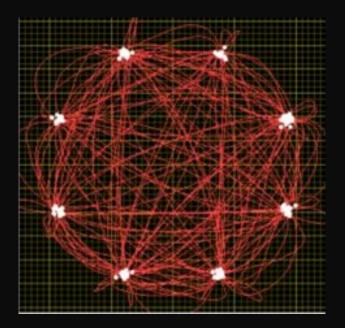
ELEC-A7200

Signals and Systems

Professor Riku Jäntti Fall 2021



Lecture 3 Signal space

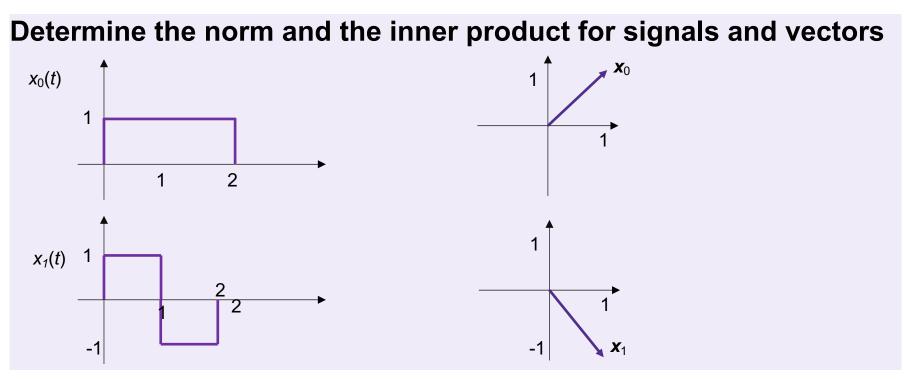
Vector space & Signal space

Vector space

Signal space

Vector (or discrete time pulse)	Pulse (Energy signal)	Periodic signal (Power signal)
$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{C}^n \ , x_k = a_k + jb_k$	$x(t) \in C$, $t_0 \le t \le t_1$, $x(t) = a(t) + jb(t)$	$x(t) \in C, x(t + T_0) = x(t), x(t) = a(t) + jb(t)$
Inner product of two vectors \boldsymbol{x} and \boldsymbol{y}	Inner product of two pulses $x(t)$ and $y(t)$	Inner product of two pulses $x(t)$ and $y(t)$
$\langle \boldsymbol{x}, \boldsymbol{y} \rangle \triangleq \boldsymbol{y}^H \boldsymbol{x} = \sum_{k=1}^n x_k y_k^*$	$\langle \mathbf{x}(t), \mathbf{y}(t) \rangle \triangleq \int_{t_0}^{t_1} \mathbf{x}(t) y^*(t) dt$	$\langle \mathbf{x}(t), \mathbf{y}(t) \rangle \triangleq \int_{T_0} \mathbf{x}(t) \mathbf{y}^*(t) dt$
Length of vector x (norm of a vector)	Signal energy	Signal power
$\ \boldsymbol{x}\ = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle} = \sqrt{\sum_{k=1}^{n} x_k ^2}$	$E = x(t) ^2 = \langle x(t), x(t) \rangle = \int_{t_0}^{t_1} x(t) ^2 dt$	$P=\frac{1}{T_0}\ x(t)\ ^2 = \frac{1}{T_0}\langle x(t), x(t)\rangle = \frac{1}{T_0}\int_{t_0}^{t_1} x(t) ^2 dt$
Orthonormal basis { $\phi_k, k = 1, 2,, n$ }: $\langle \phi_k, , \phi_L, \rangle = \begin{cases} 1, & k = l \\ 0, & k \neq l \end{cases}$	Orthonormal basis { $\phi_k(t), k = 1, 2,, m$ }: $\langle \phi_k(t), \phi_l(t) \rangle = \begin{cases} 1, & k = l \\ 0, & k \neq l \end{cases}$ $x(t) = \sum_{k=1}^{n} \langle x(t), \phi_k(t) \rangle \phi_k(t)$	
$m{x} = \sum_{k=1}^{n} \langle m{x}, \ m{\phi}_k angle \ m{\phi}_k$		

