Mathematics for Economists

Mitri Kitti
Aalto University
Calculus of Several Variables

Derivative as the Slope of the Tangent Line

- Geometrical interpretation of derivatives: The derivative of f at x_{0} is the limit (as n goes to infinity) of the slope

$$
\frac{f\left(x_{0}+h_{n}\right)-f\left(x_{0}\right)}{h_{n}} .
$$

Using Derivative in Approximating a Function

- Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$
- Suppose that at a point x_{0} of the domain we change x from x_{0} to $x_{0}+\Delta x$ and we want to measure the corresponding change in f
- The exact change in f is $\Delta y=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)$
- But we can also approximate this change by using derivatives
- First define the differential of f as $d f=f^{\prime}(x) d x$
- Then notice that for a small change Δx, the derivative f^{\prime} satisfies

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

which can be rewritten as

$$
\Delta x f^{\prime}\left(x_{0}\right) \approx f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)=\Delta y
$$

Using Derivative in Approximating a Function

- In words, the actual change Δy is approximately equal to the derivative of f at x_{0} multiplied by the change in x
- By the definition of differential, and by setting $d x=\Delta x$, we can conclude that, for a small change Δx, the actual change Δy is approximately equal to the differential of f evaluated at x_{0}, namely

$$
\Delta y \approx d f=f^{\prime}\left(x_{0}\right) d x
$$

Using Derivative in Approximating a Function

- Linear approximation via derivatives

Example: The Marginal Rate of Substitution (MRS)

- Let $U: \mathbb{R}_{+}^{2} \longrightarrow \mathbb{R}$ be a differentiable utility function
- The total differential of U at a given point $\left(x_{0}, y_{0}\right)$ in which $x_{0}, y_{0}>0$ is given by

$$
\begin{equation*}
d U=\frac{\partial U}{\partial x}\left(x_{0}, y_{0}\right) d x+\frac{\partial U}{\partial y}\left(x_{0}, y_{0}\right) d y \tag{1}
\end{equation*}
$$

- In words, the total differential gives us an approximate measure of how much the value of U around $\left(x_{0}, y_{0}\right)$ changes when we change both x from x_{0} to $x_{0}+d x$ and y from y_{0} to $y_{0}+d y$

Example: The Marginal Rate of Substitution (MRS)

- If we require that $d U=0$ (so that total utility is left unchanged), we can rewrite (1) as

$$
\frac{d y}{d x}=-\frac{\frac{\partial U}{\partial x}}{\frac{\partial U}{\partial y}}\left(x_{0}, y_{0}\right),
$$

which is the Marginal Rate of Substitution at $\left(x_{0}, y_{0}\right)$

- Geometrically, the MRS denotes the slope at $\left(x_{0}, y_{0}\right)$ of the indifference curve passing through that point

Example: The Marginal Rate of Substitution (MRS)

Total Differential

- In general, for a differentiable function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$, the total differential at a point $\mathbf{x}^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ of the domain is

$$
d f=\frac{\partial f}{\partial x_{1}}\left(\mathbf{x}^{*}\right) d x_{1}+\cdots+\frac{\partial f}{\partial x_{n}}\left(\mathbf{x}^{*}\right) d x_{n}
$$

- Just like in the MRS example, the total differential provides an approximate measure of how much f changes in a neighborhood of x^{*} when the n variables x_{1}, \ldots, x_{n} are changed by the amounts $d x_{1}, \ldots, d x_{n}$

Formal Definition of Derivative

Definition

A function $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ is differentiable at $\mathbf{x} \in \mathbb{R}^{n}$ if there is a linear function $\operatorname{Df}(\mathbf{x}): \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ such that

$$
\lim _{h \rightarrow \mathbf{0}} \frac{\|f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-[D f(\mathbf{x})] \mathbf{h}\|}{\|\mathbf{h}\|}=0
$$

- $\operatorname{Df}(\mathbf{x})$ is the derivative of f at \mathbf{x}
- note 1: in the definition of the above limit, $\operatorname{Df}(\mathbf{x})$ is independent on how \mathbf{h} goes to zero
- note 2: a linear function is represented by a matrix! Hence $\operatorname{Df}(\mathbf{x})$
- Differentiation/derivation is about making linear approximations

