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This lecture

I Lectures 2 & 3: We have derived interest rates from fixed
income securities and computed the present value of cash
flows

I In this lecture we use interest rate analysis to inform
different kinds of investment decisions

I We thus move from descriptive (‘what is’) to prescriptive
(‘what should’) analysis

I The decisions are informed by interest rates: the weighted
average cost of capital (WACC) refers to the rate that a
company is expected to pay on average to all its security
holders to finance its assets

I WACC includes both cost of debt (e.g. payments to bond
holders) and cost of equity (dividends to stock owners)
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Capital budgeting
I Task: Allocate capital C among m investment projects

I bi = Benefit of project i
I ci = Cost of project i
I Benefits and costs are aggregated and expressed in

monetary terms (e )
I Projects are assumed to be

I Lumpy “go”/“no-go” investments
I E.g. bridges - it makes no sense to build half a bridge
I This is not the case for securities which can be sold and

bought in small divisible amounts (relative to the investment
size)

I Projects are independent of each other
I The benefits and costs of a project do not depend those of

other projects (i.e., synergies and cannibalization impacts
are here neglected)

I Not tradeable in established markets
I E.g., projects for the development of prototypes or new

products
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Capital budgeting
I The budgeted capital C need not be a hard constraint

I There is often a tendency to deplete the budget even if the
last projects to be funded offer but a small marginal benefit

I Conversely, it would make sense to increase the capital C if
there are excellent projects that cannot be funded

A In theory, one could raise unlimited funding from the
markets and fund all projects with positive NPV

B In practice, there are limits
I Banks limit the amount of credit they provide
I Heavier credit burden⇒ Greater risk of default⇒ The

required interest rate will be higher
I In large organizations, investment decisions are typically

part of divisional budgeting
I Impacts of changing the budget C should be explored

I ‘Soft’ (i.e., variable) constraints can be introduced by
imposing penalties for budget extensions, for instance
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Solving the capital budgeting problem
I Projects denoted by x = (x1, x2, . . . , xm) ∈ {0,1}m

xi =

{
1, if project i is funded
0, otherwise

I The optimum can be solved from

max
x

m∑
i=1

bixi

subject to
m∑

i=1

cixi ≤ C

xi ∈ {0,1}, i = 1,2, . . . ,n

I This is a binary 0-1 optimization problem
I Essentially a knapsack (packing) problem



MS-E2114 Investment Science: Lecture 4, Applied interest rate analysis
26 September 2022

8/47

Solving the capital budgeting problem

I Determining the exact solution may pose computational
challenges

I There are hard-to-solve instances with m = 50...100
I Problems with many similar projects may have multiple

optimum solutions
I Yet many instances with m = 10 000 can be solved in

milliseconds with state-of-the-art optimization methods
I Small and easy instances can be solved with Excel Solver

I An approximate solution can be generated by using
benefit-to-cost ratios ri = bi/ci

I Fund projects one by one in decreasing order of ratios ri
(i.e., starting from the project whose ratio is highest) until
the budget C has been depleted
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Solving the capital budgeting problem, C = 500

Project Cost Benefit r i

Benefit-

to-cost 

solution

Optimal 

solution

1 100 300 3.00 1 1

2 20 50 2.50 1 0

3 150 350 2.33 1 1

4 50 110 2.20 1 1

5 50 100 2.00 1 1

6 150 250 1.67 0 1

7 150 200 1.33 0 0

Cost 370 500

Benefit 910 1110

NPV 540 610
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Modelling project dependencies
I Dependencies can usually be modelled through linear

constraints
I E.g., project i has ni variants of which but one can be

funded:

max
x

m∑
i=1

ni∑
j=1

bijxij

subject to
m∑

i=1

ni∑
j=1

cijxij ≤ C

ni∑
j=1

xij ≤ 1, i = 1,2, . . . ,m

xij ∈ {0,1}, j = 1,2, . . . ,ni , i = 1,2, . . . ,m

I bij , cij = benefit and cost of variant j = 1, . . . ,ni of project i
I xij = decision to fund variant j of project i
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Modelling dependencies

