Mathematics for Economists

Problem Set 2

Due date: Wednesday 28.9 at 13.15

Exercise 1

a) Consider the following system of equations

$$
\begin{aligned}
z x+a y+10 c+d & =0 \\
c x+b y-5 d & =0
\end{aligned}
$$

Find the matrix presentation of the system (i.e. " $A \mathbf{x}=\mathbf{b}$ " with suitable A, \mathbf{x}, and \mathbf{b}), when the endogenous variables are
(1) x ja y,
(2) c, z ja y,
b) Consider the following quadratic function: $16 x^{2}+9 y^{2}+24 x y$. What is the matrix A if we want to express this function as $\mathbf{x}^{T} A \mathbf{x}$, i.e., as an inner product of $\mathbf{x}=(x, y)$ and $A \mathrm{x}$?

Exercise 2

Find the inverse of the following matrix:

$$
A=\left(\begin{array}{ccc}
1 & 2 & -4 \\
-1 & -1 & 5 \\
2 & 7 & -3
\end{array}\right)
$$

Exercise 3

a) How does the number of solutions of the below pair of linear equations depend on parameters a and b ?

$$
\begin{array}{r}
y-a x=b \\
x+y=2
\end{array}
$$

b) Determine whether or not the following set of vectors forms a basis of \mathbb{R}^{3}.

$$
\left(\begin{array}{l}
6 \\
3 \\
9
\end{array}\right),\left(\begin{array}{l}
4 \\
1 \\
7
\end{array}\right),\left(\begin{array}{l}
5 \\
2 \\
8
\end{array}\right) .
$$

Exercise 4

a) Assume that $A=\{a, b, c, d\}, B=\{1,2,3,4\}$, and "a rule" f is defined as $f(a)=4$, $f(b)=2, f(c)=1$, and $f(d)=3$.
i) What do we have to assume about numbers a, b, c, d for f to be a function from A to B ?
ii) Assume that A (or numbers a, b, c, d) are defined such that f is a function. Is it a surjection or injection?
b) Consider the function $f: \mathbb{R} \mapsto \mathbb{R}, f(x)=x+1$. Argue why the function is a bijection and find its inverse.
c) Is the function $f(x)=x+y$ injective, surjerctive, or bijective?

Exercise 5

(a) Show that

$$
\lim _{n \longrightarrow \infty} \frac{3 n+1}{4 n}=\frac{3}{4} .
$$

(b) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be such that

$$
f(x)= \begin{cases}x^{2} & \text { if } x \neq 2 \\ 0 & \text { if } x=2\end{cases}
$$

Show that f is not continuous at $x=2$. [Hint: think what is the limit of f at $x=2$ and what is its value.]

Exercise 6

Calculate all the partial derivatives of the following functions:
(a) $f(x, y)=a x^{b} y^{c}$
(b) $\quad f(x, y)=a \ln (1-x)+b \ln (y)$
(c) $f(x, y)=\frac{a y^{d}}{b x^{c}}$
(d) $f(x, y, z)=e^{a x-b y}-z$
(e) $f(x, y, z)=\sqrt{x^{\frac{1}{2}}+y^{\frac{1}{3}}+5 z^{2}}$.

