Mathematics for Economists

Mitri Kitti
Aalto University

Vectors and Matrices

Matrices

$\Delta m \times n$ (real) matrix A, we denote $A \in \mathbb{R}^{m \times n}$, is an array

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right),
$$

where $a_{i j} \in \mathbb{R}, i=1, \ldots, m, j=1, \ldots, m$

- notation: $A_{i}=\left(a_{i 1}, \ldots, a_{\text {in }}\right)$ (ith row), $A^{j}=\left(a_{1 j}, \ldots, a_{m j}\right)$ (j th column)
- Special matrices: square, identity matrix (I), symmetric, diagonal, upper (lower) triangular

Matrix algebra: scalar multiplication

Scalar multiplication: Given an $m \times n$ matrix A and a real number $\alpha \in \mathbb{R}$, the product of A and the number α is a matrix of size $m \times n$ defined as follows:

$$
\alpha A=\alpha\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha a_{11} & \cdots & \alpha a_{1 n} \\
\vdots & \ddots & \vdots \\
\alpha a_{m 1} & \cdots & \alpha a_{m n}
\end{array}\right)
$$

Matrix algebra: addition

Addition. Given two matrices A and B of the same size $m \times n$, their sum is a matrix of size $m \times n$ defined as follows:

$$
A+B=\left(\begin{array}{ccc}
a_{11}+b_{11} & \cdots & a_{1 n}+b_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & \cdots & a_{m n}+b_{m n}
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
\vdots & \ddots & \vdots \\
b_{m 1} & \cdots & b_{m n}
\end{array}\right)
$$

Note: A and B must be of the same size

Matrix algebra: addition

Addition. Matrix addition has the following properties:

- Associativity: $A+(B+C)=(A+B)+C$
- Commutativity: $A+B=B+A$
- Identity: $A+\mathbf{0}=A$, where $\mathbf{0}$ is a matrix of zeros of the same size as A.

Matrix algebra: multiplication

Multiplication. Given two matrices A and B of size $k \times m$ and $m \times n$, respectively, their product $A B$ is a matrix of size $k \times n$ obtained as follows:

- For every $i=1, \ldots, k$ and $j=1, \ldots, n$, the (i, j) th entry of $A B$ is the product between the i th row of A and j th column of B :

$$
\left(\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i m}
\end{array}\right)\left(\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{m j}
\end{array}\right)=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i m} b_{m j} .
$$

Example:

$$
\left(\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right)\left(\begin{array}{cc}
X & Y \\
W & Z
\end{array}\right)=\left(\begin{array}{ll}
a X+b W & a Y+b Z \\
c X+d W & c Y+d Z \\
e X+f W & e Y+f Z
\end{array}\right)
$$

Matrix algebra: multiplication

Multiplication. Matrix multiplication satisfies:

- Associativity: $A(B C)=(A B) C$.
- However, multiplication does not satisfy commutativity. If $A B$ is well-defined, it could happen that
- $B A$ is not well-defined, or
- $A B \neq B A$

Example:

$$
\begin{aligned}
& \left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right)
\end{aligned}
$$

Matrix algebra: multiplication

- What matrices do to vectors? Twist and scale
- Examples

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

try what happens to vector $\boldsymbol{x}=(1,1)$ with these two, i.e., what are $A \boldsymbol{x}$ and $B \boldsymbol{x}$

Example: rotating an image

- Matrix $A=\left(\begin{array}{cc}0.5 & -0.87 \\ 0.87 & 0.5\end{array}\right)$
- $A($ Queen Elizabeth II of the United Kingdom by Andy Warhol 1985)

Example: rotating an image

- Matrix $A=\left(\begin{array}{cc}0.5 & -0.87 \\ 0.87 & 0.5\end{array}\right)$
- $A($ Queen Elizabeth II of the United Kingdom by Andy Warhol 1985)

Example: nonlinear image filtering

- vectors $=$ pixels at (x, y) coordinates
- map each pixel to a new position, but depending on the pixel use a different mapping (" $A(x) x$ " becomes nonlinear)

$$
A(x, y)=\left[\begin{array}{cc}
\cos \left(\theta n \sqrt{\left(x^{2}+y^{2}\right) / k}\right) & -\sin \left(\theta n \sqrt{\left(x^{2}+y^{2}\right) / k}\right) \\
\sin \left(\theta n \sqrt{\left(x^{2}+y^{2}\right) / k}\right) & \cos \left(\theta n \sqrt{\left(x^{2}+y^{2}\right) / k}\right)
\end{array}\right]
$$

Matrix algebra: identity matrix

The identity matrix is an $n \times n$ matrix of the following form:

$$
I=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

- For any A of size $m \times n$, we have $A I=A$
- For any B of size $n \times k$, we have $I B=B$
- For any C of size $n \times n$, we have $I A=A I=A$