Problem



Representing vector with orthonormal basis

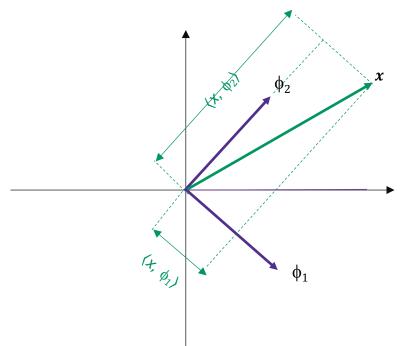
Vector

 $\phi_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix}, \ \phi_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 1 \end{bmatrix} \qquad \qquad x = \begin{bmatrix} 1\\ 1/2 \end{bmatrix}$

Projection on the basis

Orhonormal basis

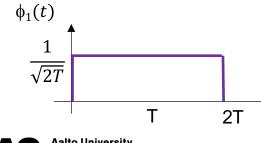
 $\langle \mathbf{x}, \, \phi_1 \rangle = 1 \cdot \frac{1}{\sqrt{2}} + \frac{1}{2} \cdot \frac{-1}{\sqrt{2}} = \frac{1}{2\sqrt{2}}$ $\mathbf{x} = \frac{1}{2\sqrt{2}} \phi_1 + \frac{3}{2\sqrt{2}} \phi_2$ $\langle \mathbf{x}, \, \phi_2 \rangle = 1 \cdot \frac{1}{\sqrt{2}} + \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{3}{2\sqrt{2}}$



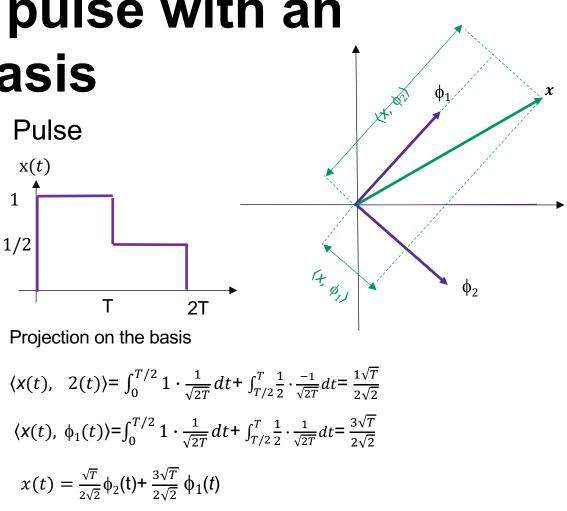
Representing pulse with an orhonormal basis

 $\phi_{2}(t)$ $\frac{1}{\sqrt{2T}}$ T 2T

Orhonormal basis (Walsh)



Aalto University School of Electrical Engineering



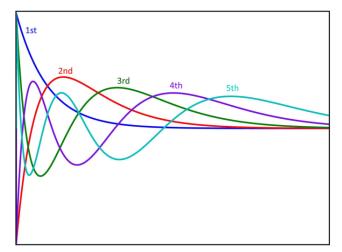
Example: Linear time invariant systems

Laguerre functions form an orthonormal basis to express the responses of stable linear time invariant (LTI) systems

$$\frac{d^n}{dt^n}y(t) = -a_1\frac{d^{n-1}}{dt^{n-1}}y(t) - \dots - a_ny(t) + b_0\frac{d^m}{dt^m}u(t) + b_1\frac{d^{m-1}}{dt^{m-1}}u(t) + \dots + b_mu(t)$$

 $y(t) = \sum_{n=0}^{\infty} w_n L_n(t)$

This can be utilized in system indentification.