Jacobian Matrix

If f is differentiable at \mathbf{x}, then all partial derivatives exist at x and the (i, j)-component of $D f(\mathbf{x})$ is $\partial f_{i}(\mathbf{x}) / \partial x_{j}$, we write

$$
D f(x)=\left(\begin{array}{cccc}
\partial f_{1}(\mathbf{x}) / \partial x_{1} & \partial f_{1}(\mathbf{x}) / \partial x_{2} & \cdots & \partial f_{1}(\mathbf{x}) / \partial x_{n} \\
\partial f_{2}(\mathbf{x}) / \partial x_{1} & \partial f_{2}(\mathbf{x}) / \partial x_{2} & \cdots & \partial f_{2}(\mathbf{x}) / \partial x_{n} \\
\vdots & \vdots & \cdots & \vdots \\
\partial f_{m}(\mathbf{x}) / \partial x_{1} & \partial f_{m}(\mathbf{x}) / \partial x_{2} & \cdots & \partial f_{m}(\mathbf{x}) / \partial x_{n}
\end{array}\right)
$$

and call this matrix as the Jacobian matrix

- The linear approximation of f at \mathbf{x}^{*} is $f(\mathbf{x}) \approx f\left(\mathbf{x}^{*}\right)+D f\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)$

Gradient Vector

If $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is differentiable at \mathbf{x}, then its Jacobian matrix is

$$
D f(\mathbf{x})=\left(\begin{array}{llll}
\partial f(\mathbf{x}) / \partial x_{1} & \partial f(\mathbf{x}) / \partial x_{2} & \cdots & \partial f(\mathbf{x}) / \partial x_{n}
\end{array}\right)
$$

- The linear approximation of f at \mathbf{x}^{*} is

$$
f(\mathbf{x}) \approx f\left(\mathbf{x}^{*}\right)+D f\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)=f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{n} \frac{\partial f\left(\mathbf{x}^{*}\right)}{\partial x_{i}}\left(x_{i}-x_{i}^{*}\right)
$$

- It is convenient to write the sum as an inner product of a vector of partial derivatives and $\mathbf{x}-\mathbf{x}^{*}$
- The column vector of partial derivatives is called as the gradient of f :

$$
\nabla f\left(\mathbf{x}^{*}\right)=\left(\begin{array}{c}
\partial f(\mathbf{x}) / \partial x_{1} \\
\partial f(\mathbf{x}) / \partial x_{2} \\
\vdots \\
\partial f(\mathbf{x}) / \partial x_{n}
\end{array}\right)
$$

Gradient Vector

The normal of tangential plane of the graph of the function is $(\nabla f(\mathbf{x}),-1)$

Failure of Differentiability

- Up to now, we have been implicitly assuming that derivatives always exist. However, this is not always the case. E.g., $f(x)=|x|$
- In order to define differentiable functions (i.e. functions whose derivatives exist), we need to introduce the concepts of open and closed sets

Open Sets

- Given a point/vector x in \mathbb{R}^{n} and a real number $\epsilon>0$, the open ϵ-ball around x is the set

$$
B_{\epsilon}(x)=\left\{y \in \mathbb{R}^{n}:\|y-x\|<\epsilon\right\}
$$

- In \mathbb{R}, open balls are intervals (a, b), with $a<b$
- A set $S \subseteq \mathbb{R}$ is open if for any $x \in S$ there exists an open ϵ-ball around x completely contained in S. That is,

$$
x \in S \Longrightarrow \text { there exists an } \epsilon>0 \text { such that } B_{\epsilon}(x) \subseteq S
$$

Open Sets

Open Sets

- Examples of open sets:
- open intervals $(a, b) \subset \mathbb{R}$, with $a<b$
- open ϵ-balls
- $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$
- \mathbb{R}^{n}
- A couple of properties:
- Any union of open sets is an open set
- The intersection of finitely many open sets is an open set

Closed Sets

- A set $S \subseteq \mathbb{R}^{n}$ is closed if, whenever $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence completely contained in S, its limit is also contained in S.
- Equivalently, a set $S \subseteq \mathbb{R}^{n}$ is closed if and only if its complement $S^{c}=\mathbb{R}^{n} \backslash S$ is open

Closed Sets

- Examples of closed sets:
- closed intervals $[a, b] \subset \mathbb{R}$, with $a \leq b$
- $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$
- \mathbb{R}^{n}
- A couple of properties:
- Any intersection of closed sets is a closed set
- The union of finitely many closed sets is a closed set

Continuous Differentiability

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable (or C^{1}) on an open set $U \subseteq \mathbb{R}^{n}$ if and only if for each i, the derivative $\frac{\partial f}{\partial x_{i}}(y)$
- exists for all $y \in U$ and
- is continuous in y.
- Remark: Every differentiable function must be continuous but not every continuous function is differentiable

