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Derivative as the Slope of the Tangent Line
▶ Geometrical interpretation of derivatives: The derivative of f at x0 is the limit (as

n goes to infinity) of the slope

f (x0 + hn)− f (x0)

hn
.
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Using Derivative in Approximating a Function
▶ Consider a function f : R → R

▶ Suppose that at a point x0 of the domain we change x from x0 to x0 +∆x and we
want to measure the corresponding change in f

▶ The exact change in f is ∆y = f (x0 +∆x)− f (x0)

▶ But we can also approximate this change by using derivatives

▶ First define the differential of f as df = f ′(x)dx

▶ Then notice that for a small change ∆x , the derivative f ′ satisfies

f ′(x0) ≈
f (x0 +∆x)− f (x0)

∆x
,

which can be rewritten as

∆x f ′(x0) ≈ f (x0 +∆x)− f (x0) = ∆y .
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Using Derivative in Approximating a Function

▶ In words, the actual change ∆y is approximately equal to the derivative of f at x0
multiplied by the change in x

▶ By the definition of differential, and by setting dx = ∆x , we can conclude that,
for a small change ∆x , the actual change ∆y is approximately equal to the
differential of f evaluated at x0, namely

∆y ≈ df = f ′(x0)dx
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Using Derivative in Approximating a Function

▶ Linear approximation via derivatives
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Example: The Marginal Rate of Substitution (MRS)

▶ Let U : R2
+ −→ R be a differentiable utility function

▶ The total differential of U at a given point (x0, y0) in which x0, y0 > 0 is given by

dU =
∂U

∂x
(x0, y0)dx +

∂U

∂y
(x0, y0)dy (1)

▶ In words, the total differential gives us an approximate measure of how much the
value of U around (x0, y0) changes when we change both x from x0 to x0 + dx
and y from y0 to y0 + dy
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Example: The Marginal Rate of Substitution (MRS)

▶ If we require that dU = 0 (so that total utility is left unchanged), we can rewrite
(1) as

dy

dx
= −

∂U
∂x
∂U
∂y

(x0, y0),

which is the Marginal Rate of Substitution at (x0, y0)

▶ Geometrically, the MRS denotes the slope at (x0, y0) of the indifference curve
passing through that point
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Example: The Marginal Rate of Substitution (MRS)
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Total Differential

▶ In general, for a differentiable function f : Rn −→ R, the total differential at a
point x∗ = (x∗1 , . . . , x

∗
n ) of the domain is

df =
∂f

∂x1
(x∗)dx1 + · · ·+ ∂f

∂xn
(x∗)dxn

▶ Just like in the MRS example, the total differential provides an approximate
measure of how much f changes in a neighborhood of x∗ when the n variables
x1, . . . , xn are changed by the amounts dx1, . . . , dxn
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Formal Definition of Derivative

Definition
A function f : Rn 7→ Rm is differentiable at x ∈ Rn if there is a linear function
Df (x) : Rn 7→ Rm such that

lim
h→0

∥f (x+ h)− f (x)− [Df (x)]h∥
∥h∥

= 0

▶ Df (x) is the derivative of f at x

▶ note 1: in the definition of the above limit, Df (x) is independent on how h goes
to zero

▶ note 2: a linear function is represented by a matrix! Hence Df (x)

▶ Differentiation/derivation is about making linear approximations
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Jacobian Matrix

If f is differentiable at x, then all partial derivatives exist at x and the (i , j)-component
of Df (x) is ∂fi (x)/∂xj , we write

Df (x) =


∂f1(x)/∂x1 ∂f1(x)/∂x2 · · · ∂f1(x)/∂xn
∂f2(x)/∂x1 ∂f2(x)/∂x2 · · · ∂f2(x)/∂xn

...
... · · ·

...
∂fm(x)/∂x1 ∂fm(x)/∂x2 · · · ∂fm(x)/∂xn


and call this matrix as the Jacobian matrix

▶ The linear approximation of f at x∗ is f (x) ≈ f (x∗) + Df (x∗)(x− x∗)
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Gradient Vector
If f : Rn 7→ R is differentiable at x, then its Jacobian matrix is

Df (x) =
(
∂f (x)/∂x1 ∂f (x)/∂x2 · · · ∂f (x)/∂xn

)
▶ The linear approximation of f at x∗ is

f (x) ≈ f (x∗) + Df (x∗)(x− x∗) = f (x∗) +
n∑

i=1

∂f (x∗)

∂xi
(xi − x∗i )

▶ It is convenient to write the sum as an inner product of a vector of partial
derivatives and x− x∗

▶ The column vector of partial derivatives is called as the gradient of f :

∇f (x∗) =


∂f (x)/∂x1
∂f (x)/∂x2

...
∂f (x)/∂xn


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Gradient Vector

The normal of tangential plane of the graph of the function is (∇f (x),−1)
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Failure of Differentiability

▶ Up to now, we have been implicitly assuming that derivatives always exist.
However, this is not always the case. E.g., f (x) = |x |

▶ In order to define differentiable functions (i.e. functions whose derivatives exist),
we need to introduce the concepts of open and closed sets
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Open Sets

▶ Given a point/vector x in Rn and a real number ϵ > 0, the open ϵ-ball around x
is the set

Bϵ(x) = {y ∈ Rn : ||y − x || < ϵ}

▶ In R, open balls are intervals (a, b), with a < b

▶ A set S ⊆ R is open if for any x ∈ S there exists an open ϵ-ball around x
completely contained in S . That is,

x ∈ S =⇒ there exists an ϵ > 0 such that Bϵ(x) ⊆ S .
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Open Sets
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Open Sets

▶ Examples of open sets:

▶ open intervals (a, b) ⊂ R, with a < b

▶ open ϵ-balls

▶
{
(x , y) ∈ R2 : x2 + y2 < 1

}
▶ ...

