Mathematics for Economists

Mitri Kitti

Multivariate functions

Functions

- ▶ A **function** $f: A \longrightarrow B$ from a set A to a set B is a rule that assigns to each element $a \in A$ one and only one element $b \in B$
- ► A is the domain of f
- ▶ *B* is the codomain of *f*
- ► The *image* (or *range*) of *A* under *f* is the set

$$f[A] := \{b \in B : b = f(a) \text{ for some } a \in A\}$$

- ▶ In this course (and in much of Economics), $A \subseteq \mathbb{R}^n$ and $B = \mathbb{R}^m$
 - ▶ note if m > 1, then $f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}))$, where f_i , $i = 1, \dots, m$, are the component functions of f

Functions

- 1. What is the function corresponding to the set $\{(1,2),(2,2),(3,2)\}$ in $X \times Y$? What is the domain, codomain and range of the function?
- 2. Assume $X = \{-1, 1, 2, 3\}$ and $Y = \mathbb{R}$ In which of the cases we have a function from X to Y?
- a) f(1) = 2, f(2) = 2, f(3) = 2
- b) f(-1) = 0, f(1) = 0, $f(2) = \{1, 2\}$, f(3) = 1
- c) $f(x) = \sqrt{x}$

Functions of Several Variables: Examples

- **Examples** of utility/production functions $f: \mathbb{R}^n \longrightarrow \mathbb{R}$
 - Linear (perfect substitutes):

$$f(x_1,...,x_n) = a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

Leontief (perfect complements):

$$f(x_1,\ldots,x_n) = \min\{a_1x_1,a_2x_2,\ldots,a_nx_n\}$$

Cobb-Douglas:

$$f(x_1,\ldots,x_n)=C\prod_{i=1}^n x_i^{a_i}$$

Constant Elasticity of Substitution (CES):

$$f(x_1,\ldots,x_n)=C\left(\sum_{i=1}^n a_i x_i^{\rho}\right)^{\frac{1}{\rho}},\quad \text{ with } \rho\neq 0, \rho<1$$

Functions of Several Variables: Graph

▶ The **graph** of a function $f: A \longrightarrow B$ is the set:

$$\{(x,f(x)):x\in A\}.$$

The graph of $f(x, y) = x^2 + y^2$.

Functions of Several Variables: Level Curves

- ▶ It is often easier to represent functions defined over $A \subseteq \mathbb{R}^2$ with level curves (or sets)
- For a fixed value \bar{b} , the **level curve** of f is the set:

$$\left\{x\in A: f(x)=\bar{b}\right\}.$$

Topographic Maps as Level Curves

Map of Hawaii

Functions of Several Variables: Indifference Curves

▶ In Economics, level curves of utility and production functions are called indifference curves and isoquants, respectively

Figure: Three distinct isoquants of a production function q = f(K, L)

Injections, Surjections, and Bijections

▶ A function $f: A \longrightarrow B$ is **one-to-one** or **injective** if, for every $x, y \in A$,

$$x \neq y \implies f(x) \neq f(y)$$
.

- **Example:** $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ such that $f(x) = x^2$
- A function $f: A \longrightarrow B$ is **onto** or **surjective** if, for every $y \in B$, there exists an element $x \in A$ such that f(x) = y.
 - **Example:** $f: \mathbb{R} \longrightarrow \mathbb{R}_+$ such that $f(x) = x^2$
- ▶ A function $f: A \longrightarrow B$ is **bijective** if it is both injective and surjective.
 - **Example:** $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ such that $f(x) = x^2$

Injections, Surjections, and Bijections

Injections, Surjections, and Bijections

- ▶ Which of the following are injections bijections or surjections (and how to define domain in each case)?
- $ightharpoonup f(x) = e^x$
- $f(x) = \ln(x)$
- ightharpoonup f(x,y) = xy
- $f(x, y) = \min\{x, y\}$
- f(x,y) = (x,x)
- $f(x_1,\ldots,x_n)=0$

Composite Functions

▶ Given two functions $f: A \longrightarrow B$ and $g: C \longrightarrow D$, with $B \subseteq C$, the **composition** of f with g is the function $g \circ f: A \longrightarrow D$ such that

$$(g \circ f)(x) = g(f(x))$$
 for all $x \in A$.

- Example:
 - $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ such that f(x, y) = x + y
 - $ightharpoonup g: \mathbb{R} \longrightarrow \mathbb{R}$ such that $g(x) = x^2$
 - $ightharpoonup g \circ f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ is such that $(g \circ f)(x,y) = (x+y)^2$

The composition of f with g.