Chain Rule

- Let $h: \mathbb{R} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be two continuously differentiable functions. Let f be the composite function $g \circ h$, so that $f(x)=g(h(x))=g\left(h_{1}(x), \ldots, h_{n}(x)\right)$
- How to compute the derivative of f with respect to x ?
- Chain rule: The derivative of f at x_{0} is

$$
\frac{d f}{d x}\left(x_{0}\right)=\frac{\partial g}{\partial h_{1}}\left(h\left(x_{0}\right)\right) \frac{d h_{1}}{d x}\left(x_{0}\right)+\cdots+\frac{\partial g}{\partial h_{n}}\left(h\left(x_{0}\right)\right) \frac{d h_{n}}{d x}\left(x_{0}\right)
$$

- In more compact form,

$$
\frac{d f}{d x}=\frac{\partial g}{\partial h_{1}} \frac{d h_{1}}{d x}+\cdots+\frac{\partial g}{\partial h_{n}} \frac{d h_{n}}{d x}
$$

Chain Rule: Example

- Example: Consider the Cobb-Douglas production function $Q=4 K^{\frac{3}{4}} L^{\frac{1}{4}}$. Suppose that the inputs K and L vary with time t via the expressions

$$
K(t)=10 t^{2} \text { and } L(t)=6 t^{2}
$$

- What is the rate of change (i.e. the derivative) of output Q with respect to t when $t=10$?
- By the chain rule,

$$
\begin{aligned}
\frac{d Q}{d t}(t) & =\frac{\partial Q}{\partial K}(K(t), L(t)) \frac{d K}{d t}(t)+\frac{\partial Q}{\partial L}(K(t), L(t)) \frac{d L}{d t}(t) \\
& =3 K^{-\frac{1}{4}}(t) L^{\frac{1}{4}}(t) 20 t+K^{\frac{3}{4}}(t) L^{-\frac{3}{4}}(t) 12 t
\end{aligned}
$$

Chain Rule: Example

- When $t=10$, we have

$$
\begin{aligned}
\frac{d Q}{d t}(t) & =3 K^{-\frac{1}{4}}(t) L^{\frac{1}{4}}(t) 20 t+K^{\frac{3}{4}}(t) L^{-\frac{3}{4}}(t) 12 t \\
& =3(1000)^{-\frac{1}{4}}(600)^{\frac{1}{4}} 200+(1000)^{\frac{3}{4}}(600)^{-\frac{3}{4}} 120
\end{aligned}
$$

$$
\approx 704
$$

Higher-order derivatives

- Higher-order derivatives: The partial derivative $\frac{\partial f}{\partial x_{i}}$ of a function f of n variables is itself a function of n variables
- Provided that partial derivatives are differentiable, we can form higher-order derivatives by taking partial derivatives of partial derivatives
- For example,

$$
\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)
$$

is the partial derivative w.r.t. x_{j} of the partial derivative of f w.r.t. x_{i}. This is called the $x_{i} x_{j}$-second order partial derivative of f

Second Order Derivatives

- The $x_{i} x_{i}$-second order derivative is often written as

$$
\frac{\partial^{2} f}{\partial x_{i}^{2}}
$$

- For $i \neq j$, we usually write the $x_{i} x_{j}$-derivative (also called cross partial derivative) as

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

Hessian Matrix

- For a function f of n variables, we have $n \times n$ second order derivatives. These derivatives are often arranged in a square matrix called the Hessian matrix of f and written as $D^{2} f(\mathbf{x})$:

$$
D^{2} f(\mathbf{x})=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right)
$$

- If all the derivatives in the Hessian exist and are continuous, we say that f is twice continuously differentiable or C^{2}

First and Second Order Approximations

- Assume $f: \mathbb{R}^{n} \mapsto \mathbb{R}$
- The first order (or linear) approximation of f around \mathbf{x}^{*} is

$$
f(\mathbf{x}) \approx f\left(\mathbf{x}^{*}\right)+\nabla f\left(\mathbf{x}^{*}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{*}\right)
$$

- The second order (or quadratic) approximation is

$$
f(\mathbf{x}) \approx f\left(\mathbf{x}^{*}\right)+\nabla f\left(\mathbf{x}^{*}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{*}\right)+(1 / 2)\left(\mathbf{x}-\mathbf{x}^{*}\right)^{T} D^{2} f\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)
$$

First and Second Order Approximations: Example

Hessian Matrix

- An important property of second order partial derivatives is established by Young's theorem
- Young's theorem: If $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is twice continuously differentiable on an open set $A \subseteq \mathbb{R}^{n}$, then for all $\mathbf{x} \in A$ and for each pair of indices i, j, we have

$$
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f(\mathbf{x})}{\partial x_{j} \partial x_{i}}
$$

- In other words, the Hessian matrix is symmetric and the order of differentiation does not matter

Hessian Matrix

- Exercise: Compute the Hessian matrix of the Cobb-Douglas production function $Q(K, L)=C K^{a} L^{b}$, with $C, a, b>0$

