

MS-E2135 Decision Analysis Lecture 2

- Biases in probability assessment
- Expected Utility Theory (EUT)
- Assessment of utility functions

- Decision trees provide a visual and structured way to modelling sequential decision-making problems which involve uncertainties
 - Paths of decisions and random events
- Probabilities are employed to model uncertainties
 - Subjective probabilities can be employed even in the absence of data
- □ The elicitation of probabilities may involve subjective judgements

Different kinds of uncertainties

□ We frequently make statements about uncertainty

- "We will have a white Christmas." \leftrightarrow subjective probability
- "The 100 000th decimal of π is 6." \leftrightarrow a fact, the uncertainty lies
- a fact, the uncertainty lies
 in the available information
- "I win in a lottery with probability ↔ frequentist or classical 0,00005."
 ↔ probability interpretation
- Uncertainties are associated with events with unknown outcome
 Probabilities provide a quantitative measure of this uncertainty

Classical interpretation

- □ Jacob Bernoulli (1685), Pierre-Simon Laplace (1814)
- Probability = The ratio between (i) the number of possible outcomes defining the event and (ii) the total number of possible outcomes which are assumed to be equally likely

$$P(A) = \frac{\#(A)}{\#(S)}$$

#(A) = Number of possible outcomes favourable to A

#(S) = Total number of possible outcomes

- Circular definition: Probability defined in terms of "equally likely"
- □ Principle of indifference:
 - Each event is defined as a collection of outcomes
 - Events are "equally likely" if there is no known reason for predicting the occurrence of one event rather than another
 - The probability to get "6" when tossing a dice is 1/6

Frequentist interpretation

- □ Leslie Ellis, mid 19th century
- Probability = The relative frequency of trials in which the favourable event occurs as the number of trials approaches infinity

n(A) = Number of times that A occurs

n = Total number of trials

- You may determine the probability of getting "heads" by tossing a coin (which may not be fair) a very large number of times
- □ Yet in many cases repeated trials cannot be carried out
 - E.g., will there be a recession if the interest rates are raised by 1 %?

Subjective (Bayesian) interpretation

□ Bruno De Finetti (1937)

- Probability = An individual's degree of belief in the occurrence of a particular outcome
 - The probability may change e.g. when additional information is received
 - The event may have already occurred

Examples

- "I believe there's a 40 % chance that we will have a white Christmas"
- "I'm 15 % sure that Martin Luther King was 34 years when he died"

Biases in probability assessment

Subjective judgements by "ordinary people" and "experts" alike are prone to different kinds of biases

- Cognitive bias: Systematic discrepancy between the 'correct' answer and the respondent's actual answer
 - E.g., assessments of conditional probabilities differ from the correct value given by the Bayes' rule
- Motivational biases: judgements are influenced by the desirability or undesirability of events, e.g.
 - Overoptimism about success probabilities
 - Strategic underestimation of failure probabilities

□ Some biases can be difficult to correct

Representativeness bias (cognitive)

- If x fits the description of A well, then Prob(x∈A) is assumed to be large
- The 'base rate' of A in the population (i.e., the probability of A) is not taken into account
- Example: You see a very tall man in a bar. Is he more likely to be a professional basketball (BB) player or a teacher?

Representativeness bias

- □ What is meant by 'very tall'?
 - 195 cm?
 - Assume all BB players are very tall
- The share of Finnish men taller than 195 cm is about 0.3%
- If BB players go to the bar as often as teachers, it is more probable that the very tall man is a teacher, if the share of very tall men exceeds 0.31%
 - Your responses: 87,5% teacher, 12,5% basketball player

