ELEC-A7200

Signals and Systems

Professor Riku Jäntti

Fall 2021

A^{3}
Aalto University School of Electrical Engineering

Lecture 3
 Signal space

Vector space \& Signal space

Vector space

Vector (or discrete time pulse)

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \in \mathrm{C}^{n}, x_{k}=a_{k}+j b_{k}
$$

Inner product of two vectors \boldsymbol{x} and \boldsymbol{y}

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle \triangleq \boldsymbol{y}^{H} \boldsymbol{x}=\sum_{\boldsymbol{k}=1}^{n} x_{k} y_{k}^{*}
$$

Length of vector \boldsymbol{x} (norm of a vector)

$$
\|\boldsymbol{x}\|=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}=\sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}}
$$

Orthonormal basis $\left\{\phi_{k}, k=1,2, \ldots, n\right\}$:

$$
\begin{gathered}
\left\langle\phi_{k}, \phi_{L},\right\rangle= \begin{cases}1, & k=l \\
0, & k \neq l\end{cases} \\
\boldsymbol{x}=\sum_{\boldsymbol{k}=\mathbf{1}}^{n}\left\langle\boldsymbol{x}, \phi_{k}\right\rangle \phi_{k}
\end{gathered}
$$

Signal space

Pulse (Energy signal)

$$
x(t) \in \mathrm{C}, t_{0} \leq t \leq t_{1}, x(t)=a(t)+j b(t)
$$

Inner product of two pulses $x(t)$ and $y(t)$

$$
\langle x(t), y(t)\rangle \triangleq \int_{t_{0}}^{t_{1}} x(t) y^{*}(t) d t
$$

Signal energy

$$
\mathrm{E}=\|x(\mathrm{t})\|^{2}=\langle x(t), x(t)\rangle=\int_{t_{0}}^{t_{1}}|x(t)|^{2} d t
$$

Periodic signal (Power signal)

$$
x(t) \in \mathrm{C}, x\left(t+T_{0}\right)=x(t), x(t)=a(t)+j b(t)
$$

Inner product of two pulses $x(t)$ and $y(t)$

$$
\langle x(t), y(t)\rangle \triangleq \int_{T_{0}} x(t) y^{*}(t) d t
$$

Signal power

$$
\mathrm{P}=\frac{1}{T_{0}}\|x(\mathrm{t})\|^{2}=\frac{1}{T_{0}}\langle x(t), x(t)\rangle=\frac{1}{T_{0}} \int_{t_{0}}^{t_{1}}|x(t)|^{2} d t
$$

Orthonormal basis $\left\{\phi_{k}(t), k=1,2, \ldots, m\right\}$:

$$
\begin{aligned}
& \left\langle\phi_{k}(t), \phi_{l}(t)\right\rangle= \begin{cases}1, & k=l \\
0, & k \neq l\end{cases} \\
& x(t)=\sum_{k=1}^{n}\left\langle x(t), \phi_{k}(t)\right\rangle \phi_{k}(t)
\end{aligned}
$$

Problem

Determine the norm and the inner product for signals and vectors

Engineering

Representing vector with orthonormal basis

Orhonormal basis

$$
\phi_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \phi_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Vector

$$
x=\left[\begin{array}{c}
1 \\
1 / 2
\end{array}\right]
$$

Projection on the basis
$\left\langle x, \phi_{1}\right\rangle=1 \cdot \frac{1}{\sqrt{2}}+\frac{1}{2} \cdot \frac{-1}{\sqrt{2}}=\frac{1}{2 \sqrt{2}}$

$$
\boldsymbol{x}=\frac{1}{2 \sqrt{2}} \phi_{1}+\frac{3}{2 \sqrt{2}} \phi_{2}
$$

$\left\langle x, \phi_{2}\right\rangle=1 \cdot \frac{1}{\sqrt{2}}+\frac{1}{2} \cdot \frac{1}{\sqrt{2}}=\frac{3}{2 \sqrt{2}}$

Representing pulse with an orhonormal basis

Orhonormal basis (Walsh)

