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Intended Learning Outcomes

After this lecture, you will be able to:
Recognize and name the components of sensor fusion
systems: sensors, models, estimation algorithms;
Understand the notation used in sensor fusion (on this
course);
Describe and identify the purpose of an optimality criterion
and cost functions;
Understand what are least squares, weighted least
squares, and regularized least squares criteria.
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Recap (1)
Lectures are on Tuesdays in 12:15-14:00
Exercises on Fridays in 12:15-14:00
Teaching materials are lecture notes and slides on
MyCourses.
Project work starts later and it is about sensor fusion in a
mobile robot.
There are two mid-term Exams.
The grade is determined by exams, homeworks, and
project work.
Sensor fusion is methodology for intelligent processing of
measurements from multiple sensors.
In practice, linear/non-linear least squares methods and
Kalman filtering methods.
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Recap (2)

Typical models that we saw are the following:

y1

px

y3
y2 py

y = G x + b + r y = g(x) + r
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The Components of Sensor Fusion

Sensor(s)
Estimation
Algorithm

Variable of
Interest

Model(s)
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Variable of Interest

Definition
One or more unknown static quantities of interest, parameters
or a time-varying state of a dynamic system of interest that can
be measured directly or indirectly.

Notation
A single (scalar) static parameter is denoted x ,
a vector of K static parameters is denoted as
x =

[
x1 x2 . . . xK

]T,
a scalar time-varying state is denoted xn = x(tn),
a vector time-varying state is denoted xn = x(tn).
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Sensors (1/3)

Definition
Sensor is a device that provides a measurement related to
the quantity of interest.
Usually, implemented as a device which converts a
physical phenomenon into an electrical signal (Wilson,
2005) which is then further transformed into digital form.

May measure the variable directly or indirectly
Measurement range and environmental conditions
Is affected by noise, biases, and uncertainty
May give measurements frequently or infrequently
Scalar or vector measurements
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Sensors (2/3)

Notation
A scalar measurement is denoted yn

A vector measurement is denoted yn

n is a measurement number, sensor id, time, etc.
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Sensors (3/3)

Examples
Sensor Measurement Application Examples
Accelerometer Gravity, acceleration Inertial navigation, activity tracking,

screen rotation
Gyroscope Rotational velocity Inertial navigation, activity tracking
Magnetometer Magnetic field strength Inertial navigation, digital compass,

object tracking
Radar Range, bearing, speed Target tracking, autonomous vehi-

cles
LIDAR Range, bearing, speed Target tracking, autonomous vehi-

cles, robotics
Ultrasound Range Robotics
Camera Visual scene Security systems, autonomous vehi-

cles, robotics
Barometer Air pressure Inertial navigation, autonomous ve-

hicles, robotics
GNSS Position Autonomous vehicles, aerospace

applications
Strain gauge Strain Condition monitoring, scales
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Model

Definition
Describes how the variable of interest is observed by the
sensor in a systematic way.

May be very simple or very complex
Takes noise, uncertainty, and other error sources into
account
Formulated using mathematics
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Estimation Algorithm

Definition
Combines the measurements from multiple sensors by using
the corresponding models to estimate the quantities of interest
in some optimal sense.

Combining multiple measurements increases the precision
(on average)
Measurements from different sensors can be incorporated
Can account for the uncertainty of different measurements
In this course the algorithms minimize a least squares cost
criterion to achieve these.
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A Basic Model

The general form is:

Measurement = Function of Parameter(s) + Noise

Mathematically:
yn = gn(x) + rn

Anatomy:
Measurement yn is on the left hand side, and
Function gn(x) of x and a noise term rn on the right side.

This is called sensor model, measurement model, or
observation model.
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Measurement Noise

Encodes thermal sensor noise, uncertainty, etc.
rn is modeled as a random variable, follows a probability
density function (pdf)

rn ∼ p(rn)

For now, we assume zero-mean, independent random
variables with variance σ2

r ,n

E{rn} = 0,

var{rn} = E{r2
n } − (E{rn})2 = σ2

r ,n,

Cov{rm, rn} = E{rmrn} − E{rm}E{rn} = 0 (m 6= n)



Sensors, Models, and Least Squares Criterion
Simo Särkkä

18 / 31

Vector Model
Extending the basic model for vector-valued
measurements:

yn = gn(x) + rn,

yn and rn are dy -dimensional column vectors
rn is a multivariate random variable with pdf

rn ∼ p(rn)

Assume zero-mean, independent random variables with
covariance Rn

E{rn} = 0,

Cov{rn} = E{rnrT
n} − E{rn}E{rn}T = Rn,

Cov{rm, rn} = E{rmrT
n} − E{rm}E{rn}T = 0 (m 6= n)
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Multiple Measurements

Sensor fusion requires multiple sensors, repeated
measurements, or both
In the terminology of the measurement model, they can be
regarded the same: y1, y2, . . . , yN or y1,y2, . . . ,yN

We denote a set of measurements:
y1:N = {y1, y2, . . . , yN} for the scalar case
y1:N = {y1,y2, . . . ,yN} for the vector case

Examples: Sensor networks, sensor arrays, multi-view
imaging, etc.
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Measurement Stacking: Scalar Case
Remember: yn = gn(x) + rn
Given the measurements y1:N , we can write:

y1
y2
...

yN

 =


g1(x)
g2(x)

...
gN(x)

+


r1
r2
...

rN


Compact notation for all measurements:

y = g(x) + r.

