Aalto University School of Science

MS-E2135 Decision Analysis Lecture 2

- Biases in probability assessment
- Expected Utility Theory (EUT)
- Assessment of utility functions

Last week

\square Decision trees provide a visual and structured way to modelling sequential decision-making problems which involve uncertainties

- Paths of decisions and random events
\square Probabilities are employed to model uncertainties
- Subjective probabilities can be employed even in the absence of data
\square The elicitation of probabilities may involve subjective judgements

Different kinds of uncertainties

\square We frequently make statements about uncertainty

- "We will have a white Christmas." \leftrightarrow subjective probability
- "The 100 00o $^{\text {th }}$ decimal of π is $6 . " \leftrightarrow$ a fact, the uncertainty lies in the available information
- "I win in a lottery with probability \leftrightarrow frequentist or classical 0,00005." probability interpretation
\square Uncertainties are associated with events with unknown outcome
\square Probabilities provide a quantitative measure of this uncertainty

Classical interpretation

\square Jacob Bernoulli (1685), Pierre-Simon Laplace (1814)

- Probability = The ratio between (i) the number of possible outcomes defining the event and (ii) the total number of possible outcomes which are assumed to be equally likely

$$
P(A)=\frac{\#(A)}{\#(S)}
$$

$\#(A)=$ Number of possible outcomes favourable to A
$\#(S)=$ Total number of possible outcomes

Circular definition: Probability defined in terms of "equally likely"
\square Principle of indifference:

- Each event is defined as a collection of outcomes
- Events are "equally likely" if there is no known reason for predicting the occurrence of one event rather than another
- The probability to get " 6 " when tossing a dice is 1/6

Frequentist interpretation

Leslie Ellis, mid 19 ${ }^{\text {th }}$ century

- Probability = The relative frequency of trials in which the favourable event occurs as the number of trials approaches infinity

$$
P(A)=\lim _{n \rightarrow \infty} \frac{n(A)}{n}
$$

$n(A)=$ Number of times that A occurs
$n=$ Total number of trials

[You may determine the probability of getting "heads" by tossing a coin (which may not be fair) a very large number of times

- Yet in many cases repeated trials cannot be carried out
- E.g., will there be a recession if the interest rates are raised by 1% ?

Subjective (Bayesian) interpretation

ㅁ Bruno De Finetti (1937)

- Probability = An individual's degree of belief in the occurrence of a particular outcome
- The probability may change e.g. when additional information is received
- The event may have already occurred
- Examples
- "I believe there's a 40 \% chance that we will have a white Christmas"
- "I'm 15% sure that Martin Luther King was 34 years when he died"

Biases in probability assessment

Subjective judgements by "ordinary people" and "experts" alike are prone to different kinds of biases

- Cognitive bias: Systematic discrepancy between the 'correct' answer and the respondent's actual answer
- E.g., assessments of conditional probabilities differ from the correct value given by the Bayes' rule
- Motivational biases: judgements are influenced by the desirability or undesirability of events, e.g.
- Overoptimism about success probabilities
- Strategic underestimation of failure probabilities

Some biases can be difficult to correct

Representativeness bias (cognitive)

- If x fits the description of A well, then $\operatorname{Prob}(x \in A)$ is assumed to be large
. The 'base rate' of A in the population (i.e., the probability of A) is not taken into account
- Example: You see a very tall man in a bar. Is he more likely to be a professional basketball (BB) player or a teacher?

Professional basketball players
$\Delta 5 \begin{aligned} & \text { Aalto University } \\ & \text { School of Science }\end{aligned}$
Teachers

Representativeness bias

- What is meant by 'very tall'?
- 195 cm ?
- Assume all BB players are very tall
- The share of Finnish men taller than 195 cm is about 0.3%
- If BB players go to the bar as often as teachers, it is more probable that the very tall man is a teacher, if the share of very tall men exceeds 0.31%
- Your responses: 87,5\% teacher, 12,5\% basketball player