Laguerre basis functions

$$L_n(t) = \frac{e^t}{n!} \frac{d}{dt} t^n e^{-t}$$

Gram-Schmidt procedure

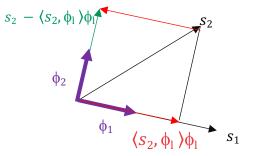
Given set of signals $\{s_k(t), k = 1, 2, ...\}$ find orthonormal basis $\{\phi_k(t), k = 1, 2, ...\}$ that span the signal set.

$$\phi_{1}(t) = \frac{s_{1}(t)}{\|s_{1}(t)\|}$$

$$\tilde{\phi}_{2}(t) = s_{2}(t) - \langle s_{2}(t), \phi_{1}(t) \rangle \phi_{1}(t)$$

$$\phi_{2}(t) = \frac{\tilde{\phi}_{2}(t)}{\|\tilde{\phi}_{2}(t)\|}$$
...
$$\tilde{\phi}_{k}(t) = s_{k}(t) - \sum_{l=1}^{k-1} \langle s_{k}(t), \phi_{l}(t) \rangle \phi_{k}(t)$$

$$\phi_{k}(t) = \frac{\tilde{\phi}_{k}(t)}{\|\tilde{\phi}_{k}(t)\|}$$



Gram-Schmidt procedure: Legendre polynomials

Consider set of signals on $t \in [-1,1]$

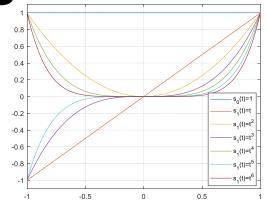
$$s_0(t) = 1, s_1(t) = t, s_2(t) = t^2, \dots s_k(t) = t^k$$

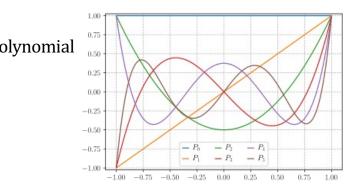
With Gram-Schmidt procedure, we can find the basis

$$\phi_{0}(t) = \frac{1}{\sqrt{2}} 1, \phi_{2}(t) = \sqrt{\frac{3}{2}} t,$$

$$\phi_{2}(t) = \sqrt{\frac{5}{8}} (3t^{2} - 1), \dots, \phi_{k}(t) = Pk(t)$$
Legendre po

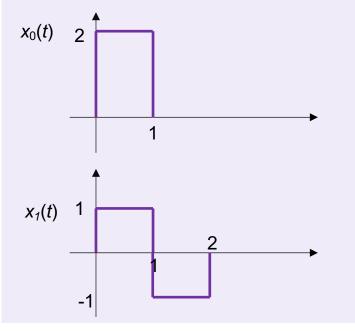
Aalto University School of Electrical Engineering





Problem

Find orhonormal basis for the following two signals



Calculating signal energy / power

- While in vector space one can always find orthonormal basis to represent the vectors, this is not guaranteed in the signal space.
- If a signal can be represented as sum of orthonormal signals

$$x(t) = \sum_{k=1}^{n} x_k \phi_k(t)$$

<u>Pulses</u>

Its Energy is given by

$$E = \sum_{k=1}^{n} |x_k|^2$$

Parseval's theorem

Periodic signals

Its power is given by

$$P = \frac{1}{T_0} \sum_{k=1}^n |x_k|^2$$

Problem

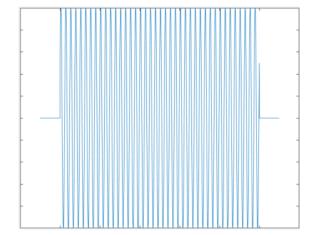
Consider a periodic signal $x(t) = x(t + T_0)$

that can be expressed in terms of orthonormal basis { $\phi_k(t), k = 1,2$ }: $x(t) = -\phi_1(t) + 2\phi_2(t)$

Determine the average power of the signal

Consider a digital modulation system that transmits *K* bits during one symbol of length *T* by controlling amplitude and phase. There are 2^{K} different symbols (a_k , θ_k). The transmitter generates waveform (signal) $s_k(t)$ when symbol *k* is transmitted

$$s_k(t) = \sqrt{\frac{2E}{T}} a_k \cos(2\pi f_c t + \theta_k) \qquad 0 \le t \le T$$



Orthonormal basis

$$\phi_1(t) = \sqrt{\frac{2}{T}}\cos(2\pi f_c t), \\ \phi_2(t) = \sqrt{\frac{2}{T}}\sin(2\pi f_c t) \qquad 0 \le t \le T$$