Covariance for r: Cov{r} = R =


σ2

r ,1 0 . . . 0

0 σ2
r ,2

...
...

. . . 0
0 . . . 0 σ2

r ,N


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Measurement Stacking: Vector Case
Vector case: yn = gn(x) + rn

Stacked notation:
y1
y2
...

yN

 =


g1(x)
g2(x)

...
gN(x)

+


r1
r2
...

rN


Hence,

y = g(x) + r.

where Cov{r} = R =


R1 0 . . . 0

0 R2
...

...
. . . 0

0 . . . 0 RN

 .
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Gaussian Measurement Noise
Noise is often assumed to be Gaussian, i.e.

p(r) =
1

(2π)M/2|R|1/2 e− 1
2 rTR−1r

Compact notation p(r) = N (r; 0,R), where

N (z;µ,Σ) =
1

(2π)M/2|Σ|1/2 e− 1
2 (z−µ)TΣ−1(z−µ)

µ− 2σ µ µ+ 2σ

z

p(z)
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Cost Functions (1/2)
An optimality criterion is required to develop an estimation
algorithm
We focus on algorithms that minimize a cost function of the
error

x̂ = argmin
x

J(x)

where
x̂ denotes the estimate of x
J(x) is the cost function
argminx J(x) denotes “the argument x that minimizes J(x)”

The error is given by the difference between the
measurement and the output predicted by x

en = yn − gn(x)
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Cost Functions (2/2)

Absolute Error
Penalizes all errors equally:

|en| = |yn − gn(x)|,

e

J(e)

Quadratic Error
Penalizes large errors more than
small ones:

e2
n = (yn − gn(x))2.

e

J(e)
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Least Squares (1/2)

The quadratic cost is much more common
Closely related to Gaussian measurement noise
Minimizing the quadratic cost function is the least squares
method
Cost function for N scalar measurements
y1:N = {y1, y2, . . . , yN}

JLS(x) =
N∑

n=1

e2
n =

N∑
n=1

(yn − gn(x))2
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Least Squares (2/2)

Quadratic error for vector measurements

e2
n = (yn − gn(x))T(yn − gn(x))

Cost function for N vector measurements
y1:N = {y1,y2, . . . ,yN}

JLS(x) =
N∑

n=1

(yn − gn(x))T(yn − gn)

Quadratic error and cost function for stacked (batch)
notation

JLS(x) = (y− g(x))T(y− g(x))
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Weighted Least Squares (1/2)

How to include confidence in sensor readings?
Weighted least squares (WLS) cost function:

JWLS(x) =
N∑

n=1

wn(yn − gn(x))2,

where wn > 0 is a weighing factor for the nth measurement
WLS vector cost function:

JWLS(x) =
N∑

n=1

(yn − gn(x))TWn(yn − gn(x)),

where Wn is a positive-definite weighing matrix



Sensors, Models, and Least Squares Criterion
Simo Särkkä

28 / 31

Weighted Least Squares (2/2)
WLS stacked cost function:

JWLS(x) = (y− g(x))TW(y− g(x))

where W is the positive-definite weighing matrix

W =


w1 0 . . . 0

0 w2
...

...
. . . 0

0 . . . 0 wN

 or W =


W1 0 . . . 0

0 W2
...

...
. . . 0

0 . . . 0 WN


Choice of wn or Wn is in principle arbitrary
In practice, good choices are

wn = 1/σ2
r ,n and Wn = R−1

n
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Regularized Least Squares

In plain (weighted) least squares we find an estimate that
best explains the measurements.
In regularized least squares we add a penalty term in the
estimate.
The penalty term can force the estimate to be "small" or
close to certain "a priori" know value.
The general form of regularized least squares (ReLS) that
we use is

JReLS(x) = (y−g(x))TR−1(y−g(x)) + (x−m)TP−1(x−m).

Regularized least squares can also be used to formulate
dynamic estimation methods.
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Summary

Sensor fusion involves three components:
1 Sensor: Measures a variable of interest, directly or

indirectly
2 Model: A mathematical formulation that relates the

variables of interest to the measurements
3 Estimation Algorithm: Combines the measurements and

models to estimate the variables of interest

Multiple measurements and multidimensional
measurements can be written in the same vector notation.
The least squares method is a good way for deriving
estimators.
(Plain) least squares, weighted least squares, and
regularized least squares are useful criteria for estimators.
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