Height	Males					
	$\begin{array}{r} 20-29 \\ \text { years } \\ \hline \end{array}$	$\begin{array}{r} 30-39 \\ \text { years } \\ \hline \end{array}$	$\begin{array}{r} 40-49 \\ \text { years } \end{array}$	$\begin{array}{r} 50-59 \\ \text { years } \\ \hline \end{array}$	$\begin{array}{r} 60-69 \\ \text { years } \\ \hline \end{array}$	$\begin{array}{r} \hline 70-79 \\ \text { years } \\ \hline \end{array}$
Percent under- $4^{\prime} 10^{\prime \prime}$	-	-	-	(B)	-	-
4'11"	-	-	-	(B)	(B)	-
$5{ }^{\prime}$.	(B)	-	-	(B)	(B)	-
5'1"	(B)	(B)	(B)	(B)	${ }^{1} 0.4$	(B)
5'2"	(B)	(B)	(B)	(B)	(B)	(B)
$53^{\prime \prime}$	(B)	${ }^{1} 3.1$	11.9	(B)	${ }^{1} 2.3$	(B)
5'4"	3.7	14.4	3.8	14.3	4.4	5.8
$5{ }^{\prime} 5^{\prime \prime}$	7.2	6.7	5.6	7.6	7.8	12.8
$56^{\prime \prime}$	11.6	13.1	9.8	12.2	14.7	23.0
5'7"	20.6	19.6	19.4	18.6	23.7	35.1
5'8'	33.1	32.2	30.3	30.3	37.7	47.7
5'9"	42.2	45.4	40.4	41.2	50.2	60.3
5'10"	58.6	58.1	54.4	54.3	65.2	75.2
5'11"	70.7	69.4	69.6	70.0	75.0	85.8
$6{ }^{\prime}$.	79.9	78.5	79.1	81.2	84.3	91.0
	89.0	89.0	87.4	91.6	93.6	94.9
$6^{\prime} 2$ "	94.1	94.0	92.5	93.7	97.8	98.6
$6{ }^{\prime \prime} 3^{\prime \prime}$	98.3	95.8	97.7	96.6	99.9	100.0
$6^{\prime \prime} 4^{\prime \prime}$	100.0	97.6	99.0	99.5	100.0	100.0
$6^{\prime} 5$ "	100.0	99.4	99.4	99.6	100.0	100.0
6'6"	100.0	99.5	99.9	100.0	100.0	100.0

Representativeness bias

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in antinuclear demonstrations.

Please check the most likely alternative:
a. Linda is a bank teller.
b. Linda is a bank teller and active in the feminist movement.

Many choose b, although $b c a$ whereby $\mathrm{P}(\mathrm{b})<\mathrm{P}(\mathrm{a})$

- Your responses: $70 \% \mathrm{a}, 30 \% \mathrm{~b}$.

Bank tellers

Bank tellers who are active in the feminist movement

Conservativism bias (cognitive)

I After obtaining some information about an uncertain event, people typically do not adjust their initial probability estimate about this event as much as they should based on Bayes' theorem.

Example: Consider two bags X and Y . Bag X contains 30 white balls and 10 black balls, whereas bag Y contains 30 black balls and 10 white balls. Suppose that you select one of these bags at random, and randomly draw five balls one-by-one by replacing them in the bag after each draw. Suppose you get four white balls and one black. What is the probability that you selected bag X with mainly white balls?

- Typically people answer something between 70-80\%. Yet, the correct probability is 27/28 $\approx 96 \%$.
\square Your responses: mean response 55\%. Many (20\%) answered 50\%.

Representativeness and conservativism bias - debiasing

Pay attention to the logic of joint and conditional probabilities and Bayes' rule

- Split the task into an assessment of
- The base rates for the event (i.e., prior probability)
- E.g., what are the relative shares of teachers and pro basketball players?
- The likelihood of the data, given the event (i.e., conditional probabilities)
- E.g., what is the relative share of people active in the feminist movement? Is this share roughly the same among bank tellers as it is among the general population or higher/lower?
- What is the likelihood that a male teacher is taller than 195 cm ? How about a pro basketball player?

