids, when the phonon
contribution has practically vanished. -

h54
g 107
Empirically: C=al” e
mpirically: ,=a
Q
§ 10-2}
]
|
107}
107 L
Cristobalite Vitreous silica 107
Fig. 3.6. Schematic two-dimensional representation of the structure of cristobalite, 10-#
a crystalline modification of SiO2, and of vitreous silica, the amorphous modification i . 1‘0 1'0 160

of SiO,. Filled circles represent silicon atoms and open circles oxygen atoms. Three

possible types of defects are indicated by arrows [3.5,3.26] fampratne &

Figlll‘e 2.16 (a) TI_1e heat capacity of vitreous (amorphous)
silica, compared with the data for crystalline quartz (Zeller and Pohl, 1971).

20



Liquid helium-4

Pronounced lambda-anomaly

at the superfluid transition
(resemblance with BEC)
Two-fluid model below T,

— superfluid part with S =0

Specific heat, C, (Jmol 'K™")

—normal component, finite C
—below 7'~ 0.5 K just SF @

(phonons still exist => C oc T°)

Fig. 2.10. Specific heat of liquid *He at temperatures close to its superfluid transi-
tion. (a) With increasing 7-resolution on a linear temperature scale [2.27] and (b)
on a logarithmic temperature scale. Reprinted with permission from [2.30]; copy-
right (2003) Am. Phys. Soc.. These latter data have been taken in flight on earth
orbit to avoid the rounding of the phase transition by gravitationally caused pres-
sure gradients in the liquid sample of finite height. For the applied high-resolution
thermometry see Sect. 12.9

Specific heat, C,, (J mol-1 K-1)

L
o
S—

120

100

80 F

60 F T>T,
a0k

107 10% 10® 10* 1072
[1-7/7; |
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Liquid helium-3 & mixtures

‘He is a Fermi fluid

Low-T1 behavior shows

degenerate Fermi
properties => Coc T

Helium mixtures
“Interpolate” between
the two but at very
low temperatures

(mK regime) the Fermi physics of the
‘He component always becomes dominant

4.6f

b et 33.95 |

L I
» P S 32.50 m
29.30
2o

! o o 7 4.2 E
Superfluid _"’TU'U‘T:‘"_— 29.08 °
4.2} transition 10 ° o o4 ] "22.22 E
]
! ) E
3.8
pogio—og2a e © 2030 17.01

3.8

-
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]
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| po]  fooeatt- 1495 |
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L 1 4
} P S 21 3.0 MM\
I
[ 0.06
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30 'P“D“U'ro-v—o—*’—"- 2.18
Lﬂ'lﬁw)—“—n— 0 1 W
26
26 A 1 1 1 1 2 I l i l [
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Temperature, T (mK)

Fig. 2.15. Specific heat C' divided by the gas constant R times temperature T’
of liquid *He at millikelvin temperatures at the given pressures (in bar). Note the

different scales [2.26]
2
T T

NAkB_

C =
2 T,
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Specific heat, Cp [mJ mol~' K]
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Fig. 3.12. Specific heats of several materials below 1K [3.45]. (This publication
provides references to the original literature)
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