Inverse Function

▶ For a bijective function $f: A \longrightarrow B$, we can define the **inverse** of f as the function $f^{-1}: B \longrightarrow A$ such that

$$f(x) = y \iff f^{-1}(y) = x.$$

- Example:
 - ▶ Take the linear demand function $Q: [0, a/b] \longrightarrow [0, a]$ such that Q(p) = a bp, with a > b > 0
 - ▶ The so-called inverse demand function $P(q): [0,a] \longrightarrow [0,a/b]$ such that $P(q) = \frac{1}{b}(a-q)$ is the inverse function of Q

Linear Functions

- ightharpoonup Assume that A is an $m \times n$ matrix
- ▶ Function $f(\mathbf{x}) = A\mathbf{x}$ is a linear function, $f: \mathbb{R}^n \mapsto \mathbb{R}^m$
- Assume that m = n, and A is invertible The inverse function of f is $f^{-1}(\mathbf{y}) = A^{-1}\mathbf{y}$
- Assume that B is an $k \times m$ matrix and g(y) = ByComposition of f with g is $(g \circ f)(x) = BAx$

Linear Functions: Example

- ightharpoonup Assume two firms with quantities produced denoted by q_1 and q_2
- Reaction functions:
 - ▶ if firm 1 produces q_1 the other responds by producing $R_2(q_1) = 6 q_1/2$
 - ▶ if firm 2 produces q_2 the other responds by producing $R_1(q_2) = 6 q_2/2$
- ▶ The reactions of firms are characterized by $R: \mathbb{R}^2 \mapsto \mathbb{R}^2$ such that $R(q_1, q_2) = (R_1(q_1), R_2(q_2))$

Sequences

- ▶ A **sequence** in \mathbb{R} is a function $s : \mathbb{N} \longrightarrow \mathbb{R}$
- Examples:

$$ightharpoonup s(n) = \frac{1}{n}$$
, i.e. $\left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\}$

$$> s(n) = 5, i.e. \{5, 5, 5, 5, \dots\}$$

$$ightharpoonup s(n) = \frac{1}{n^2}$$
, i.e. $\left\{1, \frac{1}{4}, \frac{1}{9}, \dots\right\}$

$$ightharpoonup s(n) = (-1)^n$$
, i.e. $\{-1, 1, -1, 1, \dots\}$

- ▶ Oftentimes we write a generic sequence as $\{x_1, x_2, x_3, \dots\}$ or $\{x_n\}_{n=1}^{\infty}$
- A sequence in \mathbb{R}^n is a function $s: \mathbb{N} \longrightarrow \mathbb{R}^n$. That is, a sequence is an assignment of a vector in \mathbb{R}^n to each natural number

- ▶ Given a sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} and a real number L, we say that this sequence **converges** to L if, for every arbitrarily small real number $\epsilon > 0$, there exists a positive integer N such that $|x_n L| < \epsilon$ for all $n \ge N$.
- When $\{x_n\}_{n=1}^{\infty}$ converges to L, we say that L is the **limit** of this sequence, and we write $\lim_{n \to \infty} x_n = L$ or simply $x_n \to L$.

- ightharpoonup Example: $\lim_{n \to \infty} \frac{1}{n^2} = 0$
- ▶ How to check that 0 is indeed the limit of this sequence?
 - 1. Fix a small number $\epsilon > 0$
 - 2. Choose any positive integer N such that $N>\frac{1}{\sqrt{\epsilon}}$
 - 3. For any $n \geq N$, we have

$$|x_n - L| = \left|\frac{1}{n^2} - 0\right| \le \left|\frac{1}{N^2} - 0\right| < \left|\frac{1}{(1/\sqrt{\epsilon})^2} - 0\right| = \epsilon.$$

- ▶ If a sequence converges, its limit is unique
- ▶ Not every sequence has a limit. Examples:
 - $\{1, -1, 1, -1, 1, -1, \dots\}$ $\{1^2, 2^2, 3^2, 4^2, \dots\}$
- \blacktriangleright If $a_n \longrightarrow a$ and $b_n \longrightarrow b$, then $(a_n + b_n) \longrightarrow a + b$
- ▶ If $a_n \longrightarrow a$ and $b_n \longrightarrow b$, then $a_n b_n \longrightarrow ab$
- ▶ If $a_n \longrightarrow a$ and $b_n \longrightarrow b$, then $\frac{a_n}{b_n} \longrightarrow \frac{a}{b}$ if neither b nor any b_n is equal to zero

- ▶ Given a sequence of vectors in \mathbb{R}^n , we have that this sequence converges if and only if all n sequences of its components converge in \mathbb{R}
- Alternatively, a sequence **converges** to \mathbf{x}^* if, for every arbitrarily small real number $\epsilon > 0$, there exists a positive integer N such that $\|\mathbf{x}_n \mathbf{x}^*\| < \epsilon$ for all $n \ge N$.
- ▶ For example, the sequence of vectors $\left\{\left(1+\frac{1}{n},\frac{1}{2n}\right)\right\}_{n=1}^{\infty}$ converges to the vector (1,0)