▶ Rn

▶ A couple of properties:
▶ Any union of open sets is an open set
▶ The intersection of finitely many open sets is an open set
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Closed Sets

▶ A set S ⊆ Rn is closed if, whenever {xn}∞n=1 is a convergent sequence completely
contained in S , its limit is also contained in S .

▶ Equivalently, a set S ⊆ Rn is closed if and only if its complement Sc = Rn\S is
open
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Closed Sets

▶ Examples of closed sets:

▶ closed intervals [a, b] ⊂ R, with a ≤ b

▶
{
(x , y) ∈ R2 : x2 + y2 ≤ 1

}
▶ ...

▶ Rn

▶ A couple of properties:
▶ Any intersection of closed sets is a closed set
▶ The union of finitely many closed sets is a closed set
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Continuous Differentiability

▶ A function f : Rn → R is continuously differentiable (or C 1) on an open set
U ⊆ Rn if and only if for each i , the derivative ∂f

∂xi
(y)

▶ exists for all y ∈ U and
▶ is continuous in y .

▶ Remark: Every differentiable function must be continuous but not every
continuous function is differentiable
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Chain Rule
▶ Let h : R → Rn and g : Rn → R be two continuously differentiable functions. Let

f be the composite function g ◦ h, so that f (x) = g(h(x)) = g(h1(x), . . . , hn(x))

▶ How to compute the derivative of f with respect to x?

▶ Chain rule: The derivative of f at x0 is

df

dx
(x0) =

∂g

∂h1
(h(x0))

dh1
dx

(x0) + · · ·+ ∂g

∂hn
(h(x0))

dhn
dx

(x0)

▶ In more compact form,

df

dx
=

∂g

∂h1

dh1
dx

+ · · ·+ ∂g

∂hn

dhn
dx
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Chain Rule: Example

▶ Example: Consider the Cobb-Douglas production function Q = 4K
3
4L

1
4 . Suppose

that the inputs K and L vary with time t via the expressions

K (t) = 10t2 and L(t) = 6t2.

▶ What is the rate of change (i.e. the derivative) of output Q with respect to t
when t = 10?

▶ By the chain rule,

dQ

dt
(t) =

∂Q

∂K
(K (t), L(t))

dK

dt
(t) +

∂Q

∂L
(K (t), L(t))

dL

dt
(t)

= 3K− 1
4 (t)L

1
4 (t) 20t + K

3
4 (t)L−

3
4 (t) 12t
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Chain Rule: Example

▶ When t = 10, we have

dQ

dt
(t) = 3K− 1

4 (t)L
1
4 (t) 20t + K

3
4 (t)L−

3
4 (t) 12t

= 3(1000)−
1
4 (600)

1
4 200 + (1000)

3
4 (600)−

3
4 120

≈ 704.
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Higher-order derivatives

▶ Higher-order derivatives: The partial derivative ∂f
∂xi

of a function f of n
variables is itself a function of n variables

▶ Provided that partial derivatives are differentiable, we can form higher-order
derivatives by taking partial derivatives of partial derivatives

▶ For example,
∂

∂xj

(
∂f

∂xi

)
is the partial derivative w.r.t. xj of the partial derivative of f w.r.t. xi . This is
called the xixj -second order partial derivative of f
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Second Order Derivatives

▶ The xixi -second order derivative is often written as

∂2f

∂x2i

▶ For i ̸= j , we usually write the xixj -derivative (also called cross partial derivative)
as

∂2f

∂xj∂xi
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Hessian Matrix

▶ For a function f of n variables, we have n × n second order derivatives. These
derivatives are often arranged in a square matrix called the Hessian matrix of f
and written as D2f (x):

D2f (x) =


∂2f
∂x21

∂2f
∂x2∂x1

. . . ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂x22

. . . ∂2f
∂xn∂x2

...
...

. . .
...

∂2f
∂x1∂xn

∂2f
∂x2∂xn

. . . ∂2f
∂x2n



▶ If all the derivatives in the Hessian exist and are continuous, we say that f is twice
continuously differentiable or C 2
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First and Second Order Approximations

▶ Assume f : Rn 7→ R
▶ The first order (or linear) approximation of f around x∗ is

f (x) ≈ f (x∗) +∇f (x∗)T (x− x∗)

▶ The second order (or quadratic) approximation is

f (x) ≈ f (x∗) +∇f (x∗)T (x− x∗) + (1/2)(x− x∗)TD2f (x∗)(x− x∗)
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First and Second Order Approximations: Example
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Hessian Matrix

▶ An important property of second order partial derivatives is established by Young’s
theorem

▶ Young’s theorem: If f : Rn 7→ R is twice continuously differentiable on an open
set A ⊆ Rn, then for all x ∈ A and for each pair of indices i , j , we have

∂2f (x)

∂xi∂xj
=

∂2f (x)

∂xj∂xi
.

▶ In other words, the Hessian matrix is symmetric and the order of differentiation
does not matter
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Hessian Matrix

▶ Exercise: Compute the Hessian matrix of the Cobb-Douglas production function
Q(K , L) = CK aLb, with C , a, b > 0
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