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Vector space & Signal space

Vector (or discrete time pulse)

𝒙 =

𝑥1
𝑥2
⋮
𝑥𝒏

∈ C𝑛 ,𝑥𝑘 = 𝑎𝑘 + 𝑗𝑏𝑘

Inner product of two vectors x and y

x,y ≜ 𝒚𝐻𝒙 = ∑𝒌(𝟏
𝒏 𝑥* 𝑦*∗

Length of vector x (norm of a vector)

x = x,x = ∑𝒌(𝟏
𝒏 𝑥*

,

Orthonormal basis f𝑘, 𝑘 = 1,2,… , 𝑛 :

f𝑘, , f𝐿, = 51, 𝑘 = 𝑙
0, 𝑘 ≠ 𝑙

𝒙 = ∑𝒌(𝟏
𝒏 x, f𝑘 f𝑘

Pulse (Energy signal)

𝑥 𝑡 ∈ C , 𝑡0 ≤ 𝑡 ≤ 𝑡1, 𝑥 𝑡 = 𝑎 𝑡 + 𝑗𝑏 𝑡

Inner product of two pulses x(t) and y(t)

x(t), y(t) ≜ ;
/!

/"
𝑥 𝑡 𝑦∗ 𝑡 𝑑𝑡

Signal energy

E= x(t) , = x(t), x(t) =∫/!
/" 𝑥(𝑡) , 𝑑𝑡

Periodic signal (Power signal)

𝑥 𝑡 ∈ C , 𝑥 𝑡 + 𝑇0 = 𝑥(𝑡), 𝑥(𝑡) = 𝑎(𝑡) + 𝑗𝑏(𝑡)

Inner product of two pulses x(t) and y(t)

x(t), y(t) ≜ ;
0!
𝑥 𝑡 𝑦∗ 𝑡 𝑑𝑡

Signal power

P= 1
0!

x(t) , = 1
0!

x(t), x(t) = 1
0!
∫/!
/" 𝑥(𝑡) , 𝑑𝑡

Vector space Signal space

Orthonormal basis f𝑘(𝑡), 𝑘 = 1,2,… ,𝑚 :

f𝑘 (𝑡), f𝑙 (𝑡) = 51, 𝑘 = 𝑙
0, 𝑘 ≠ 𝑙

𝑥 𝑡 = B
𝒌(𝟏

𝒏

𝑥 𝑡 , f𝑘 𝑡 f𝑘 𝑡



Problem

Determine the norm and the inner product for signals and vectors
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Representing vector with 
orthonormal basis
Orhonormal basis               Vector

Projection on the basis

f1 =
!
"

1
−1 , f2 =

!
"
1
1

𝒙 = 1
1/2

f2

f1

𝒙

x, f2 =1 ' C
D
+ C
D
$
#
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= E
D D

x, f1 =1 ' C
D
+ C
D
$
%#
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𝒙 = #

$ $
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&

$ $
f2 x, f
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Representing pulse with an 
orhonormal basis
Orhonormal basis (Walsh)     Pulse

2TT
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Example: Linear time invariant 
systems
Laguerre functions form an orthonormal 
basis to express the responses of stable 
linear time invariant (LTI) systems

This can be utilized in system 
indentification. 
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I𝑒ML



Gram-Schmidt procedure

Given set of signals {s𝑘 𝑡 , 𝑘 = 1,2, … } find orthonormal basis 
{f𝑘 𝑡 , 𝑘 = 1,2, … } that span the signal set.  

f1 𝑡 =
𝑠1 𝑡
𝑠1 𝑡

*f2 𝑡 = 𝑠2 𝑡 − 𝑠2 𝑡 , fl (𝑡) fl (𝑡)

f2 𝑡 =
*f2 𝑡
*f2 𝑡

…
9f𝑘 𝑡 = 𝑠𝑘 𝑡 − ∑./!01! 𝑠𝑘 𝑡 , f𝑙 (𝑡) f𝑘 (𝑡)

f𝑘 𝑡 =
9f𝑘 𝑡
9f𝑘 𝑡

𝑠1

𝑠2

f1

f2

𝑠2 − 𝑠2, fl fl

𝑠2, fl fl



Gram-Schmidt procedure: 
Legendre polynomials
Consider set of signals on 𝑡 ∈ −1,1
𝑠0 𝑡 = 1, 𝑠1 𝑡 = 𝑡, 𝑠2 𝑡 = 𝑡2, … 𝑠𝑘 𝑡 = 𝑡𝑘

With Gram-Schmidt procedure, we can 
find the basis

f0 𝑡 =
1

2
1, f2 𝑡 =

3
2
𝑡,

f2 𝑡 =
5
8 3𝑡2− 1 ,… , f𝑘 𝑡 = 𝑃𝑘(𝑡)

Legendre	polynomial



Problem

Find orhonormal basis for the following two signals
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Calculating signal energy / power

• While in vector space one can always find orthonormal basis to represent the 
vectors, this is not guaranteed in the signal space. 