	Males								
Height	20-29	30–39	40-49	50-59	60-69	70–79			
	years	years	years	years	years	years			
Percent under—									
4'10"	-	-	-	(B)	-	-			
4'11"	_	-	-	(B)	(B)	-			
5'	(B)	-	-	(B)	(B)	-			
5'1"	(B)	(B)	(B)	(B)	10.4	(B)			
5'2"	(B)	(B)	(B)	(B)	(B)	(B)			
5'3"	(B)	1 3.1	1 1.9	(B)	12.3	(B)			
5'4"	3.7	14.4	3.8	14.3	4.4	5.8			
5'5"	7.2	6.7	5.6	7.6	7.8	12.8			
5'6"	11.6	13.1	9.8	12.2	14.7	23.0			
5'7"	20.6	19.6	19.4	18.6	23.7	35.1			
5'8"	33.1	32.2	30.3	30.3	37.7	47.7			
5'9"	42.2	45.4	40.4	41.2	50.2	60.3			
5'10"	58.6	58.1	54.4	54.3	65.2	75.2			
5'11"	70.7	69.4	69.6	70.0	75.0	85.8			
6'	79.9	78.5	79.1	81.2	84.3	91.0			
6'1"	89.0	89.0	87.4	91.6	93.6	94.9			
6'2"	94.1	94.0	92.5	93.7	97.8	98.6			
6'3"	98.3	95.8	97.7	96.6	99.9	100.0			
6'4"	100.0	97.6	99.0	99.5	100.0	100.0			
6'5"	100.0	99.4	99.4	99.6	100.0	100.0			
6'6"	100.0	99.5	99.9	100.0	100.0	100.0			

Representativeness bias

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in antinuclear demonstrations.

Please check the most likely alternative:

- a. Linda is a bank teller.
- b. Linda is a bank teller and active in the feminist movement.
- □ Many choose b, although b⊂a whereby P(b)<P(a)</p>
 - Your responses: 70% a, 30% b.

Bank tellers who are active in the feminist movement

Bank tellers

10

Conservativism bias (cognitive)

- After obtaining some information about an uncertain event, people typically do not adjust their initial probability estimate about this event as much as they should based on Bayes' theorem.
- Example: Consider two bags X and Y. Bag X contains 30 white balls and 10 black balls, whereas bag Y contains 30 black balls and 10 white balls. Suppose that you select one of these bags at random, and randomly draw five balls one-by-one by replacing them in the bag after each draw. Suppose you get four white balls and one black. What is the probability that you selected bag X with mainly white balls?
- □ Typically people answer something between 70-80%. Yet, the correct probability is $27/28 \approx 96\%$.
- □ Your responses: mean response 55%. Many (20%) answered 50%.

Representativeness and conservativism bias - debiasing

- Pay attention to the logic of joint and conditional probabilities and Bayes' rule
- □ Split the task into an assessment of
 - The base rates for the event (i.e., prior probability)
 - E.g., what are the <u>relative shares</u> of teachers and pro basketball players?
 - The likelihood of the data, given the event (i.e., conditional probabilities)
 - E.g., what is the relative share of people active in the feminist movement? Is this share roughly the same among bank tellers as it is among the general population or higher/lower?
 - What is the likelihood that a male teacher is taller than 195cm? How about a pro basketball player?

Availability bias (cognitive)

- People assess the probability of an event by the ease with which instances or occurrences of this event can be brought to mind.
- Example: In a typical sample of English text, is it more likely that a word starts with the letter K or that K is the third letter?
 - Most (nowadays only many?) people think that words beginning with K are more likely, because it is easier to think of words that begin with "K" than words with "K" as the third letter
 - Yet, there are twice as many words with K as the third letter
 - Your responses: 35% first letter, 65% third letter.

❑ Other examples:

- Due to media sensationalist reporting in the US, the number of violent crimes such as child murders seems to have increased
- Yet, compared to 2000's, 18 times as many children were killed per capita in 1950's and twice as many in 1990's
- Probabilities of flight accidents after the volcanic eruption in Iceland in 2011

Availability bias - debiasing

- Conduct probability training
- □ Provide concrete counterexamples
- Provide statistics
- Still, based on empirical experimental studies, availability bias is difficult to correct

Anchoring bias (cognitive)

When assessing probabilities, respondents may be guided by reference assessments

□ Often, the respondent is *anchored* to the reference assessment

Example: Is the percentage of African countries in the UN

- A. Greater or less than 65? What is the exact percentage?
 - *Average' answer: Less, 45%.*

Aalto University

School of Science

- **Your responses**: Less, median 39%, mean 39%.
- B. Greater or less than 10? What is the exact percentage?
 - *Average' answer: Greater, mean 25%.*