I Examples of other extensions
I Enabler: If project j cannot be started unless the enabling

project i is implemented, the constraint xj ≤ xi must hold
I E.g. a follow-up feature j that builds on another feature i

I If at least/at most/exactly k projects from the set i1, i2, . . . , i`
must be selected, the constraints are correspondingly

xi1 + xi2 + · · ·+ xi`


≥ k
≤ k
= k

I These extensions can be solved with integer optimization
I Small and easy problems can be solved with Excel Solver
I More challenging ones with CPLEX, Gurobi, LINDO,

Matlab, etc.
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Portfolio optimization

I In (financial) portfolio optimization, the objective is to build
a portfolio consisting of securities which are traded in the
markets

I Securities are traded in the markets⇒ The price dynamics
of securities has to be taken into account

I Some financial portfolio optimization problems can be
solved much in the same way as capital budgeting problems
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Cash matching
I Fixed liabilities: Obligation to pay yi euro in period

i = 1,2, . . . ,n
I Task: Determine the bond portfolio whose cash flow meets

or exceeds these liabilities and has the smallest
purchasing price

I cij = cash flow of bond j in period i
I pj = price of bond j

min
x

m∑
j=1

pjxj

subject to
m∑

j=1

cijxj ≥ yi , i = 1,2, . . . ,n

xj ≥ 0, j = 1,2, . . . ,m
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Cash matching

In the above formulation, it is assumed that
I xj ≥ 0⇔ No short selling or issuing new bonds
⇒ To allow for shorting, the non-negativity constraint needs to

be eliminated
I Excess cash flows are not reinvested
⇒ Reinvestments could be modelled e.g. by adding artificial

bonds with cash flows (0,0, . . . ,0,−1,1+ ri ,0, . . . ,0) where
ri is the short rate for period i

I The solution may contain fractional (non-integer) bond
purchases
⇒ Integral solution can be obtained by introducing integer

constraints xj ∈ {0,1,2, . . . }
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Example: Basic cash matching problem
I Use the following 10 bonds to match liabilities

Liability
Portfolio 

cash flow 

i \j 1 2 3 4 5 6 7 8 9 10

1 10 7 8 6 7 5 10 8 7 100 100 171.74

2 10 7 8 6 7 5 10 8 107 200 200

3 10 7 8 6 7 5 110 108 800 800

4 10 7 8 6 7 105 100 119.34

5 10 7 8 106 107 800 800

6 110 107 108 1200 1200

p 109 94.8 99.5 93.1 97.2 92.9 110 104 102 95.2 2381.14

Cost

x 0 11.2 0 6.81 0 0 0 6.30 0.28 0

Bond cash flows c ij

Input

Variables
Objective
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Dynamic cash flows
I In dynamic problems, decisions and the information that

supports them depend on previous decisions
I Note: Many dynamic programming problems involve risk

and uncertainties which are resolved over time
I The examples in this section of Luenberger do not consider

the partial resolution of uncertainties⇒ Bayesian updating
I Example: Oil well as an investment

I Oil well can be drilled only if the site has been acquired
I Information about profitability can be obtained through

testing
I How much is the test worth?
I Based on the results of the test, should one buy or not?

I Dynamic decisions can be structured as decision trees or
lattices

I Lattice = Tree with recombining branches
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Dynamic cash flows
I Consider a dynamic investment problem such that:

I Initial investment cost is 100 e
I The investment yields cash flows of 300 e or 0 ewith the

same probability 0.50
I With a cost of 10 e an expert can be consulted to assess

whether the investment is profitable (300 e ) or not (0 e )
I The expert knows for sure the status of the well which is

thus the only uncertainty (otherwise, a larger decision tree
based on Bayesian updating would be built; cf. MS-E2135
Decision Analysis)

I This problem can be represented as a decision tree with
three kinds of nodes

Decision 
node

Chance 
node

Value 
node
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Dynamic cash flows

Consult 
expert

Invest

Yes

No

”Profitable”

Invest

Yes

No

”Not 
profitable”

Invest

Yes

No

Yes

No

0

-10

-10

Cost 10

190=300
-100-10

-110

50=-100
+0.5⋅300
⋅(300-100).