Pulse

Projection on the basis

$$
\begin{aligned}
& \langle x(t), \quad 2(t)\rangle=\int_{0}^{T / 2} 1 \cdot \frac{1}{\sqrt{2 T}} d t+\int_{T / 2}^{T} \frac{1}{2} \cdot \frac{-1}{\sqrt{2 T}} d t=\frac{1 \sqrt{T}}{2 \sqrt{2}} \\
& \left\langle x(t), \phi_{1}(t)\right\rangle=\int_{0}^{T / 2} 1 \cdot \frac{1}{\sqrt{2 T}} d t+\int_{T / 2}^{T} \frac{1}{2} \cdot \frac{1}{\sqrt{2 T}} d t=\frac{3 \sqrt{T}}{2 \sqrt{2}} \\
& x(t)=\frac{\sqrt{T}}{2 \sqrt{2}} \phi_{2}(t)+\frac{3 \sqrt{T}}{2 \sqrt{2}} \phi_{1}(t)
\end{aligned}
$$

Example: Linear time invariant systems

Laguerre functions form an orthonormal basis to express the responses of stable linear time invariant (LTI) systems
$\frac{d^{n}}{d t^{n}} y(t)=-a_{1} \frac{d^{n-1}}{d t^{n-1}} y(t)-\cdots-a_{n} y(t)+b_{0} \frac{d^{m}}{d t^{m}} u(t)+b_{1} \frac{d^{m-1}}{d t^{m-1}} u(t)+\cdots+b_{m} u(t)$
$y(t)=\sum_{n=0}^{\infty} w_{n} L_{n}(t)$
This can be utilized in system indentification.

Laguerre basis functions

$$
L_{n}(t)=\frac{e^{t}}{n!} \frac{d}{d t} t^{n} e^{-t}
$$

Gram-Schmidt procedure

Given set of signals $\left\{\mathrm{s}_{k}(t), k=1,2, \ldots\right\}$ find orthonormal basis $\left\{\phi_{k}(t), k=1,2, \ldots\right\}$ that span the signal set.

$$
\begin{gathered}
\phi_{1}(t)=\frac{s_{1}(t)}{\left\|s_{1}(t)\right\|} \\
\tilde{\phi}_{2}(t)=s_{2}(t)-\left\langle s_{2}(t), \phi_{1}(t)\right\rangle \phi_{1}(t) \\
\phi_{2}(t)=\frac{\tilde{\phi}_{2}(t)}{\left\|\tilde{\phi}_{2}(t)\right\|} \\
\cdots \\
\tilde{\phi}_{k}(t)=s_{k}(t)-\sum_{l=1}^{k-1}\left\langle s_{k}(t), \phi_{l}(t)\right\rangle \phi_{k}(t) \\
\phi_{k}(t)=\frac{\tilde{\phi}_{k}(t)}{\left\|\tilde{\phi}_{k}(t)\right\|}
\end{gathered}
$$

Gram-Schmidt procedure:
 egendre polynomials

Consider set of signals on $t \in[-1,1]$

$$
s_{0}(t)=1, s_{1}(t)=t, s_{2}(t)=t^{2}, \ldots s_{k}(t)=t^{k}
$$

With Gram-Schmidt procedure, we can find the basis

$$
\begin{aligned}
& \phi_{0}(t)=\frac{1}{\sqrt{2}} 1, \phi_{2}(t)=\sqrt{\frac{3}{2}} t, \\
& \phi_{2}(t)=\sqrt{\frac{5}{8}}\left(3 t^{2}-1\right), \ldots, \phi_{k}(t)=P k(t) \\
& \text { School of Electrica } \\
& \text { Engineering }
\end{aligned}
$$