Anchoring bias - debiasing

□ Avoid providing anchors

- But there are contexts where <u>deliberate</u> attempts to influence answers are made (e.g., marketing)
- Provide multiple and counteranchors
 - If you have to provide an anchor, provide several which differ significantly from each other
- □ Use different experts who use different anchors

Based on empirical evidence, anchoring bias is difficult to correct

Hindsight bias

People falsely believe they could have predicted the outcome of an event

- Once the outcome has been observed, the DM may assume that they are the only ones that could have happened and underestimate the uncertainty
- □ Undermines possibilities for learning from the past
- □ Alerting people to this bias has little effect

□ How to mitigate:

- Argue against the inevitability of the reported outcome
- Develop alternative descriptions of how the future might have unfolded <u>differently</u>

Desirability / undesirability of events (motivational)

- People tend to believe that there is a less than 50 % probability that negative outcomes will occur compared with peers
 - "I am less likely to develop long-term symptoms even if I catch COVID-19"
- People tend to believe that there is a greater than 50 % probability that positive outcomes will occur compared with peers
 - "I am more likely to become a homeowner / have a starting salary of more than 4,500€"
 - Earlier responses on owning a home: **40%** (20%) more likely, **12%** (12%) less likely, **48%** (68%) equally likely
 - Earlier responses on salary: 23% (20%) more likely, 10% (10%) less likely, 67% (71%) equally likely
- People tend to underestimate the probability of negative outcomes and overestimate the probability of positive outcomes
 - The estimates are not conservative the actual risks are higher than estimated

Desirability / undesirability of events - debiasing

- □ Use multiple experts with alternative points of view
- □ Place hypothetical bets against the desired event
 - □ "Make the respondent think about monetary consequences"
- Use decomposition and realistic assessment of partial probabilities
 "Split the events"
- Yet, empirical evidence suggests that motivational biases are often difficult to correct

Further reading: **Montibeller, G., and D. von Winterfeldt**, 2015. Cognitive and Motivational Biases in Decision and Risk Analysis, *Risk Analysis*

Overconfidence (cognitive)

People tend to assign overly narrow confidence intervals to their probability estimates **Responses by 25 subjects:**

- Martin Luther King's age at death 39 years 1.
- Length of the Nile River 6738 km 2.
- Number of Countries that are members of OPEC 13 3.
- Number of Books in the Old Testament **39** 4.
- Diameter of the moon 3476 km 5.
- Weight of an empty Boeing 747 176900 kg 6.
- Year of Wolfgang Amadeus Mozart's birth 1756 7.
- Gestation period of an Asian elephant 21.5 months 8.
- Air distance from London to Tokyo 9590 km 9.
- Depth of the deepest known point in the oceans 11033 m 10.

There are 10 questions with 90% confidence intervals

- If the intervals are correct, each answer is within the confidence interval with probability 0.9
- The probability that *n* estimates are <u>within</u> the intervals is $\binom{10}{n} 0.9^n 0.1^{10-n}$
- If the intervals are correct, the probability that at least 3 responses lie <u>outside</u> the intervals is $\sum_{n=3}^{10} {\binom{10}{n}} 0.1^n 0.9^{10-n} \approx 7\%$ \rightarrow The null hypothesis of not being overconfident can be rejected (at the 5 % confidence level)

Overconfidence - debiasing

- Provide probability training
- □ Start with extreme estimates (low and high)
- □ Use fixed values instead of fixed probability in elicitations:
 - Do not ask: "What is the GDP growth rate x such that the probability of achieving this rate x or less x is 5 %"
 - Instead ask : "With what probability will the GDP growth rate be lower than -3%?"

Based on empirical evidence, overconfidence is difficult to correct

Calibration curves

- People tend to assess probabilities best when they have frequent and concrete feedback
 - E.g., US weather forecasters
- Judged probabilities on x-axis
- Observed frequencies on y-axis
- Can be used for calibration
 - Instead of the judged probability, use the corresponding observed frequency
 - E.g., in the C case, the actual tail probabilities are more extreme than the judged ones

Risky or not (so) risky?

https://presemo.aalto.fi/riskattitude1/

□ Which one would you choose:

a) Participate in a lottery in which there is a 50 % chance of getting nothing and a 50 % chance of getting 10000 €
b) Getting 4000 € for sure

■ Many choose the certain outcome of 4000 €, although the expected monetary value in alterantive a) is higher

Option b) involves less risk

How to compare risky alternatives?