Matrix algebra: transpose

- Transpose. Given a $k \times n$ matrix A, the transpose of A is the $n \times k$ matrix A^{T} obtained by interchanging the rows and columns of A. That is, the (i, j) th entry of A^{T} is the (j, i) th entry of A.
- Example:

$$
\left(\begin{array}{lll}
3 & 4 & 1 \\
0 & 1 & 0
\end{array}\right)^{T}=\left(\begin{array}{ll}
3 & 0 \\
4 & 1 \\
1 & 0
\end{array}\right)
$$

Matrix algebra: transpose

Transpose. The transpose satisfies the following properties:

- $(A+B)^{T}=A^{T}+B^{T}$
- $\left(A^{T}\right)^{T}=A$
- $(\alpha A)^{T}=\alpha A^{T}$, where $\alpha \in \mathbb{R}$
- $(A B)^{T}=B^{T} A^{T}$
- $\operatorname{rank} A=\operatorname{rank} A^{T}$.

Example: portfolio variance

Covariance matrix of annualized daily returns of Faang-stocks (AAPL,AMZN,FB,GOOGL,NFLX)

$$
V=\left(\begin{array}{lllll}
0.095 & 0.065 & 0.097 & 0.060 & 0.064 \\
0.068 & 0.108 & 0.148 & 0.063 & 0.088 \\
0.097 & 0.148 & 0.300 & 0.124 & 0.206 \\
0.060 & 0.063 & 0.124 & 0.082 & 0.066 \\
0.064 & 0.088 & 0.206 & 0.066 & 0.195
\end{array}\right)
$$

Assume investing one euro to a portfolio; weight vector $\boldsymbol{w}=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$, $\sum_{i} w_{i}=1$
Variance of the portfolio is $\boldsymbol{w}^{\top} V \boldsymbol{w}$

Systems of linear equations in matrix form

Recall that a linear system with m equations and n unknowns is:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

where $a_{i j}$ and b_{i} are given parameters, and x_{j} are the unknown variables.
This system can also be written in matrix form:

$$
\begin{aligned}
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) & =\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right) \\
A \mathbf{x} & =\mathbf{b},
\end{aligned}
$$

where the m by n matrix A is called the coefficient matrix, \mathbf{x} is an $n \times 1$ vector of unknowns and \mathbf{b} is an $m \times 1$ vector of parameters

Systems of linear equations in matrix form

We can represent the system of equations in an even more compact form by defining the augmented coefficient matrix \hat{A} :

$$
\hat{A}=\left(\begin{array}{cccc}
a_{11} & \cdots & a_{1 n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m n} & b_{m}
\end{array}\right)
$$

The augmented coefficient matrix has dimension m by $(n+1)$

Exercise (from Lecture 1)

- System of 4 linear equations in 4 unknowns:

$$
\begin{aligned}
2 x_{1}-x_{2} & =0 \\
-x_{1}+2 x_{2}-x_{3} & =0 \\
-x_{2}+2 x_{3}-x_{4} & =0 \\
-x_{3}+2 x_{4} & =5
\end{aligned}
$$

- The augmented matrix corresponding to the above system:

$$
\left[\begin{array}{cccc:c}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & 5
\end{array}\right]
$$

Matrix inversion

From now on, we will focus on $n \times n$ matrices, i.e. square matrices

- For a given matrix A, we say that B is an inverse for A if $A B=B A=l$.
- Not every matrix has an inverse
- If A has an inverse, then the inverse is unique
- The inverse of A is usually denoted as A^{-1}

Matrix inversion

For any two invertible matrices A and B having the same size, the following properties hold:

- $(A B)^{-1}=B^{-1} A^{-1}$
- $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
- $\left(A^{-1}\right)^{-1}=A$

Matrix algebra

- Consider a generic 2×2 matrix:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

- The inverse is

$$
A^{-1}=\left(\begin{array}{cc}
\frac{d}{a d-b c} & -\frac{b}{a d-b c} \\
-\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right)=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

- We have that A is invertible (and, equivalently, nonsingular) if and only if $a d-b c \neq 0$
- The scalar $a d-b c$ is called the determinant of A

Determinant

The determinant of a square matrix A, denoted as $\operatorname{det} A$ or $|A|$, is defined recursively as follows:

1. For 1×1 matrices, $\operatorname{det} A=a_{11}$
2. For $n \times n$ matrices,

$$
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{-1,-j}
$$

where $A_{-1,-j}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the 1 st row and j th column of A.