Problem

Find orhonormal basis for the following two signals

Calculating signal energy / power

- While in vector space one can always find orthonormal basis to represent the vectors, this is not guaranteed in the signal space.
- If a signal can be represented as sum of orthonormal signals

$$
x(t)=\sum_{k=1}^{n} x_{k} \phi_{k}(t)
$$

Pulses
Its Energy is given by

$$
E=\sum_{k=1}^{n}\left|x_{k}\right|^{2}
$$

Periodic signals

Its power is given by

$$
P=\frac{1}{T_{0}} \sum_{k=1}^{n}\left|x_{k}\right|^{2}
$$

Problem

Consider a periodic signal $x(t)=x\left(t+T_{0}\right)$
that can be expressed in terms of orthonormal basis $\left\{\phi_{k}(t), k=1,2\right\}$:
$x(t)=-\phi_{1}(t)+2 \phi_{2}(t)$
Determine the average power of the signal

Application of orthonormal basis: Signal constellation

Consider a digital modulation system that transmits K bits during one symbol of length T by controlling amplitude and phase. There are 2^{K} different symbols (a_{k}, θ_{k}). The transmitter generates waveform (signal) $\mathrm{s}_{\mathrm{k}}(t)$ when symbol k is transmitted

$$
\begin{aligned}
s_{k}(t)= & \sqrt{\frac{2 E}{T}} a_{k} \cos \left(2 \pi f_{c} t+\theta_{k}\right) \quad 0 \leq t \leq T \\
T & \text { Symbol duration } \\
E & \text { Symbol energy } \\
f_{c} & \text { Carrier frequency } \\
f_{c} T & \text { Integer }
\end{aligned}
$$

Application of orthonormal basis: Signal constellation

Orthonormal basis

$$
\phi_{1}(t)=\sqrt{\frac{2}{T}} \cos \left(2 \pi f_{c} t\right), \phi_{2}(t)=\sqrt{\frac{2}{T}} \sin \left(2 \pi f_{c} t\right) \quad 0 \leq t \leq T
$$

Generated waveform

$$
\begin{aligned}
& s_{k}(t)=\sqrt{E} a_{k} \cos \left(\theta_{k}\right) \phi_{1}(t)+\sqrt{E} a_{k} \sin \left(\theta_{k}\right) \phi_{2}(t) \\
& \text { Signal energy }=\left(\sqrt{E} a_{k} \cos \left(\theta_{k}\right)\right)^{2}+\left(\sqrt{E} a_{k} \sin \left(\theta_{k}\right)\right)^{2}=E a_{k}^{2}
\end{aligned}
$$

Application of orthonormal basis: Signal constellation

It is customary to represent the modulated signal using complex numbers

Transmitted symbol visualized in signal space

Transmitted symbol visualized in a phasor diagram

Application of orthonormal basis: Signal constellation

Example: 8-Phase Shift Keying (PSK) modulation signal constillation

http://zone.ni.com/cms/images/devzone/tut/psk2.JPG

Exaple signal constellation

Physical Downlink Shared Channel (PDSCH)

https://se.mathworks.com/help/5g/ug/evm-measurement-of-5g-nr-pdsch-waveforms.html

Aalto's 5 G gNB on the roof of Väre building

Signal representation in orthonormal basis: Fourier-series

Periodic signal $x(t)=x\left(t+T_{0}\right)$

 Orthonormal basis$$
\begin{aligned}
& \phi_{k}(t)=\frac{1}{\sqrt{T_{0}}} e^{i \frac{2 \pi k}{T_{0}} t} \quad \text { Complex signal } \\
& k=\ldots,-2,-1,0,1,2, . .
\end{aligned}
$$

Signal represented in the orthonormal basis

Phasor rotating counter clockwise with frequency $\frac{k}{T_{0}}$

$$
\begin{gathered}
x(t)=\sum_{k=-\infty}^{\infty}\left\langle x(t), \phi_{k}(t)\right\rangle \phi_{k}(t)=\sum_{k=-\infty}^{\infty} \int_{T_{0}} x(t) \frac{1}{\sqrt{T_{0}}} e^{-i \frac{2 \pi k}{T_{0}} t} d t \frac{1}{\sqrt{T_{0}}} e^{i \frac{2 \pi k}{T_{0}} t}=\sum_{k=-\infty}^{\infty} X(k) e^{i \frac{2 \pi k}{T_{0}} t} \\
X(k)=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-i \frac{2 \pi k}{T_{0}} t} d t
\end{gathered}
$$