Expert
statement

.

.

.
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Example: Dynamic programming

Consult 
expert

Invest

Yes

No

”Profitable”

Invest

Yes

No

”Not 
profitable”

Invest

Yes

No

Yes

No

0

-10

-10

Cost 10

190=300
-100-10

-110

50=0.5
⋅(300-100).

Expert
statement

.

.

.

Optimal 190

Optimal -10
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Example: Dynamic programming

Consult 
expert

Invest

Yes

No

”Profitable”

Invest

Yes

No

”Not 
profitable”

Invest

Yes

No

Yes

No

0

-10

-10

Cost 10

190=300
-100-10

-110

50=0.5
⋅(300-100).

.

.

.

Optimal 190

Optimal -10

Expected
value 
0.5∙190+0.5
∙(-10)=90

Optimal 50
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Example: Dynamic programming

Consult 
expert

Invest

Yes

No

”Profitable”

Invest

Yes

No

”Not 
profitable”

Invest

Yes

No

Yes

No

0

-10

-10

Cost 10

190=300
-100-10

-110

50=0.5
⋅(300-100).

.

.

.

Optimal 190

Optimal -10

Optimal 50

Expected 
value 90
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Lattices: Dynamic choice and uncertainties
I Can be used to model dynamic choice and dynamic

uncertainties (e.g., evolution of a stock price over time)
I Consider n periods such that price goes up by factor u or

down by factor d in each period, starting from price P0

i 1 2 3 4

𝑑𝑃0

𝑢𝑃0

𝑢2𝑃0

𝑢𝑑𝑃0

𝑑2𝑃0

𝑢𝑑𝑃0
𝑃0

𝑃0

𝑢3𝑃0

𝑢2𝑑𝑃0
𝑢2𝑑𝑃0

𝑢𝑑2𝑃0
𝑢2𝑑𝑃0
𝑢𝑑2𝑃0
𝑢𝑑2𝑑𝑃0

𝑑3𝑃0

𝑑3𝑃0

𝑢3𝑃0

𝑢2𝑑𝑃0

𝑢𝑑2𝑃0

Binary tree
(3-periods)

Binary lattice
(equivalent to 
the tree)
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Dynamic choice models
I Helps solve complex decision trees and simple lattices

I A binomial tree with n periods has 2n paths
I Traversing all paths becomes impossible with large n

I Solution principle (for dynamic choice):
I What is optimal decision at node u?
I Decision leads to node v ∈ D(u)
I Cash flow of cv
I Optimal cash flow

V (u) = max
v∈D(u)

{cv + V (v)}

I Solve recursively from the end to the beginning

u

v1

v2

v3

𝐷(𝑢)

𝑐𝑣1
𝑐𝑣2
𝑐𝑣3
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Running present value
I The preceding slide had no discounting
I Discounting can be included through

V (u) = max
v∈D(u)

{cv + dtu ,tv V (v)}

I Discount factor dtu ,tv = 1/(1 + ftu ,tv )tv−tu

I ftu ,tv = forward rate from time tu to time tv
I tu, tv times of decisions u, v

I Decisions in every period⇒ short rate rk = fk,k+1

u

v1

v2

v3

𝐷(𝑢)

𝑐𝑣1
𝑐𝑣2
𝑐𝑣3

Time 𝑡𝑢 𝑡𝑣1 = 𝑡𝑣2 = 𝑡𝑣3
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Example: Fishing problem

I You have the exclusive right to harvest fish for 3 years
I The initial fish stock in the lake is 10 tons
I If you do harvest (max once per year), you extract 70% of

all the fish that are in the lake
I Profit 1000 e /ton

I Each year, the fish population grows
I If you harvest, the fish stock will be restored to the level at

which it was before harvesting
I If you do not harvest, the size of the fish stock will double

I What is optimal harvesting policy when using a 25%
discounting rate?

