

PRODUCTION PROCESSES AND PRODUCTION CONTROL

Paul Lillrank Professor

Department of Industrial Engineering and Management

HOW TO CREATE KNOWLEDGE ABOUT PROCESSES

What is it? Ontology	What can be known? Epistemology	How does it work? Dynamics	What can be done? Technology
Conceptual model	Measures	Dynamic model	Interventions

RESOURCE- AND FLOW EFFICIENCY

Management of production unit

Management of process

PROCESS IS A CONSEQUENCE OF SPECIALIZATION

Fragmentation

Integration of a multi-component product or service Product planning, Design **Coordination** of a multi-step process Control, staffing, scheduling, quality

A PROCESS IS A COORDINATION DEVICE

- Sequential coordination of steps, that change the state of a flow-unit (transformation)
- Division of labor: two or more distinct but complementary steps
- Specialization: workstations with dedicated resources for a specific output
- Handovers and inventory between tasks
- Identical or similar repetition: same process same output
- Subject to variability management required

^{*)} Throughput in industry is (strictly speaking) output that has been sold.

BOTH REPETITION AND FLOW

from order to delivery Supply chain

Throughput time Work-in-Process inventory Flow / layout

Handovers

PRODUCTION SYSTEMS ARE ASSEMBLED FROM PROCESSES

Process

Direct, hands-on management

Manager

Multi-functional process

Management through administrative fiat

Contract

Management through legally binding contracts

system

THE ELEMENTS OF PRODUCTION PROCESSES

ELEMENT	WHAT IS IT (ONTOLOGY)	WHAT CAN BE KNOWN? MEASUREMENT (EPISTEMOLOGY)
TASK PROCESSING f	Transformation, State change Requires technology and skill	Duration, Resource consumption (variable cost) Quality (conformance)
	Object to be processed (goods, person, property, case, data)	State (arriving, processed, waiting) Movement / Experience
WORKSTATION	Resource unit / location doing processing Stationary or mobile	Capacity Fixed cost
SETUP	Prepare flow unit and workstation for processing	Duration, risk, format, Bargaining space Setup to repetition -ratio
STEP	A setup+task connected to other steps, In / out –interfaces	Step time, Takt time
HANDOVER	Moving a flow unit from one step to the next	Type, duration Accompanying information
FLOW	The route / journey of a flow unit Planned or explorative	Beginning, end, duration Alternative routes
WORK-IN-PROCESS INVENTORY (WIP)	Flow units processed or waiting to be processed	Inventory volume, Inventory turnover Queues
BATCH	A set of flow units moving together	Batch size
	The time for a flow unit to move through a certain number of steps	Time
THROUGHPUT	Number of finished flow units per time-unit	Production volume per time unit Capacity

FLOW UNIT IN SERVICES

The entity that is processed / undergoes state changes in production.

PROCESS TYPES (1) by movements of the flow unit

DISCONNECTED FLOW

CONNECTED FLOW

Hopp, W.J. & Spearman, M.L. 2011. Factory physics. 3rd ed. Long Grove, IL: Waveland Press.

THE ANATOMY OF A PRODUCTION STEP

Processing builds on technologies (production function).
Processing changes the state of a flow unit (transformation)
Improvements in processing require investments in technology
Setup and preparations can be done in many ways ← management

PROCESS TYPES (2) Setup-to-processing ratio

PARALLEL FLOWS

Parts manufacturing

PRODUCTION LAYOUT

Similar work stations grouped together \rightarrow Specialization, Capacity Utilization

Flow organized by product / flow unit \rightarrow Throughput time, Inventory turns

KEY INDICATORS

- Туре
- Time

PROCESS DYNAMICS

SETUP AND PROCESSING - COST AND VOLUME

VOLUME

Volume

Shared infrastructure

SYNERGY

Economies of scale

 repeat with same setup
 the cost of setup is divided on a growing volume of throughput
 → unit cost (variable + fixed) decreases

Economies of scope

- different processes use same infrastructure
- infrastructure can exploit economies of scale

LEARNING

The experience curve The learning curve

- unit cost falls predictably (%) by doubling of cumulative volume
- individual learning effect

LOT SIZE IS DETERMINED BY THE COST OF SETUP, TRANSPORT, AND INVENTORY

- WIP grows
- Longer throughput time

Leverage from improving setups!

LITTLE'S LAW

Applies to stationary queueing systems.

60 10 = 10/1	Same output can be accomplished
	 Fast with small WIP
10 = 20/2	 Slow with large WIP

This is management!

INVENTORY AS BUFFER

Disconnected flow

A BOTTLENECK DETERMINES OUTPUT

*) Flow-units per time-unit

A chain is as strong as it's weakest link

WAITING TIME AND UTILIZATION

WT= waiting time V = variability component (arrival and process variability) U = utilization rate T = average effective proces time for one flow unit.

High variability is most damaging in situations with high utilization.

THE MANAGEMENT OF CAPACITY

PRODUCTION PLANNING AND CONTROL

PUSH AND PULL

Push

Pull

HOW CUSTOMER ORDER AND PRODUCTION MEET

© Paul Lillrank 2022

THE FRONT OFFICE AND THE BACK OFFICE

VARIABILITY HAMPERS PROCESSES

THE PROCESS IS PROTECTED FROM EXTERNAL DISTURBANCES

...REMAINS INTERNAL SOURCES OF VARIABILITY

Variance: deviation

Variation: the spread in relation to a target...

... and tolerances.

Variety: different types

CAUSES OF VARIATION

Specific causes

- external source of variation
- uncontrolled
- time-location specific (ask why'?)
- can be found from time series analysis.

Common causes

- internal sources of variation
- capability under normal conditions
- random, probability distribution
- endemic to system architecture.

Errors due to specific and common causes often look similar. Can be identified by control charts that show behavior over time.

QUALITY IS RELATIONS