• If a signal can be represented as sum of orthonormal signals

𝑥 𝑡 = $
𝒌"𝟏

𝒏

𝑥𝑘 f𝑘 𝑡

Pulses Periodic signals
Its Energy is given by                    Its power is given by

𝐸 = $
%"&

'

𝑥𝑘 ( 𝑃 =
1
𝑇)
$
%"&

'

𝑥𝑘 (
Parseval’s
theorem



Problem

Consider a periodic signal 𝑥 𝑡 = 𝑥 𝑡 + 𝑇)
that can be expressed in terms of orthonormal basis 𝜙% 𝑡 , 𝑘 = 1,2 : 
𝑥 𝑡 = −𝜙& 𝑡 + 2𝜙( 𝑡
Determine the average power of the signal



Application of orthonormal basis: 
Signal constellation
Consider a digital modulation system that transmits K bits during one 
symbol of length T by controlling amplitude and phase. There are 2K

different symbols (𝑎!, 𝜃!). The transmitter generates waveform (signal) 
sk(t) when symbol k is transmitted

𝑠% 𝑡 =
2𝐸
𝑇 𝑎% cos 2𝜋𝑓*𝑡 + 𝜃%

T Symbol duration
E Symbol energy
fc Carrier frequency
fc T Integer

0≤ 𝑡 ≤ 𝑇



Application of orthonormal basis: 
Signal constellation
Orthonormal basis

Generated waveform

f& 𝑡 =
2
𝑇 cos 2𝜋𝑓*𝑡 , f( 𝑡 =

2
𝑇 sin 2𝜋𝑓*𝑡 0≤ 𝑡 ≤ 𝑇

𝑠% 𝑡 = 𝐸𝑎% cos 𝜃% f& 𝑡 + 𝐸𝑎% sin 𝜃% f( 𝑡

𝑠𝑘 =
𝐸𝑎+ cos 𝜃+
𝐸𝑎+ sin 𝜃+

f2(t)

f1(t)

Transmitted symbol visualized

Signal energy= 𝐸𝑎N cos 𝜃N 2 + 𝐸𝑎+ sin 𝜃+ 2 = 𝐸𝑎ND



Application of orthonormal basis: 
Signal constellation
It is customary to represent the modulated signal using complex 
numbers

𝑠𝑘 =
𝐸𝑎+ cos 𝜃+
𝐸𝑎+ sin 𝜃+

f2(t)

f1(t)

𝑠𝑘 = 𝐸𝑎+𝑒,-3
𝐼𝑚

𝑅𝑒

Transmitted symbol visualized
in signal space

In-phase (I)

Quadrature (Q)

Transmitted symbol visualized
in a phasor diagram



Application of orthonormal basis: 
Signal constellation
Example:  8-Phase Shift Keying (PSK) modulation signal 
constillation

8-PSK
010

110

111

101
100

000

001

011

http://zone.ni.com/cms/images/devzone/tut/psk2.JPG



Exaple signal constellation

https://se.mathworks.com/help/5g/ug/evm-measurement-of-5g-nr-pdsch-waveforms.html

Physical Downlink Shared Channel (PDSCH)

Aalto’s 5G gNB on the roof of Väre building



Signal representation in 
orthonormal basis: Fourier-series
Periodic signal
Orthonormal basis 

Signal represented in the orthonormal basis

fN 𝑡 =
1
𝑇0
𝑒O
$/+
'!
L

k=…,-2,-1,0,1,2,..

𝑥 𝑡 = 𝑥(𝑡 + 𝑇0)

𝑥 𝑡 = ∑NJMKK 𝑥 𝑡 , f𝑘 𝑡 f𝑘 𝑡 = ∑NJMKK ∫G4 𝑥 𝑡
!
<$
𝑒MO

%&'
(#
L𝑑𝑡 !

<$
𝑒O

%&'
(#
L= ∑NJMKK 𝑋(𝑘) 𝑒O

%&'
(#
L

𝑋 𝑘 =
1
𝑇0
@
'!
𝑥 𝑡 𝑒%0

$/+
'!