Terminology:

- $\operatorname{det} A_{-1,-j}$ is called a minor of A
- $(-1)^{1+j} \operatorname{det} A_{-1,-j}$ is called a cofactor of A

Determinant

- Example: Consider the 3×3 matrix

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

- The minors of A are:

$$
\begin{aligned}
& \operatorname{det} A_{-1,-1}=\operatorname{det}\left(\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right) \\
& \operatorname{det} A_{-1,-2}=\operatorname{det}\left(\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right) \\
& \operatorname{det} A_{-1,-3}=\operatorname{det}\left(\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)
\end{aligned}
$$

Determinant

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

- The determinant of A is

$$
\operatorname{det} A=a_{11} \operatorname{det} A_{-1,-1}-a_{12} \operatorname{det} A_{-1,-2}+a_{13} \operatorname{det} A_{-1,-3}
$$

Determinant: a tip

Checkboard pattern for the signs of the cofactors

$$
\left(\begin{array}{cccc}
+ & - & + & - \\
- & + & - & + \\
+ & - & + & - \\
- & + & - & +
\end{array}\right)
$$

Example

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

$$
A_{23}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 8 \\
7 & 8 & 9
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
7 & 8
\end{array}\right) \quad C_{23}=(-1)^{2+3} \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
7 & 8
\end{array}\right)=(-1)(-6)=6
$$

Rules of determinant

For any two square matrices A and B of the same size, the determinant satisfies the following properties:
$-\operatorname{det} A^{T}=\operatorname{det} A$

- $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$
$\Rightarrow \operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$
- In general, $\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$

Nonsingular matrices

Proposition

For a square matrix A, the following are equivalent:

1. A is nonsingular
2. A is invertible
3. $\operatorname{det} A \neq 0$.

Linear independence of a set of vectors

Proposition

Vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$ in \mathbb{R}^{n} are linearly dependent if and only if the linear system

$$
A\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right)=0
$$

has a nonzero solution $\left(a_{1}, \ldots, a_{m}\right)$, where A is the $n \times m$ matrix whose columns are the vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$.

Determinant and linear independence

Proposition
A set of n vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ in \mathbb{R}^{n} is linearly independent if and only if

$$
\operatorname{det}\left(\begin{array}{lll}
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n}
\end{array}\right) \neq 0
$$

Proposition
If $k>n$, any set of k vectors in \mathbb{R}^{n} is linearly dependent.

Exercise

Determine whether or not the following three vectors are linearly independent:

$$
\begin{aligned}
& \boldsymbol{u}_{1}=(1,2,3) \\
& \boldsymbol{u}_{2}=(0,0,0) \\
& \boldsymbol{u}_{3}=(1,5,6) .
\end{aligned}
$$

Cramer's rule

We can use the determinant to solve systems of linear equations via the so-called Cramer's rule.

For a nonsingular A, the unique solution to $A \boldsymbol{x}=\boldsymbol{b}$ is obtained as

$$
x_{i}=\frac{\operatorname{det} B_{i}}{\operatorname{det} A} \quad \text { for any } i=1, \ldots, n
$$

where B_{i} is the matrix A with the i th column replaced by \boldsymbol{b}.

Cramer's rule: exercise

Exercise. Remember the IS-LM model from Lecture 1:

$$
\begin{align*}
s Y+a r & =I^{0}+G \tag{IS}\\
m Y-h r & =M_{s}-M^{0} \tag{LM}
\end{align*}
$$

where Y and r are unknown variables and all other parameters are positive constants. Solve this system using Cramer's rule.

Cramer's rule: exercise

Multiplier matrix (let us denote it by A) is

$$
\left(\begin{array}{cc}
s & a \\
m & -h
\end{array}\right) .
$$

Determinant $\operatorname{det}(A)=s \cdot(-h)-a \cdot m=-s h-a m$ (assume this is non zero) Matrices B_{1} and B_{2} are

$$
B_{1}=\left(\begin{array}{cc}
I^{0}+G & a \\
M_{s}-M^{0} & -h
\end{array}\right) .
$$

and

$$
B_{2}=\left(\begin{array}{cc}
s & I^{0}+G \\
m & M_{s}-M^{0}
\end{array}\right)
$$

Cramer's rule: exercise

$$
\begin{aligned}
& \operatorname{det}\left(B_{1}\right)=-h\left(I^{0}+G\right)-a\left(M_{s}-M^{0}\right) \text { and } \\
& \operatorname{det}\left(B_{2}\right)=s\left(M_{s}-M^{0}\right)-m\left(I^{0}+G\right)
\end{aligned}
$$

Solution

$$
\begin{aligned}
& Y=\operatorname{det}\left(B_{1}\right) / \operatorname{det}(A)=\left[-h\left(I^{0}+G\right)-a\left(M_{s}-M^{0}\right)\right] /(-s h-a m) \text { and } \\
& r=\operatorname{det}\left(B_{1}\right) / \operatorname{det}(A)=\left[s\left(M_{s}-M^{0}\right)-m\left(I^{0}+G\right)\right] /(-s h-a m)
\end{aligned}
$$

