Mathematics for Economists

Problem Set 2 Due date: Wednesday 28.9 at 13.15

Exercise 1

a) Consider the following system of equations

$$zx + ay + 10c + d = 0$$
$$cx + by - 5d = 0$$

Find the matrix presentation of the system (i.e. " $A\mathbf{x} = \mathbf{b}$ " with suitable A, \mathbf{x} , and \mathbf{b}), when the endogenous variables are

- (1) x ja y,
- (2) c, z ja y,
- b) Consider the following quadratic function: $16x^2 + 9y^2 + 24xy$. What is the matrix A if we want to express this function as $\mathbf{x}^T A \mathbf{x}$, i.e., as an inner product of $\mathbf{x} = (x, y)$ and $A \mathbf{x}$?

Exercise 2

Find the inverse of the following matrix:

$$A = \begin{pmatrix} 1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3 \end{pmatrix}.$$

Exercise 3

a) How does the number of solutions of the below pair of linear equations depend on parameters a and b?

$$y - ax = b$$
$$x + y = 2$$

b) Determine whether or not the following set of vectors forms a basis of \mathbb{R}^3 .

$$\begin{pmatrix} 6 \\ 3 \\ 9 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \\ 7 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \\ 8 \end{pmatrix}.$$

Exercise 4

a) Assume that $A = \{a, b, c, d\}$, $B = \{1, 2, 3, 4\}$, and "a rule" f is defined as f(a) = 4, f(b) = 2, f(c) = 1, and f(d) = 3.

i) What do we have to assume about numbers a, b, c, d for f to be a function from A to B?

ii) Assume that A (or numbers a,b,c,d) are defined such that f is a function. Is it a surjection or injection?

b) Consider the function $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 1. Argue why the function is a bijection and find its inverse.

c) Is the function f(x) = x + y injective, surjective, or bijective?

Exercise 5

(a) Show that

$$\lim_{n \to \infty} \frac{3n+1}{4n} = \frac{3}{4}.$$

(b) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be such that

$$f(x) = \begin{cases} x^2 & \text{if } x \neq 2\\ 0 & \text{if } x = 2. \end{cases}$$

Show that f is not continuous at x = 2. [Hint: think what is the limit of f at x = 2 and what is its value.]

Exercise 6

Calculate all the partial derivatives of the following functions:

- (a) $f(x,y) = ax^b y^c$
- (b) $f(x,y) = a \ln(1-x) + b \ln(y)$
- (c) $f(x,y) = \frac{ay^d}{bx^c}$
- (d) $f(x, y, z) = e^{ax-by} z$
- (e) $f(x, y, z) = \sqrt{x^{\frac{1}{2}} + y^{\frac{1}{3}} + 5z^2}$.