1𝑑𝑡

Coefficients of Exponential Fourier Series

Complex signal

1

Im

Re

𝑒O
DPN
G4

L

Phasor rotating counter 
clockwise with frequency N

G4



Signal representation in 
orthonormal basis: Haar wavelets

Define 𝜓 𝑡 =
1 0 ≤ 𝑡 < "

#

−1 "
#
< 𝑡 ≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and 𝜓𝑗𝑘 𝑡 =2
+
,𝜓 2$𝑡 − 𝑘

Functions are otrhogonal
𝜓𝑗𝑘 𝑡 , 𝜓𝑙𝑚 𝑡 =0 if 𝑗, 𝑘 ≠ (𝑙,𝑚)

Signal representation 𝑥 𝑡 = 𝑐F +∑QJFK ∑NJFD*MC 𝑐QN 𝜓𝑗𝑘 𝑡

k

j

𝑐QN= 𝑥 𝑡 ,𝜓𝑗𝑘 𝑡



Application of inner product: 
Correlator
• In signal processing correlation between signals is utilized as a 

measure of their similarity or to locate a known signal with 
unknown lag.

• Correlation is calculated as an inner product between two 
signals.



Application of inner product: 
Correlator base synchronization
Example: Determine the lag of a known signal buried in noise.

Time t (samples) Lag t (samples)

Correlation 𝑟RS tTime domain signal
Maximum gives
Estimate for the lag

𝑟RS t = 𝑦 𝑡 , 𝑥 𝑡 − 𝜏 = N
L4

L1
𝑦 𝑡 𝑥∗ 𝑡 − 𝜏 𝑑𝑡



Application of inner product: 
Correlator receiver
Consider a digital modulation 
system that transmits K bits 
during one symbol of length T by 
selecting one of the signals sk(t). 
When signal k was transmitted, 
we receive 
r(t) = h sk(t) + n(t) 
where h denotes the channel 
attenuation factor and n(t) is the 
noise power. 

r(t)

𝑠C∗(𝑡)

𝑠U∗ (𝑡)

…

N
F

G

N
F

G

… … argm
ax

k

Incoherent correlator receiver

Correlate against all the possible waveforms
Select the one with highest absolute value correlation



Example: Frequency shift keying 
(FSK)
We wish to transmit either ‘0’ or ‘1’ by selecting one of the 
waveforms

𝑠) 𝑡 = (-
.
cos 2𝜋𝑓*𝑡 , 0 ≤ 𝑡 ≤ 𝑇 𝑓* 𝑇 ∈ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

𝑠& 𝑡 = (-
.
cos 2𝜋 𝑓* + ∆𝑓 𝑡 , 0 ≤ 𝑡 ≤ 𝑇

1       0         1        0        1



Example: Frequency shift keying 
(FSK)
Performance of the receiver is maximized when the two signals are 
taken to be orthogonal

𝑠& 𝑡 |𝑠) 𝑡 =
2𝐸
𝑇 C

)

.

cos 2𝜋 𝑓* + ∆𝑓 𝑡 cos 2𝜋𝑓*𝑡 𝑑𝑡

= 𝐸 /01(345'.6(4∆5.)
(45'.64∆5.

+ 𝐸 /01((4∆5.)
4∆5.

=0   =>  ∆𝑓𝑇 ∈ &
(
, 1, 9

(
, …

where 𝑓*𝑇=integer



• Audio frequency FSK were used to 
transmit digital data over analog circuit 
switched telephony lines.

• Variants of the FSK include
• Gaussian FSK where the pulses are 

first filtered with a Gaussian filter 
before FSK is applied. GFSK is used 
e.g. in Bluetooth.

• Gaussian minimum shift keying is 
used in GSM (2G) mobile phone 
systems

Example: Frequency 
shift keying (FSK)



Modern wireless systems (4G 
LTE, 5G NR & WiFi) use 
Orthogonal Frequency Division 
Multiplexing (OFDM) to transmit 
different data symbols on 
orthogonal frequencies

Example: OFDM

https://www.dsprelated.com/showarticle/1046.php



Application of orthonormal basis 
and inner product: UMTS
3G UMTS mobile networks used orthogonal Walsh (channelization) 
codes to distinguish between different users in downlink

x(t)=s1wal1(t)+s2wal2(t)

N
L4

L1
𝑥 𝑡 𝑤𝑎𝑙C∗ 𝑡 𝑑𝑡 = 𝑠1

N
L4

L1
𝑥 𝑡 𝑤𝑎𝑙D∗ 𝑡 𝑑𝑡 = 𝑠2

1

2



Summary

• Inner product
• Orthonormal basis
• Gram-Schidt procedure
• Applications in communications engineering



aalto.fi