Availability bias (cognitive)

- People assess the probability of an event by the ease with which instances or occurences of this event can be brought to mind.
\square Example: In a typical sample of English text, is it more likely that a word starts with the letter K or that K is the third letter?
- Most (nowadays only many?) people think that words beginning with K are more likely, because it is easier to think of words that begin with " K " than words with " K " as the third letter
- Yet, there are twice as many words with K as the third letter
- Your responses: 35% first letter, 65% third letter.
- Other examples:
- Due to media sensationalist reporting in the US, the number of violent crimes such as child murders seems to have increased
- Yet, compared to 2000's, 18 times as many children were killed per capita in 1950's and twice as many in 1990's
- Probabilities offlight accidents after the volcanic eruption in Iceland in 2011

Availability bias - debiasing

\square Conduct probability training
\square Provide concrete counterexamples
\square Provide statistics
\square Still, based on empirical experimental studies, availability bias is difficult to correct

Anchoring bias (cognitive)

\square When assessing probabilities, respondents may be guided by reference assessments

- Often, the respondent is anchored to the reference assessment

Example: Is the percentage of African countries in the UN
A. Greater or less than 65 ? What is the exact percentage?

- 'Average' answer: Less, 45\%.
- Your responses: Less, median 39\%, mean 39\%.
B. Greater or less than 10 ? What is the exact percentage?
- 'Average' answer: Greater, mean 25%.

Anchoring bias - debiasing

\square Avoid providing anchors

- But there are contexts where deliberate attempts to influence answers are made (e.g., marketing)
\square Provide multiple and counteranchors
- If you have to provide an anchor, provide several which differ significantly from each other

Use different experts who use different anchors
\square Based on empirical evidence, anchoring bias is difficult to correct

Hindsight bias

People falsely believe they could have predicted the outcome of an event

- Once the outcome has been observed, the DM may assume that they are the only ones that could have happened and underestimate the uncertainty
U Undermines possibilities for learning from the past
Alerting people to this bias has little effect

\square How to mitigate:

- Argue against the inevitability of the reported outcome
- Develop alternative descriptions of how the future might have unfolded differently

Desirability / undesirability of events (motivational)

. People tend to believe that there is a less than 50% probability that negative outcomes will occur compared with peers

- "I am less likely to develop long-term symptoms even if I catch COVID-19"
- People tend to believe that there is a greater than 50% probability that positive outcomes will occur compared with peers
- "I am more likely to become a homeowner / have a starting salary of more than 4,500€"
- Earlier responses on owning a home: 40\% (20\%) more likely, $\mathbf{1 2 \%}$ (12\%) less likely, $\mathbf{4 8 \%}$ (68\%) equally likely
- Earlier responses on salary: 23\% (20 \%) more likely, $\mathbf{1 0 \%}$ (10%) less likely, $\mathbf{6 7 \%}$ (71\%) equally likely
- People tend to underestimate the probability of negative outcomes and overestimate the probability of positive outcomes
- The estimates are not conservative - the actual risks are higher than estimated

Desirability / undesirability of events debiasing

\square Use multiple experts with alternative points of view
\square Place hypothetical bets against the desired event
\square "Make the respondent think about monetary consequences"
\square Use decomposition and realistic assessment of partial probabilities

- "Split the events"
\square Yet, empirical evidence suggests that motivational biases are often difficult to correct

Further reading: Montibeller, G., and D. von Winterfeldt, 2015. Cognitive and Motivational Biases in Decision and Risk Analysis, Risk Analysis

Overconfidence (cognitive)

\square People tend to assign overly narrow confidence intervals to their probability estimates

1. Martin Luther King's age at death 39 years
2. Length of the Nile River $\mathbf{6 7 3 8} \mathbf{~ k m}$
3. Number of Countries that are members of OPEC 13
4. Number of Books in the Old Testament 39
5. Diameter of the moon $\mathbf{3 4 7 6} \mathbf{~ k m}$
6. Weight of an empty Boeing $747 \mathbf{1 7 6 9 0 0} \mathbf{~ k g}$
7. Year of Wolfgang Amadeus Mozart's birth 1756
8. Gestation period of an Asian elephant 21.5 months
9. Air distance from London to Tokyo $9590 \mathbf{~ k m}$
10. Depth of the deepest known point in the oceans $\mathbf{1 1 0 3 3} \mathbf{~ m}$