Continuous Functions

- Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a function and let $x_0 \in \mathbb{R}^n$ be a point in its domain. We say that f is **continuous at** x_0 if whenever $\{x_n\}_{n=1}^{\infty}$ is a sequence in \mathbb{R}^n that converges to x_0 , then the sequence $\{f(x_n)\}_{n=1}^{\infty}$ in \mathbb{R} converges to $f(x_0)$.
- ► If a function is continuous at every point in its domain, then we say that the function is continuous
- Examples of continuous functions are all the utility/production functions at p. 4

Continuous Functions

- ► An alternative (and equivalent) definition of continuity (so-called *epsilon-delta* definition) is the following
- A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at x_0 if, for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x \in \mathbb{R}$ we have

$$|x-x_0|<\delta \implies |f(x)-f(x_0)|<\epsilon.$$

Discontinuity

ightharpoonup An example of a discontinuous function is $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

To see why this function is discontinuous at x=0, take the sequence $\{\frac{1}{n}\}_{n=1}^{\infty}$ in \mathbb{R} . This sequence converges to zero, but the sequence $\{f(\frac{1}{n})\}_{n=1}^{\infty}$ converges to 1

Discontinuity

▶ Another example: f(x,y) = 1/(xy), for $x, y \neq 0$, otherwise f(x,1) = 1

Composites of Continuous Functions

- Let f and g be functions from \mathbb{R}^n to \mathbb{R} . Suppose that both f and g are continuous at $x \in \mathbb{R}^n$. Then we have that all the following functions are continuous at x too:
 - ightharpoonup f + g
 - ► f g
 - ▶ f × g
- Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a continuous function at $x_0 \in \mathbb{R}^n$, and let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function at $f(x_0) \in \mathbb{R}$. Then the composite function $g \circ f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is continuous at x_0 .

Derivatives and Partial Derivatives

▶ For a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ of one variable, the **derivative** of f at x_0 is

$$\frac{df}{dx}(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

provided that the limit exists.

▶ Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$. The **partial derivative** of f with respect to x_i at $x = (x_1, \dots, x_n)$ is

$$\frac{\partial f}{\partial x_i}(x) = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{h},$$

provided that the limit exists.

- ▶ NOTE: only x_i changes, all the other variables are treated as constants.
- Intuitively, the partial derivative of f w.r.t. x_i tells you how much the function changes as x_i changes.

Derivatives and Partial Derivatives

Rules of Differentiation

- Linearity: h(x) = af(x) + bg(x), then h'(x) = af'(x) + bg'(x)
- ▶ Product rule: h(x) = f(x)g(x), then h'(x) = f'(x)g(x) + f(x)g'(x)
- ▶ The chain rule: h(x) = f(g(x)), then h'(x) = f'(g(x))g'(x)
- Some elementary derivatives
 - $f(x) = x^r, r \neq 0, f'(x) = rx^{r-1}$
 - $f(x) = e^{rx}, f'(x) = re^{rx}$
 - $f(x) = \ln(x), f'(x) = 1/x$

Derivatives and Partial Derivatives: Examples

- For a production function f, the partial derivative of f w.r.t. x_i is the **marginal product** of input x_i
- For a utility function u, the partial derivative of u w.r.t. x_i is the **marginal utility** of commodity x_i
- **Example:** Let $f: \mathbb{R}^2_+ \longrightarrow \mathbb{R}$ be the Cobb-Douglas production function

$$f(k,\ell) = Ck^{\alpha}\ell^{\beta},$$

where k is capital and ℓ is labor.

▶ The marginal products of capital and labor are

$$\frac{\partial f}{\partial k}(k,\ell) = C\alpha k^{\alpha-1}\ell^{\beta}$$
$$\frac{\partial f}{\partial \ell}(k,\ell) = C\beta k^{\alpha}\ell^{\beta-1}.$$

Example: Marginal Utility

Example: Let $u: \mathbb{R}_+^T \longrightarrow \mathbb{R}$ be the CRRA (Constant Relative Risk Aversion) utility function

$$u(c_1,...,c_T) = \sum_{t=1}^T \beta^t \frac{c_t^{1-\gamma}}{1-\gamma},$$

where $\beta \in (0,1)$ and $\gamma \geq 0$, $\gamma \neq 1$.

▶ The marginal utility of c_t (consumption in period t) is

$$\frac{\partial u}{\partial c_t} = \beta^t c_t^{-\gamma}.$$