Last week

- We used decision trees to support decision-making under uncertainty assuming that the DM seeks to maximize expected monetary value
- This is valid if the DM is **risk neutral**, i.e., **indifferent** between
 - \circ obtaining x for sure and
 - \circ a gamble with uncertain payoff Y such that x=E[Y]
- Many DMs are **risk averse** = they **prefer** obtaining *x* for sure to a gamble with payoff *Y* such that *x*=E[*Y*]

Next

- We accommodate the DM's risk attitude (=preference over alternatives with uncertain outcomes) in decision models

Expectation = 14500

Expected utility theory (EUT)

□ John von Neumann and Oscar Morgenstern, *Theory of Games and Economic Behavior*, 1944

- Axioms of rationality for preferences over alternatives with uncertain outcomes
- If the DM follows these axioms, she should prefer the alternative with the highest expected utility

Elements of EUT

- Set of outcomes and "lotteries"
- Preference relation over lotteries which satisfies four axioms
- Representation of preference relation with expected utility

EUT: Sets of outcomes and lotteries

- Set of possible outcomes *T*:
 - E.g., revenue *T* euros / demand *T*
- □ Set of all possible lotteries *L*:
 - A lottery $f \in L$ associates a probability $f(t) \in [0,1]$ with each possible outcome $t \in T$
 - Finite number of outcomes with a positive probability f(t) > 0
 - Probabilities add up to one $\sum_t f(t) = 1$
 - Lotteries are discrete probability mass functions (PMFs) / decision trees with a single chance node
- Deterministic outcomes are modeled as degenerate lotteries

EUT: Compound lotteries

Compound lottery:

- Get lottery $f_X \in L$ with probability λ
- Get lottery $f_Y \in L$ with probability 1λ

□ Compound lottery can be modeled as lottery $f_Z \in L$:

$$f_Z(t) = \lambda f_X(t) + (1 - \lambda) f_Y(t) \quad \forall t \in T \simeq f_Z = \lambda f_X + (1 - \lambda) f_Y(t)$$

Example:

– You have a 50-50 chance of getting a ticket to lottery $f_X \in L$ or to lottery $f_Y \in L$

Preference relation

 \Box Let \geq be preference relation among lotteries in L

- Preference $f_X \ge f_Y$: f_X is at least as preferred as f_Y
- Strict preference $f_X > f_Y$ defined as $\neg(f_Y \ge f_X)$
- Indifference $f_X \sim f_Y$ defined as $f_X \ge f_Y \land f_Y \ge f_X$

EUT axioms A1-A4 for the relation ≽

A1: \geq is complete

- For any $f_X, f_Y \in L$, either $f_X \ge f_Y$ or $f_Y \ge f_X$ or both
- $\Box A2: \geq is transitive$
 - If $f_X \ge f_Y$ and $f_Y \ge f_Z$, then $f_X \ge f_Z$
- □ A3: Archimedean axiom

- If
$$f_X > f_Y > f_Z$$
, then $\exists \lambda, \mu \in (0,1)$ such that
 $\lambda f_X + (1 - \lambda) f_Z > f_Y$ and $f_Y > \mu f_X + (1 - \mu) f_Z$

- □ A4: Independence axiom
 - $\begin{array}{ll} & \mbox{Let } \lambda \in (0,1). \mbox{ Then,} \\ & f_X \succ f_Y \Leftrightarrow \lambda f_X + (1-\lambda) f_Z \succ \lambda f_Y + (1-\lambda) f_Z \end{array}$

Equivalent formulations of A3 and A4

- □ A3: Archimedean axiom
 - If $f_X > f_Y > f_Z$, there then exists $p \in (0,1)$ such that $f_Y \sim pf_X + (1-p)f_Z$
- □ A4: Independence axiom
 - $f_X \sim f_Y \Leftrightarrow \lambda f_X + (1 \lambda) f_Z \sim \lambda f_Y + (1 \lambda) f_Z$
 - Any lottery (or outcome = a degenerate lottery) can be replaced by an equally preferred lottery. By A3, such lotteries / outcomes exist