Responses by 25 subjects:
Number of questions in which the true value is within the given 90% confidence interval

- There are 10 questions with 90% confidence intervals

- If the intervals are correct, each answer is within the confidence interval with probability 0.9
- The probability that n estimates are within the intervals is $\binom{10}{n} 0.9^{n} 0.1^{10-n}$
- If the intervals are correct, the probability that at least 3 responses lie outside the intervals is $\sum_{n=3}^{10}\binom{10}{n} 0.1^{n} 0.9^{10-n} \approx 7 \% \rightarrow$ The null hypothesis of not being overconfident can be rejected (at the 5% confidence level)

Overconfidence - debiasing

\square Provide probability training
I Start with extreme estimates (low and high)
\square Use fixed values instead of fixed probability in elicitations:

- Do not ask: "What is the GDP growth rate x such that the probability of achieving this rate x or less x is 5% "
- Instead ask : "With what probability will the GDP growth rate be lower than -3% ?"
\square Based on empirical evidence, overconfidence is difficult to correct

Calibration curves

- People tend to assess probabilities best when they have frequent and concrete feedback
- E.g., US weather forecasters
\square Judged probabilities on x-axis
\square Observed frequencies on y-axis

Can be used for calibration

- Instead of the judged probability, use the corresponding observed frequency

- E.g., in the C case, the actual tail probabilities are more extreme than the judged ones

Risky or not (so) risky?

- Which one would you choose:
a) Participate in a lottery in which there is a 50% chance of getting nothing and a 50% chance of getting $10000 €$
b) Getting $4000 €$ for sure

. Many choose the certain outcome of $4000 €$, although the expected monetary value in alterantive a) is higher

Option b) involves less risk

How to compare risky alternatives?

\square Last week

- We used decision trees to support decision-making under uncertainty assuming that the DM seeks to maximize expected monetary value
- This is valid if the DM is risk neutral, i.e., indifferent between
- obtaining x for sure and
- a gamble with uncertain payoff Y such that $x=E[Y]$
- Many DMs are risk averse $=$ they prefer obtaining x for sure to a gamble with payoff Y such that $x=\mathrm{E}[Y]$

Expectation = 14500

- We accommodate the DM's risk attitude (=preference over alternatives with uncertain outcomes) in decision models

Expected utility theory (EUT)

] John von Neumann and Oscar Morgenstern, Theory of Games and Economic Behavior, 1944

- Axioms of rationality for preferences over alternatives with uncertain outcomes
- If the DM follows these axioms, she should prefer the alternative with the highest expected utility
- Elements of EUT
- Set of outcomes and "lotteries"
- Preference relation over lotteries which satisfies four axioms
- Representation of preference relation with expected utility

EUT: Sets of outcomes and lotteries

- Set of possible outcomes T :
- E.g., revenue T euros / demand T
- Set of all possible lotteries L :
- A lottery $f \in L$ associates a probability $f(t) \in[0,1]$ with each possible outcome $t \in T$
- Finite number of outcomes with a positive probability $f(t)>0$
- Probabilities add up to one $\sum_{t} f(t)=1$
- Lotteries are discrete probability mass functions (PMFs) / decision trees with a single chance node
- Deterministic outcomes are modeled as degenerate lotteries

Degenerate lottery

Decision tree PDF
$\bigcirc 10000$

Lottery
Decision tree
Probability mass function (PMF)

EUT: Compound lotteries

\square Compound lottery:

- Get lottery $f_{X} \in L$ with probability λ
- Get lottery $f_{Y} \in L$ with probability $1-\lambda$
\square Compound lottery can be modeled as lottery $f_{Z} \in L$:

$$
f_{Z}(t)=\lambda f_{X}(t)+(1-\lambda) f_{Y}(t) \forall t \in T \simeq f_{Z}=\lambda f_{X}+(1-\lambda) f_{Y}
$$