I Discount factor d = 1/1.25 = 0.8



MS-E2114 Investment Science: Lecture 4, Applied interest rate analysis
26 September 2022

28/47

Example: Fishing problem
I Build the binary lattice (for dynamic choice)

10

20

40

80

20

40

20

10

10

10

28

0

0

14

0

7

0

0

14

7

0

7

Black (nodes): Tons of fish in lake
Red (arcs): Amount of fish extracted
Up: No fishing, Down: fish

Period 0 1 2 3
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Example: Fishing problem
I Use V (u) = max

v∈D(u)
{cv + dV (v)}

I Discounting yields optimum 20.16 kewith policy (N, Y, Y)
I Without discounting, two solutions (N, Y, Y) and (N, N, Y)

both yield 28 ke

28

0

0

14

0

7

0

0

14

7

0

7

max(14,0)
=14

Max(14+0.8⋅14,
0.8⋅28)=25.2

Max(28,0)
=28

max(7,0)
=7Max(0+0.8⋅14,

7+0.8⋅7)=12.6

Max(0+0.8⋅25.2,
7+0.8⋅12.6)=20.16
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Harmony theorem

I If you invest in a venture as a new owner, what decision
principle should you adopt to steer investment decisions in
the venture to get the best possible return for
your investment in the venture?

I IRR may lead to different decision than NPV⇒ Do current
and new owners have conflicting objectives?
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Harmony theorem

I Your friend has invented a new gizmo, for which he holds
the patent rights

I There are i = 1,2, . . . ,n commercialization options
I Present value of commercialization option i is

P(i) = −ci +
1

1 + r
bi

where bi , ci are benefit and cost of option i , respectively
I If your friend seeks to maximize the present value of his

venture, he selects the alternative i∗ such that

P(i∗) = max
i∈{1,2,...,n}

P(i)
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Harmony theorem

I If you think that your investment will be used for covering
the expenses, you may (wrongly) conclude that you would
like to select the alternative that yields

max
i∈{1,2,...,n}

{
bi

ci

}
I However, to get your share of benefits, you must buy share
α of the gizmo (the company) at a cost αP(i∗)

I Thus, your cost-benefit decision criterion is

max
i∈{1,2,...,n}

{
αbi

αP(i∗) + αci

}
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Harmony theorem

I Theorem: Your cost-benefit decision criterion is
maximized for i = i∗, meaning that your and your friend’s
preferred options coincide.

I Proof: Suppose there is an alternative i such that

αbi

αP(i∗) + αci
>

αbi∗

αP(i∗) + αci∗
= 1 + r .

Now, solving this for the definition of P(i) we get

−ci +
bi

1 + r
> P(i∗) ⇐⇒ P(i) > P(i∗),

which contradicts with the definition of i∗.
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Harmony theorem

Theorem
(Harmony theorem) Current owners of a venture should want
to operate the venture to maximize the present value of its cash
flow stream.
Potential new owners, who must pay the full value of their
prospective share of the venture, will want the company to
operate in the same way, in order to maximize the return on
their investment.
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Valuation of a firm

I The valuation of a firm can be based on its cash flows
I Different aspects, such as

1. dividends to stock holders,
2. net earning of the firm
3. cash flow that could be realized by selling the firm’s assets

lead to different valuations of firms
I We do not consider cash flow uncertainties explicitly
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Dividend discount models
I Dividend cash flows Dk in year k = 1,2, . . .
I Present value of this cash flow

V0 =
D1

1 + r
+

D2

(1 + r)2 + · · ·+ Dk

(1 + r)k + · · ·

I In the constant-growth dividend model dividends grow
at a constant rate g which leads to the Gordon formula

V0 =
D1

1 + r
+

(1 + g)D1

(1 + r)2 + · · ·+ (1 + g)k−1D1

(1 + r)k + · · ·

⇒ V0 =
D1

r − g
=

1 + g
r − g

D0, r > g,

which is obtained from the geometric sum
∑∞

i=0 at i = a
1−t

for any real a and |t | < 1 (here, a = D1
1+r and t = 1+g

1+r ).
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Example: Dividend discount models