Main representation theorem for expected utility

□ > satisfies axioms A1-A4 if and only if there exists a real-valued utility function u(t) over the set of outcomes T such that

$$f_X \ge f_Y \Leftrightarrow \sum_{t \in T} f_X(t)u(t) \ge \sum_{t \in T} f_Y(t)u(t)$$

Implication: a rational DM following axioms A1-A4 selects the alternative with the highest expected utility

$$E[u(X)] = \sum_{t \in T} f_X(t)u(t)$$

- A similar result can be obtained for continuous distributions:
 - $\circ \quad f_X \geq f_Y \Leftrightarrow E[u(X)] \geq E[u(Y)], where E[u(X)] = \int f_X(t)u(t)dt$

Computing expected utility

 Example: Joe's utility function for the number of apples is u(1)=2, u(2)=5, u(3)=7.
 Which alternative would he prefer?

- X: Two apples for certain
- Y: A 50-50 gamble between 1 and 3 apples

□ Example: Jane's utility function for money is
$$u(t) = t^2$$
. Which alternative would she prefer?

- − X: 50-50 gamble between 3M€ and 5M€
- Y: A random amount of money from the uniform distribution over the interval [3,5]
- What if her utility function was $u(t) = \frac{t^2 9}{25 9}$?

E[u(X)] = u(2) = 5

E[u(Y)] = 0.5u(1) + 0.5u(3)= 0.5 \cdot 2 + 0.5 \cdot 7 = 4.5

> E[u(X)] = 0.5u(3) + 0.5u(5)= 0.5 \cdot 9 + 0.5 \cdot 25 = 17

$$E[u(Y)] = \int_{3}^{5} f_{Y}(t)u(t)dt = \int_{3}^{5} \frac{1}{2}t^{2}dt$$
$$= \frac{1}{6}5^{3} - \frac{1}{6}3^{3} = 16.33333$$

15.9.2022 32

Uniqueness up to positive affine transformations

- □ Let $f_X \ge f_Y \iff E[u(X)] \ge E[u(Y)]$. Then $E[\alpha u(X) + \beta] = \alpha E[u(X)] + \beta \ge \alpha E[u(Y)] + \beta = E[\alpha u(Y) + \beta]$ for any $\alpha > 0$ and arbitrary β
- □ Two utility functions $u_1(t)$ and $u_2(t) = \alpha u_1(t) + \beta$, ($\alpha > 0$) establish the same preference order over lotteries

 $E[u_2(X)] = E[\alpha u_1(X) + \beta] = \alpha E[u_1(X)] + \beta.$

- Implications
 - Any linear utility function $u_L(t) = \alpha t + \beta$, ($\alpha > 0$) that is a positive affine transformation of the identity function $u_1(t) = t \Rightarrow u_L(t)$ establishes the same preference order as the expected value
 - Utilities for two outcomes can be chosen freely:
 - E.g., if utilities are represented by u_1 , the normalized utility such that $u_2(t^*) = 1$ and $u_2(t^0) = 0$ can be derived through

$$u_{2}(t) = \frac{u_{1}(t) - u_{1}(t^{0})}{u_{1}(t^{*}) - u_{1}(t^{0})} = \frac{1}{u_{1}(t^{*}) - u_{1}(t^{0})} u_{1}(t) - \frac{u_{1}(t^{0})}{u_{1}(t^{*}) - u_{1}(t^{0})}$$

$$= \alpha > 0 \qquad = \beta$$
15.9.2022

The utility function of Dr. Cuckoo is $u(t) = \sqrt{t}$. Would he

- a) Participate in a lottery A with 50-50 chance of getting either 0 or 400 €?
- b) Participate in a lottery B in which the probability of getting 900 € is 30% and getting 0 € is 70%?

```
u(0) = 0, u(400) = 20, u(900) = 30
```

a)
$$E[u(A)] = 0.5 \cdot 0 + 0.5 \cdot 20 = 10$$

b) $E[u(B)] = 0.7 \cdot 0 + 0.3 \cdot 30 = 9$

NOTE! The expectation of lottery A = $200 \in$ is smaller than that of **B** = $270 \in$