\square Example:

- You have a 50-50 chance of getting a ticket to lottery $f_{X} \in L$ or to lottery $f_{Y} \in L$

Preference relation

\square Let \succcurlyeq be preference relation among lotteries in L

- Preference $f_{X} \succcurlyeq f_{Y}: f_{X}$ is at least as preferred as f_{Y}
- Strict preference $f_{X}>f_{Y}$ defined as $\neg\left(f_{Y} \succcurlyeq f_{X}\right)$
- Indifference $f_{X} \sim f_{Y}$ defined as $f_{X} \succcurlyeq f_{Y} \wedge f_{Y} \succcurlyeq f_{X}$

EUT axioms A1-A4 for the relation \succcurlyeq

- A1: \geqslant is complete
- For any $f_{X}, f_{Y} \in L$, either $f_{X} \succcurlyeq f_{Y}$ or $f_{Y} \geqslant f_{X}$ or both
- A2: \succcurlyeq is transitive
- If $f_{X} \geqslant f_{Y}$ and $f_{Y} \succcurlyeq f_{Z}$, then $f_{X} \geqslant f_{Z}$
\square A3: Archimedean axiom
- If $f_{X} \succ f_{Y} \succ f_{Z}$, then $\exists \lambda, \mu \in(0,1)$ such that

$$
\lambda f_{X}+(1-\lambda) f_{Z}>f_{Y} \text { and } f_{Y} \succ \mu f_{X}+(1-\mu) f_{Z}
$$

\square A4: Independence axiom

- Let $\lambda \in(0,1)$. Then,

$$
f_{X}>f_{Y} \Leftrightarrow \lambda f_{X}+(1-\lambda) f_{Z}>\lambda f_{Y}+(1-\lambda) f_{Z}
$$

Equivalent formulations of A3 and A4

- A3: Archimedean axiom
- If $f_{X} \succ f_{Y} \succ f_{Z}$, there then exists $p \in(0,1)$ such that $f_{Y} \sim p f_{X}+(1-p) f_{Z}$
\square A4: Independence axiom
- $f_{X} \sim f_{Y} \Leftrightarrow \lambda f_{X}+(1-\lambda) f_{Z} \sim \lambda f_{Y}+(1-\lambda) f_{Z}$
- Any lottery (or outcome = a degenerate lottery) can be replaced by an equally preferred lottery. By A3, such lotteries / outcomes exist

- NOTE: f_{Z} can be any lottery, it can have several possible outcomes

Main representation theorem for expected utility

$\square \geqslant$ satisfies axioms A1-A4 if and only if there exists a real-valued utility function $u(t)$ over the set of outcomes T such that

$$
f_{X} \succcurlyeq f_{Y} \Leftrightarrow \sum_{t \in T} f_{X}(t) u(t) \geq \sum_{t \in T} f_{Y}(t) u(t)
$$

Implication: a rational DM following axioms A1-A4 selects the alternative with the highest expected utility

$$
E[u(X)]=\sum_{t \in T} f_{X}(t) u(t)
$$

- A similar result can be obtained for continuous distributions:
- $f_{X} \succcurlyeq f_{Y} \Leftrightarrow E[u(X)] \geq E[u(Y)]$, where $E[u(X)]=\int f_{X}(t) u(t) d t$

Computing expected utility

Example: Joe's utility function for the number of apples is $u(1)=2, u(2)=5, u(3)=7$.

$$
E[u(X)]=u(2)=5
$$ Which alternative would he prefer?

$$
\begin{aligned}
& E[u(Y)]=0.5 u(1)+0.5 u(3) \\
& \quad=0.5 \cdot 2+0.5 \cdot 7=4.5
\end{aligned}
$$

- X: Two apples for certain
- Y: A 50-50 gamble between 1 and 3 apples
- Example: Jane's utility function for money is $u(t)=t^{2}$. Which alternative would she prefer?