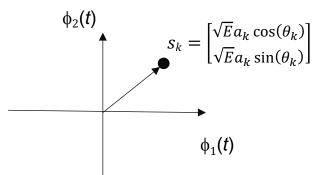
Transmitted symbol visualized

Т

Generated waveform

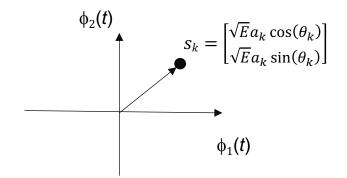
$$s_k(t) = \sqrt{E}a_k \cos(\theta_k) \phi_1(t) + \sqrt{E}a_k \sin(\theta_k) \phi_2(t)$$

Signal energy= $(\sqrt{E}a_k \cos(\theta_k))^2 + (\sqrt{E}a_k \sin(\theta_k))^2 = Ea_k^2$

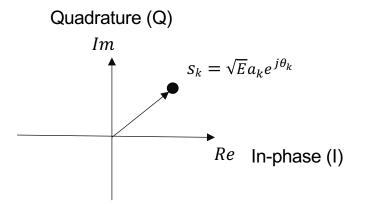


It is customary to represent the modulated signal using complex numbers

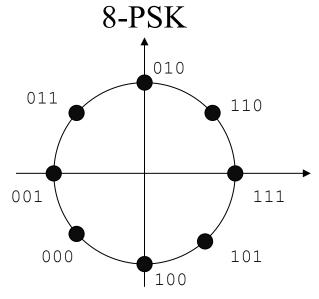
Transmitted symbol visualized in signal space



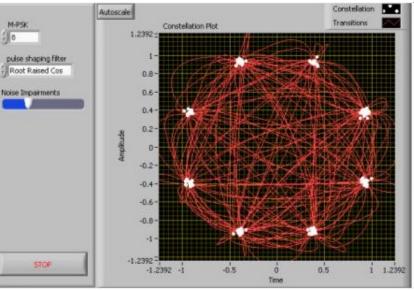
Transmitted symbol visualized in a phasor diagram



Example: 8-Phase Shift Keying (PSK) modulation signal constillation

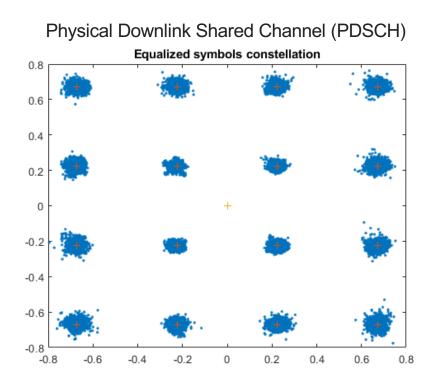


Aalto University School of Electrical Engineering



http://zone.ni.com/cms/images/devzone/tut/psk2.JPG

Exaple signal constellation



https://se.mathworks.com/help/5g/ug/evm-measurement-of-5g-nr-pdsch-waveforms.html

Aalto's 5G gNB on the roof of Väre building

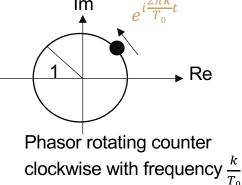
Signal representation in orthonormal basis: Fourier-series

Periodic signal $x(t) = x(t + T_0)$

Orthonormal basis

 $\phi_k(t) = rac{1}{\sqrt{T_0}} e^{i rac{2\pi k}{T_0} t}$ Complex signal

k=...,-2,-1,0,1,2,..