Reference lottery revisited

- Assume that an expected utility maximizer with utility function u uses a reference lottery to assess the probability of event A
- □ She thus adjusts *p* such that she is indifferent between lottery X and the reference lottery Y E[u(X)] = E[u(Y)] $\Leftrightarrow P(A)u(t^+) + (1 - P(A))u(t^-) = pu(t^+) + (1 - p)u(t^-)$ $\Leftrightarrow P(A)(u(t^+) - u(t^-)) = p(u(t^+) - u(t^-))$ $\Leftrightarrow P(A) = p$

□ The utility function *u* does not affect the result

Expected utility in decision trees

- Carry out everything as before, except:
 - Chance node: compute the expected <u>utility</u>
 - Decision node: select the alternative corresponding to maximum expected <u>utility</u>
 - Cf. the umbrella example, in which the 'magic numbers' represented preferences

Expected utility in Monte Carlo

- Generate a sample x₁, ..., x_n of realizations from the probability density function
- Comput corresponding utilities for $u(x_i)$ for each x_i
- □ Mean of the sample utilities $u(x_1), ..., u(x_n)$ provides an estimate for E[u(X)]

>	< 🗸	f_x =2-EXP(-	F12/1000)			
	С	D	Е	F	G	Н
					\frown	
			Col.mean	Col.mean	Col.mean	
			0.502964	990.3014	1.580972	
					\smile	
		Sample	u	х	Utility	
		1	0.464077	954.9167	1.615156	
1		2	0.704234	1268.308	1.718693	
		3	0.777865	1382.501	1.74905	
		4	0.534927	1043.831	1.647897	
		5	0.4426	927.8094	1.604581	
		6	0.916252	1690.147	1.815508	
		7	0.649453	1191.922	1.696363	
		8	0.65278	1196.418	1.697725	
		9	0.110887	389.0874	1.322325	
		10	0.189275	559.714	1.428628	
		11	0.902882	1649.073	1.807772	

Summary

□ Probability elicitation is prone to cognitive and motivational biases

- Some cognitive biases can be easy to correct, but...
- Some other cognitive biases and all motivational biases can be difficult to overcome
- The DM's preferences over alternatives with uncertain outcomes can be described by a utility function
- A rational DM (according to the four axioms of rationality) should choose the alternative with the highest expected utility
 - □ This is **NOT** necessarily the alternative for which the utility associated with the expected monetary consequences is highest

EUT for normative decision support

- EUT is a normative theory: if the DM is rational (as defined by the axioms), she should select the alternative with the highest expected utility
 - Not descriptive or predictive: EUT does not describe or predict how people actually **do** select among alternatives with uncertain outcomes
- The four axioms characterize properties that can be associated with rational decision makers
 - E.g., if the transivity axiom A2 is violated so that $f_X > f_Y$, $f_Y > f_Z$, $f_Z > f_X$, one would be willing to pay in order exchange f_X for f_Z , then f_Z for f_Y and finally f_Y for f_X , thus becoming a "money pump"
 - If these rationality axioms are accepted, then the DM should abide by them

Question 1

https://presemo.aalto.fi/2135lecture2

□ Which of the following alternatives would you choose?

- 1. A sure gain of 1 M€
- 2. A gamble in which there is a
 - 1% probability of getting nothing,
 - 89% probability of getting 1M€, and
 - 10% probability of getting 5M€

- A rare disease breaks out in a community, killing as many as 600 people. Which one of the following two programs for addressing the threat would you choose:
 - Program A: 200 people will be saved for sure.
 - Program B: There is a 33% probability that all 600 will be saved and a 67% probability that no one will be saved.

Which program will you choose?

- 1. Program A
- 2. Program B

Question 3

https://presemo.aalto.fi/2135lecture2

□ Which of the below alternatives would you choose?

- 1. A lottery in which there is a
 - 89% probability of getting nothing
 - 11% probability of getting 1M€
- 2. A lottery gamble in which there is a
 - 90% probability of getting nothing
 - 10% probability of getting 5M€

Question 4

- Imagine that a rare disease is breaking out in some community and is expected to kill 600 people. Two different programs are available to deal with the threat.
 - Program C: 400 of the 600 people will die.
 - Program D: There is a 33% probability that nobody will die and a 67% probability that 600 people will die.

Which program will you choose?

- 1. Program C
- 2. Program D