$$
\begin{gathered}
E[u(X)]=0.5 u(3)+0.5 u(5) \\
\quad=0.5 \cdot 9+0.5 \cdot 25=17
\end{gathered}
$$

- X: 50-50 gamble between $3 \mathrm{M} €$ and $5 \mathrm{M} €$
- Y: A random amount of money from the uniform distribution over the interval [3,5]
- What if her utility function was $u(t)=\frac{t^{2}-9}{25-9}$?

$$
\begin{gathered}
E[u(Y)]=\int_{3}^{5} f_{Y}(t) u(t) d t=\int_{3}^{5} \frac{1}{2} t^{2} d t \\
=\frac{1}{6} 5^{3}-\frac{1}{6} 3^{3}=16.33333
\end{gathered}
$$

Uniqueness up to positive affine transformations

\square Let $f_{X} \succcurlyeq f_{Y} \Leftrightarrow E[u(X)] \geq E[u(Y)]$. Then $E[\alpha u(X)+\beta]=\alpha E[u(X)]+\beta \geq$ $\alpha E[u(Y)]+\beta=E[\alpha u(Y)+\beta]$ for any $\alpha>0$ and arbitrary β
\square Two utility functions $u_{1}(t)$ and $u_{2}(t)=\alpha u_{1}(t)+\beta,(\alpha>0)$ establish the same preference order over lotteries

$$
E\left[u_{2}(X)\right]=E\left[\alpha u_{1}(X)+\beta\right]=\alpha E\left[u_{1}(X)\right]+\beta .
$$

\square Implications

- Any linear utility function $u_{L}(t)=\alpha t+\beta,(\alpha>0)$ that is a positive affine transformation of the identity function $u_{1}(t)=t \Rightarrow u_{L}(t)$ establishes the same preference order as the expected value
- Utilities for two outcomes can be chosen freely:
- E.g., if utilities are represented by u_{1}, the normalized utility such that $u_{2}\left(t^{*}\right)=1$ and $u_{2}\left(t^{0}\right)=0$ can be derived through

$$
u_{2}(t)=\frac{u_{1}(t)-u_{1}\left(t^{0}\right)}{u_{1}\left(t^{*}\right)-u_{1}\left(t^{0}\right)}=\underbrace{\frac{1}{u_{1}\left(t^{*}\right)-u_{1}\left(t^{0}\right)}}_{=\alpha>0} u_{1}(t)-\frac{u_{1}\left(t^{0}\right)}{u_{1}\left(t^{*}\right)-u_{1}\left(t^{0}\right)}
$$

Let's oractice! https://presemo.aalto.fi/drcuckoo

The utility function of Dr. Cuckoo is $u(t)=\sqrt{ } t$. Would he
a) Participate in a lottery A with 50-50 chance of getting either 0 or $400 €$?
b) Participate in a lottery B in which the probability of getting $\mathbf{9 0 0} \boldsymbol{€}$ is $\mathbf{3 0 \%}$ and getting $\mathbf{0} \boldsymbol{€}$ is $\mathbf{7 0 \%}$?
$u(0)=0, u(400)=20, u(900)=30$
a) $E[u(A)]=0.5 \cdot 0+0.5 \cdot 20=10$
b) $E[u(B)]=0.7 \cdot 0+0.3 \cdot 30=9$

NOTE! The expectation of lottery A = $200 €$ is smaller than that of B = 270€

Reference lottery revisited

\square Assume that an expected utility maximizer with utility function u uses a reference lottery to assess the probability of event A
\square She thus adjusts p such that she is indifferent between lottery X and the reference lottery Y

$$
E[u(X)]=E[u(Y)]
$$

$$
\begin{gathered}
\Leftrightarrow P(A) u\left(t^{+}\right)+(1-P(A)) u\left(t^{-}\right)=p u\left(t^{+}\right)+(1-p) u\left(t^{-}\right) \\
\Leftrightarrow P(A)\left(u\left(t^{+}\right)-u\left(t^{-}\right)\right)=p\left(u\left(t^{+}\right)-u\left(t^{-}\right)\right) \\
\Leftrightarrow P(A)=p
\end{gathered}
$$

