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Today

* Reinforcement learning
* Policy evaluation vs control problems

* Monte-Carlo and Temporal difference
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Learning goals

* Understand basic concepts of RL

* Understand Monte-Carlo and temporal difference
approaches for policy evaluation and control

* Be able to implement MC and TD
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observation z

environment state
S
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reward r

action a

RL

MDP with unknown
Markovian dynamics
P(St+1|St’at)

Unknown reward

function
rt:r St, at)

Solution similar, e.g.
% T
al ..... T:maxal,...,athzlrt

Learning must explore
policies



Reinforcement learning

* MDP with unknown dynamics (T) and reward function (r)

* Model based RL: Estimate MDP, apply MDP methods

— Estimate MDP transition and reward functions from data

e Can we do without Tand r?

— Can we evaluate a policy (construct value function) if we have
multiple episodes (in episodic tasks) available?
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Monte-Carlo policy evaluation

* Complete episodes give us samples of return G

* Learn value of particular policy from episodes under that
policy H
k
V.(s)=E, Gt|St:Sl GFZ Y Fos
k=0

- Estimate value as empirical mean return
— For each visited state s in an episode,

N(s)=N(s)+1 S(s)=S(s)+G, V(s)=S(s)/N|(s)
* When number of episodes approaches infinity,
V(s) converges: V (s)=>V _(s)

e

A!! Sk L Empirical mean approaches true mean.
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Temporal difference (TD) —
learning without episodes

* For each state transition, update a guess towards a
guess:

V(St>:V<St)+a(rt+y V<St+l>_ V(St))

* Approach called TD(0) \

* Compare to MC
V(St): V(St)+OL<Gt— V(St)>

\

Estimated return.

True return.

A” Schoolof & fE' ctrcal What if we have limited data?
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Batch learning

* For limited number of trials available:

— Sample episode k
— Apply MC or TD(0) to episode k.

A,0,B,0

B, 1

B,1

B, 1 A F=1
B, 1 100%
B, 1

B, 1

B,0

What is V(A)?
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MC vs TD

* MC
— Needs full episodes. Only works in episodic environments
— High variance, zero bias — good but slow convergence

— Does not exploit Markov property — often better in non-Markov
environments

* TD (esp. TD(0))
— Can learn from incomplete episodes and on-line after each step
— Works in continuing non-episodic environments

— Low variance, some bias — often more efficient than MC, discrete state
TD(0) converges, more sensitive to initial value

— Exploits Markov property — often more efficient in Markov environments
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k

k-step return: (K = ik
A-return G, Z:i:o Y Ity V<Sz+k)

TD(A), A-return

* Combine returns in different

horizons.
A > k—1 ~(k)
. A
V(St)—V(St)+OC(Gt —V(St)) (1-2) A
weight gi 1
_[__ \\ th?g; f;u?n total area = 1 (1-0) 22
?‘ decay by A .
Weight 1-A ; | | weight given to N ) I
} LT | actual, final retum — "
LT =
AN EEREEEE | e
t Y i
A” gﬁgﬁﬂ&%ﬁ&"ca. Requires complete episodes! Can we survive without?

First: an alternative viewpoint!



Causes and effects — eligibility traces

* Which state is the “cause” of a reward?

* Frequency heuristic: most frequent states likely
* Recency heuristic: most recent states likely

* Eligibility trace for a state combines these:

Et(S):y NE, (s)+ I(Sz:S> < “How often a particular state
was visited recently on

weight given to t talver??e?
VN the 3-step retum oltalarea =
N Not exactly, also
% decay by A considers
/ actual, final retum
| 7
' 7
I N 77 I T T I I O O O . 707,

,, Aalto University
School of Electrical

Engineering



Backward-TD(\)

Extend TD time horizon with decay ()

After episode, update
V(S):V(S)+O(Et(S)(Vt+y V(SHI)_V(Sz))

What if A=0
E(s)=yME, (s)+1(s,=s5)

Eligibility traces way to implement backward TD(M),
forward TD()\) requires episodes

TD(1) equal to MC
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Control / decision making?

* So far we only found out how to estimate value functions
for a particular policy

* Can we use this to optimize a policy?
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Policy improvement and policy
iteration

* Given a policy m, it can be improved by
— Evaluating its value function

— Forming a new policy by acting greedily with respect to
the value function

* This always improves the policy

* |terating multiple times called policy iteration
— Converges to optimal policy
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Monte-Carlo Policy iteration

- Can we choose action using value function V' (i) ?

* Greedy policy improvement using action-value function
Q(s,a) does not require a model:

n'(s)=argmax,O(s,a)

* Estimate Q(s,a) using MC (empirical mean = “calculate

average”
J ) Note: calculate frequencies for all state-action pairs.
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Ensuring exploration

* Simple approach: e-greedy exploration:
— Explore: Choose action at random with probability ¢
— Exploit: Be greedy with probability 1-¢

e/m+l—e ifa=argmax,Q(s,a’)

(als)= .

e/m for any other action

: : Number of different
* How to converge to optimal policy? actions
— Idea: reduce ¢ over tlme.. b “Greedy in Limit with
— For example, for k:th episode ¢ = —— ¢ Infinite Exploration”
b;"é (GLIE)
constant
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SARSA

* |dea: Apply TD to Q(S,A) >
— With e-greedy policy improvement
— Update each time step A
R
O(s,a)=0(s, a)+alr+yQ(s'.a’)~0(s,a))
Compare with >
Vis)=V(s)+alr+yV(s.)-V(s) )

* SARSA converges under
— GLIE policy (greedy in the limit of infinite exploration),

o0 o0
2
t=0 ! t=0 !
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SARSA(\)

* Instead of TD(0) update in SARSA, use TD(A) update
* Backward SARSA(\)

E(s.a)=yME,_(s,a)+1(s,=s,a,=a)
O(s,a)=0(s,a)+aE (s, a)r+yO(s.i,a.)=0(s,.a,)

Compare to
E(s)=yhE,_(s)+1(s,=5)
V(s)=V(s)+aE,(s)(r+yV (s.)=V(s)
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Action values increased Action values increased

Path taken by one-step Sarsa by Sarsa() with A=0.9
~ v~y
.
4
- ’ -Ii
i- # - - " ¥
i | -
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On-policy vs off-policy learning

* On-policy learning (methods so far)
— Use a policy while learning how to optimize it
— “Learn on the job”

* Off-policy learning
— Use another policy while learning about optimal policy
— Can learn from observation of other agents
— Can learn about optimal policy when using exploratory policy
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Q-learning

Use e-greedy behavior policy to choose actions
Target policy is greedy with respect to Q

nt(s)=argmax,0(s,a)

Update target policy greedily:
O(s,a)=0(s, a)+oc(r+ymaxa,Q (s",a')—0(s, a))

Q converges to Q* \

Assume we take greedy action at next step.
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Summary

* In reinforcement learning, dynamics and reward function
of the MDP are in general unknown

* MC (Monte-Carlo) approaches sample returns from full
episodes

* TD (temporal difference) approaches sample estimated
returns (biased)

* Returns can be used to update a policy or value function
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Next: Extending state spaces

* What to do if

— discrete state space is too large?
— state space is continuous?

* Readings
— Sutton & Barto, ch. 9-9.3, 10-10.1

,, Aalto University
School of Electrical

Engineering



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