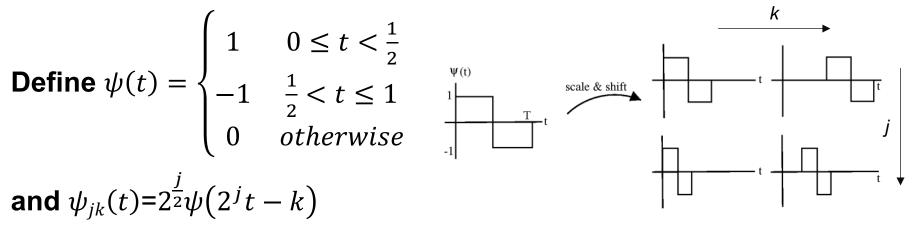


Signal represented in the orthonormal basis

$$x(t) = \sum_{k=-\infty}^{\infty} \langle x(t), \phi_k(t) \rangle \phi_k(t) = \sum_{k=-\infty}^{\infty} \int_{T_0} x(t) \frac{1}{\sqrt{T_0}} e^{-i\frac{2\pi k}{T_0}t} dt \frac{1}{\sqrt{T_0}} e^{i\frac{2\pi k}{T_0}t} = \sum_{k=-\infty}^{\infty} X(k) e^{i\frac{2\pi k}{T_0}t}$$
$$X(k) = \frac{1}{T_0} \int_{T_0} x(t) e^{-i\frac{2\pi k}{T_0}t} dt$$

Coefficients of Exponential Fourier Series

Signal representation in orthonormal basis: Haar wavelets



Functions are otrhogonal

 $\langle \psi_{jk}(t), \psi_{lm}(t) \rangle = 0$ if $(j, k) \neq (l, m)$ Signal representation $x(t) = c_0 + \sum_{j=0}^{\infty} \sum_{k=0}^{2^{j-1}} c_{jk} \psi_{jk}(t)$

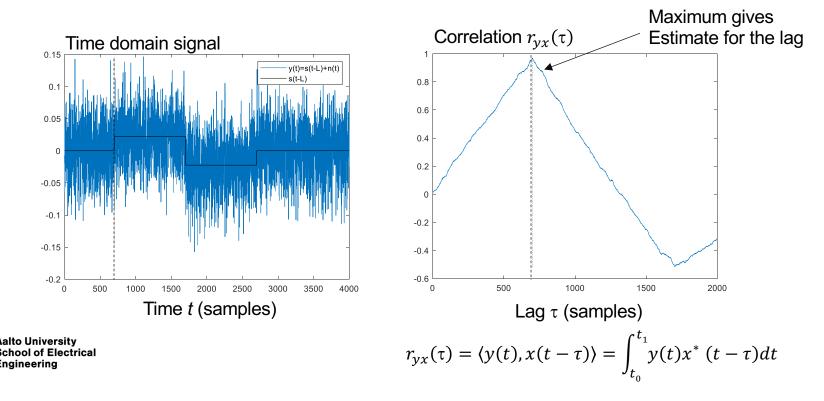
 $c_{jk} = \langle x(t), \psi_{jk}(t) \rangle$

Application of inner product: Correlator

- In signal processing correlation between signals is utilized as a measure of their similarity or to locate a known signal with unknown lag.
- Correlation is calculated as an inner product between two signals.

Application of inner product: Correlator base synchronization

Example: Determine the lag of a known signal buried in noise.



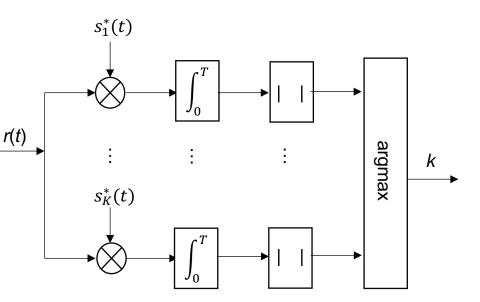
Application of inner product: Correlator receiver

Consider a digital modulation system that transmits *K* bits during one symbol of length *T* by selecting one of the signals $s_k(t)$.