I Discounted growth (Gordon) formula:

V0 =
1 + g
r − g

D0, r > g,

I If the firm has paid 1.5 Me of dividends, grows 8% each
year and is discounted using with 20% interest rate, then

V0 =
1 + 0.08

0.2− 0.08
· 1.5 Me = 13.5 Me
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Free cash flow models

I Startups pay little or no dividends in order to retain more
capital for growth

I Another possibility is analysis based on the free cash flow
that the firm can pay without compromising growth

I Other possibilities would include analysis of earnings of the
firm rather than dividends and pricing based on balance
sheet value (assets)
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Example: Free cash flow models
I Consider a firm which wishes to determine how large a

share of its cash flow it should invest in its capital (e.g.,
machines) to maximize the present value of its dividends /
free cash flow

I Profit in year n is Yn, out of which the share u ∈ [0,1] is
invested

I Annual growth rate modelled as factor g(u)
I Profit of the firm in period n is

Yn+1 = [1 + g(u)]Yn

⇒ Yn = [1 + g(u)]nY0

I Capital depreciates by a factor α annually but increases by
the investment

Cn+1 = (1− α)Cn + uYn
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Example: Free cash flow models
I By recursion, the capital in year n > 0 is

Cn = (1− α)nC0 + uY0

n∑
i=1

(1− α)n−i (1 + g(u))i−1

I By using the identity

xn − yn = (x − y)
n∑

i=1

xn−iy i−1

with x = 1− α and y = 1 + g(u), we get

Cn = (1− α)nC0 + uY0
(1 + g(u))n − (1− α)n

g(u) + α

Note that x − y = 1− α− (1 + g(u)) = −α− g(u)) < 0,
hence the fraction xn−yn

x−y is written as yn−xn

y−x
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Example: Free cash flow models
I By combining the terms containing (1− α)n, this formula

becomes

Cn = (1− α)n
(

C0 −
uY0

g(u) + α

)
+ uY0

(1 + g(u))n

g(u) + α

I Due to depreciation α > 0, the first term with (1− α)n will
tend to zero over time and thus we get

Cn ≈ uY0
(1 + g(u))n

g(u) + α
=

u
g(u) + α

Yn

I For other combinations of parameters, the numerical
solution can be found e.g. with Excel
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Example: Free cash flow models

Income statement
Before-tax cash flow Yn
Depreciation αCn
Taxable income Yn − αCn
Taxes (34%) 0.34(Yn − αCn)
After-tax income 0.66(Yn − αCn)
After-tax income + depreciation 0.66(Yn − αCn) + αCn
Sustaining investment uYn
Free cash flow 0.66(Yn − αCn) + αCn − uYn

Note: From the last equation on slide 41, the sustaining
investment Cn+1 − Cn = uYn − αCn needs to be substracted
from the after-tax income to obtain the free cash flow
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Example: Free cash flow models

I By using Cn =
u

g(u) + α
Yn, we obtain an analytic formula

for the free cash flow as a function of period n:

FCFn = 0.66(Yn − αCn) + αCn − uYn

⇒ FCFn =

[
0.66 + 0.34

αu
g(u) + α

− u
]
(1 + g(u))n Y0,

I Because this cash flow grows by a constant factor, we can
use Gordon’s formula to calculate its present value:

PV =

[
0.66 + 0.34

αu
g(u) + α

− u
]

1
r − g(u)

Y0
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Example: Free cash flow

I How much to invest in order to maximize NPV?
I Turnover 10Me
I Capital 19.8Me
I Depreciation α = 0.1
I Discount rate r = 0.15
I Growth g(u) = 0.12(1− e5(α−u))

I The optimal solution u = 0.3776 can be obtained e.g. with
Excel Solver

u 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

g(u) -0.08 -0.03 0.00 0.03 0.05 0.06 0.08 0.09 0.09 0.10 0.10

PV 29.0 34.5 39.6 44.6 49.3 53.3 56.4 58.1 58.2 56.4 52.6
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