Coefficients of Exponential Fourier Series

Signal representation in orthonormal basis: Haar wavelets

Define $\psi(t)=\left\{\begin{array}{cc}1 & 0 \leq t<\frac{1}{2} \\ -1 & \frac{1}{2}<t \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$
and $\psi_{j k}(t)=2^{\frac{j}{2}} \psi\left(2^{j} t-k\right)$

Functions are otrhogonal
$\left\langle\psi_{j k}(t), \psi_{l m}(t)\right\rangle=0$ if $(j, k) \neq(l, m)$
Signal representation $x(t)=c_{0}+\sum_{j=0}^{\infty} \sum_{k=0}^{2 j=1} c_{j k} \psi_{j k}(t) \quad c_{j k}=\left\langle x(t), \psi_{j k}(t)\right\rangle$

Engineering

Application of inner product: Correlator

- In signal processing correlation between signals is utilized as a measure of their similarity or to locate a known signal with unknown lag.
- Correlation is calculated as an inner product between two signals.

Application of inner product: Correlator base synchronization

Example: Determine the lag of a known signal buried in noise.

Engineering

$$
r_{y x}(\tau)=\langle y(t), x(t-\tau)\rangle=\int_{t_{0}}^{t_{1}} y(t) x^{*}(t-\tau) d t
$$

Application of inner product: Correlator receiver

Incoherent correlator receiver
Consider a digital modulation system that transmits K bits during one symbol of length T by selecting one of the signals $\mathrm{s}_{\mathrm{k}}(t)$. When signal k was transmitted, we receive
$r(t)=h s_{\mathrm{k}}(t)+n(t)$
where h denotes the channel attenuation factor and $n(t)$ is the noise power.

Correlate against all the possible waveforms
Select the one with highest absolute value correlation

Example: Frequency shift keying (FSK)

We wish to transmit either ' 0 ' or ' 1 ' by selecting one of the waveforms

$$
s_{0}(t)=\sqrt{\frac{2 E}{T}} \cos \left(2 \pi f_{c} t\right), \quad 0 \leq t \leq T
$$

$$
s_{1}(t)=\sqrt{\frac{2 E}{T}} \cos \left(2 \pi\left(f_{c}+\Delta f\right) t\right), \quad 0 \leq t \leq T
$$

Example: Frequency shift keying (FSK)

Performance of the receiver is maximized when the two signals are taken to be orthogonal

$$
\begin{aligned}
& \left\langle s_{1}(t) \mid s_{0}(t)\right\rangle=\frac{2 E}{T} \int_{0}^{T} \cos \left(2 \pi\left(f_{c}+\Delta f\right) t\right) \cos \left(2 \pi f_{c} t\right) d t \\
& =E \frac{\sin \left(4 \pi f_{c} T+2 \pi \Delta f T\right)}{2 \pi f_{c} T+\pi \Delta f T}+E \frac{\sin (2 \pi \Delta f T)}{\pi \Delta f T}=0 \Rightarrow \Delta f T \in\left\{\frac{1}{2}, 1, \frac{3}{2}, \ldots\right\}
\end{aligned}
$$

where $f_{c} T=$ integer

Example: Frequency shift keying (FSK)

- Audio frequency FSK were used to transmit digital data over analog circuit switched telephony lines.
- Variants of the FSK include

- Gaussian FSK where the pulses are first filtered with a Gaussian filter before FSK is applied. GFSK is used e.g. in Bluetooth.
- Gaussian minimum shift keying is used in GSM (2G) mobile phone systems

Example: OFDM

Modern wireless systems (4G LTE, 5G NR \& WiFi) use Orthogonal Frequency Division Multiplexing (OFDM) to transmit different data symbols on orthogonal frequencies

Application of orthonormal basis and inner product: UMTS

3G UMTS mobile networks used orthogonal Walsh (channelization) codes to distinguish between different users in downlink

Summary

- Inner product
- Orthonormal basis
- Gram-Schidt procedure
- Applications in communications engineering

f过 © in

aalto.fi

Aalto University
School of Electrical
Engineering