When signal *k* was transmitted, we receive

 $r(t) = h \, s_k(t) + n(t)$

where h denotes the channel attenuation factor and n(t) is the noise power. Incoherent correlator receiver



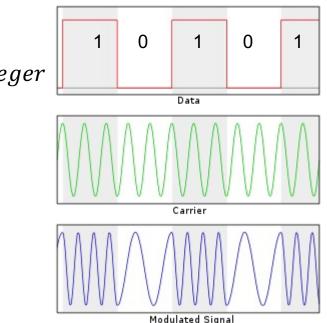
Correlate against all the possible waveforms Select the one with highest absolute value correlation

Example: Frequency shift keying (FSK)

We wish to transmit either '0' or '1' by selecting one of the waveforms

$$s_0(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_c t), \quad 0 \le t \le T \quad f_c \ T \in Inter$$

$$s_1(t) = \sqrt{\frac{2E}{T}} \cos(2\pi (f_c + \Delta f)t)$$
, $0 \le t \le T$



Example: Frequency shift keying (FSK)

Performance of the receiver is maximized when the two signals are taken to be orthogonal

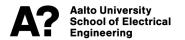
$$\langle s_1(t)|s_0(t)\rangle = \frac{2E}{T} \int_0^T \cos(2\pi (f_c + \Delta f)t) \cos(2\pi f_c t) dt$$

= $E \frac{\sin(4\pi f_c T + 2\pi \Delta f T)}{2\pi f_c T + \pi \Delta f T} + E \frac{\sin(2\pi \Delta f T)}{\pi \Delta f T} = 0 \implies \Delta f T \in \left\{\frac{1}{2}, 1, \frac{3}{2}, \dots\right\}$

where $f_c T$ =integer

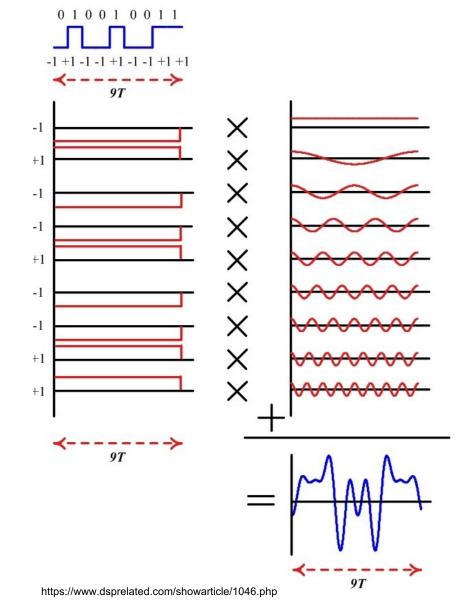
Example: Frequency shift keying (FSK)

- Audio frequency FSK were used to transmit digital data over analog circuit switched telephony lines.
- Variants of the FSK include
 - Gaussian FSK where the pulses are first filtered with a Gaussian filter before FSK is applied. GFSK is used e.g. in Bluetooth.
 - Gaussian minimum shift keying is used in GSM (2G) mobile phone systems



Example: OFDM

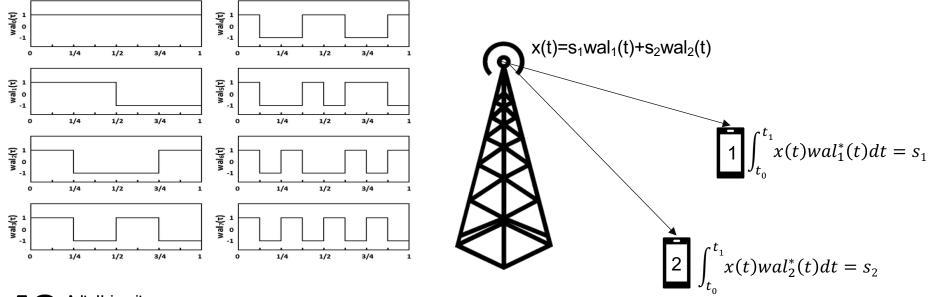
Modern wireless systems (4G LTE, 5G NR & WiFi) use Orthogonal Frequency Division Multiplexing (OFDM) to transmit different data symbols on orthogonal frequencies



Aalto University School of Electrical Engineering

Application of orthonormal basis and inner product: UMTS

3G UMTS mobile networks used orthogonal Walsh (channelization) codes to distinguish between different users in downlink



Summary

- Inner product
- Orthonormal basis
- Gram-Schidt procedure
- Applications in communications engineering

f 🖸 y 🖻 🌲 in.

aalto.fi