\square The utility function u does not affect the result

Expected utility in decision trees

- Carry out everything as before, except:
- Chance node: compute the expected utility
- Decision node: select the alternative corresponding to maximum expected utility
- Cf. the umbrella example, in which the 'magic numbers' represented preferences

$$
u(t)=2-e^{\frac{-t}{1000}}
$$

Expected utility in Monte Carlo

$\times \vee f x=2-\operatorname{EXP}(-\mathrm{F} 12 / 1000)$
\square Generate a sample x_{1}, \ldots, x_{n} of realizations from the probability density function
\square Comput corresponding utilities for $u\left(x_{i}\right)$ for each x_{i}
\square Mean of the sample utilities $u\left(x_{1}\right), \ldots, u\left(x_{n}\right)$ provides an estimate for $E[u(X)]$

	C	D	E	F	G	H
					,	
			Col.mean	Col.mear	Col.mean	
			0.502964	990.3014	1.580972	
		Sample	u	x	Utility	
		1	0.464077	954.9167	1.615156	
1		2	0.704234	1268.308	1.718693	
		3	0.777865	1382.501	1.74905	
		4	0.534927	1043.831	1.647897	
		5	0.4426	927.8094	1.604581	
		6	0.916252	1690.147	1.815508	
		7	0.649453	1191.922	1.696363	
		8	0.65278	1196.418	1.697725	
		9	0.110887	389.0874	1.322325	
		10	0.189275	559.714	1.428628	
		11	0.902882	1649.073	1.807772	

Summary

\square Probability elicitation is prone to cognitive and motivational biases

- Some cognitive biases can be easy to correct, but...
- Some other cognitive biases and all motivational biases can be difficult to overcome
- The DM's preferences over alternatives with uncertain outcomes can be described by a utility function

A rational DM (according to the four axioms of rationality) should choose the alternative with the highest expected utility
\square This is NOT necessarily the alternative for which the utility associated with the expected monetary consequences is highest

EUT for normative decision support

\square EUT is a normative theory: if the DM is rational (as defined by the axioms), she should select the alternative with the highest expected utility

- Not descriptive or predictive: EUT does not describe or predict how people actually do select among alternatives with uncertain outcomes
\square The four axioms characterize properties that can be associated with rational decision makers
- E.g., if the transivity axiom A2 is violated so that $f_{X}>f_{Y}, f_{Y}>f_{Z}, f_{Z}>f_{X}$, one would be willing to pay in order exchange f_{X} for f_{Z}, then f_{Z} for f_{Y} and finally f_{Y} for f_{X}, thus becoming a "money pump"
- If these rationality axioms are accepted, then the DM should abide by them

Question 1

Which of the following alternatives would you choose?

1. A sure gain of $1 \mathrm{M} €$
2. A gamble in which there is a

- 1% probability of getting nothing,
- 89% probability of getting $1 M €$, and
- 10% probability of getting $5 \mathrm{M} €$
\square A rare disease breaks out in a community, killing as many as 600 people. Which one of the following two programs for addressing the threat would you choose:
- Program A: 200 people will be saved for sure.
- Program B: There is a 33% probability that all 600 will be saved and a 67% probability that no one will be saved.
Which program will you choose?

1. Program A
2. Program B
\square Which of the below alternatives would you choose?
3. A lottery in which there is a

- 89% probability of getting nothing
- 11% probability of getting $1 M €$

2. A lottery gamble in which there is a

- 90% probability of getting nothing
- 10% probability of getting $5 \mathrm{M} €$
\square Imagine that a rare disease is breaking out in some community and is expected to kill 600 people. Two different programs are available to deal with the threat.
- Program C: 400 of the 600 people will die.
- Program D: There is a 33% probability that nobody will die and a 67% probability that 600 people will die.
Which program will you choose?

1. Program C
2. Program D
