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Intended Learning Outcomes

After this lecture, you will be able to:
@ |dentify and construct scalar and vector linear models;

@ apply and derive (weighted, regularized, and sequential)
linear least squares estimators;

@ investigate the properties of linear least squares
estimators.
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Recap

@ Sensor fusion involves three components:
@ Sensor: Measures a variable of interest, directly or
indirectly
@ Model: A mathematical formulation that relates the
variables of interest to the measurements
@ Estimation Algorithm: Combines the measurements and
models to estimate the variables of interest
@ Multiple measurements and multidimensional
measurements can be written in the same vector notation.

@ The least squares method is a good way for deriving
estimators.

@ (Plain) least squares, weighted least squares, and
regularized least squares are useful criteria for estimators.
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Scalar Model: Model & Cost Function

@ Many sensors measure (a scaled) version of a single
unknown x

Yn - QX + rfb
with E{r,} = 0 and var{r,} = 02,
@ The error for one measurement is
en - yn - gX
and the least squares cost function is given by

N

ds(x¥) =D (yn — gx)?

n=1
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Scalar Model: Example

@ Radar measures the time
difference between the
sent and reflected signals.

@ Double distance divided by
the speed of light
T = 2p*/c, where
€ = 299792458 m/s.

@ The measurement model
is (beware of the notation!)

2
yn:Ep"Jrrn, n=1,... N.
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Scalar Model: Minimizing the Cost
@ The derivative is given by

dds(x)

_ 2
“ox —ZQ;Yn-I-ZNQ X

@ Setting the derivative to zero and solving for x yields
. 1 &
XLs = N_g ; Yn.

@ This is the least squares estimator for the model

yn:gx+rn
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Scalar Model: Estimator Properties
@ What are the estimator’s statistical properties?
@ Expected value:

N
E{f s} =x+> E{m}=x

n=1

@ Variance:
1 N
< 2
var{X} = N2—g'¢’ ZO’r,n
n=1

and when o2, = 0% we get
2
N g2

var{X} = and std{x} =

1o
VN gl
@ The expectation of X is x = estimator is unbiased.
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Scalar Model: Example

Let us consider the wall-distance measurement model and
assume that we estimate p* with N measurements:

N
& (o4
X1 = ZN;}/W

This estimator is unbiased. Further assume that the standard
deviation of the measurement is ¢ = 10~% s (1 nanosecond).
Then the standard deviation of the estimator is

A 1 co
std{X{} = ——=—.
{x1} TN 2
With a single measurement we get the error of 15 cm whereas
by averaging 100 measurements the error drops to 1.5 cm.
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Vector Models
@ Scalar observations, several parameters xq, X, .. ., Xk:

Yn=01Xy + goXo + -+ 9kXKk + In

=gX+rp
@ Slightly more generally:
Yn=09nX+Inp

@ Stacking measurements together gives:
1 g1 r
Y2 92 P
= X+
YN an 'n

@ This has the general form
y = Gx +r, with Cov{r} =R = diag(ofj ey O’%N).
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Vector Models (cont.)
@ Vector observations, several parameters:

911 G2 ... ik | [ X
go1 G2 ... 01K X2
Yn = ) ) . . .| +n
9a,1 9,2 --- Gak]| [Xk
=GpX + Iy,
@ Batch notation:
Y1 Gy ry
yo Go ro
=1 . x+
YN Gy rn

@ In compact notation we again get the same general form:
y = Gx +r, with Cov{r} = R =diag(Ry,...,Rn).
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General Linear Model: Definition

@ General form of a linear models:
y=Gx+r,

with E{r} = 0 and Cov{r} = R.
@ This is the general linear model, both the scalar and vector
cases can be expressed in this way.
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Affine Models

@ We might also have a constant bias b in the model:
y=Gx+b+r.

@ We can now compute a modified measurementy =y — b
and rewrite this as
y=Gx+r.

@ Thus is again a general linear model.
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Example: Localizing a Drone

@ Recall the drone model:
px
—
<—/vv\/\,—t70P’
Y
Lr}ZH Yo pp¥
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y=p“+n,
y2:py+r27

_ e a1
Y3 = \/é(p X0)+ \/épy"'rS'
@ It has the affine form:
y=Gx+b+r

@ Can be reduced to linear
model by defining

n=n,
Vo = yo,
- 1
= V3 + — Xp.
Y3 =V /2 ()
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Example: Localizing a Car
@ We have:

yi=8—p+n,
ye=s8{ —p +r, (" )

Y2M:S{4—Py+f2M~ I]

@ Again leads to form % ﬂ
y=Gx+b+r :ﬁ%

U ,\/\/\/\/\Q

@ We can now define @\/\"’\ I
J

[Y X
yi=x1 -5y,
Yom = Yom — S,.y,,
— ——————
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General Linear Model: Least Squares (1)

@ The least squares cost function to minimize:

Jis(x) = (y - Gx)"(y - Gx)
=y'y—y'Gx—x'G'y + x'G'Gx

@ Some vector calculus identities (when A is symmeric):

ox'a oa'x

ox  ox
T
15) 4 Ax:2Ax
15) 4

m® >
e
2%

3
=Cc|
Zms

8
23
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General Linear Model: Least Squares (2)

@ The least squares estimator for the general linear model is
s = (G'G) "Gy
@ lts statistical properties are

E{Xs} =x
Cov{X.s} = (G'G)'G'RG((G'G)")".
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Example: Localizing a Car (1)

X2
L
]
L
X4
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Weighted Linear Least Squares (1)

@ Recall the general linear model:
y=Gx+r.

with E{r} = 0 and Cov{r} = R.
@ Weighted least squares cost function:

Jwis(x) = (y — Gx)'R™'(y — Gx)

@ We can now derive the estimator in the same way as for
(plain) least squares.
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Weighted Linear Least Squares (2)
@ Weighted linear least squares estimator:
fwis = (GTRT'G)'GTRy.
@ Properties:

E{XwLs} = x
Cov{¥wis} = (G'R7'G)™"

@ It can be shown that W = R~" minimizes Cov{Xw.s} over
all choices for W and in this case

Cov{Xwis} < Cov{X.s}

School of Electrical Simo Sérkka

— ——————
A Aalto University Static Linear Models and Linear Least Squares
Engineering 24/37



Example: Localizing a Car (2)

X2

e LS
o WLS

X4

A
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Regularized Linear Least Squares (1/2)
@ The regularized least squares criterion
Jrets(X) = (Y — GX)'R™'(y — Gx) + (x —m)"P~"(x —m).
@ The regularized linear least squares estimator
Xrets = (G'R'G+ P~ )" (G'R" 'y + P~ 'm).

@ The expectation is not x!
@ The covariance of the estimator is

Cov{Rpers} = (G'TR'G+P~ ).

@ The covariance is always smaller (or equal) to the WLS
estimator.
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Regularized Linear Least Squares (2/2)
@ By using the matrix inversion formula we can write
(G'R'G+P ') "=P-PG'(GPG"+R)"'"GP.
@ This gives
K=PG'(GPG" +R) ',
XpeLs = M + K(y — Gm),
Cov{Xpes} = P — K(GPG" + R)K".

@ Finally, we can always rewrite regularized least squares as
weighted least squares:

JreLs(X) = (y — Gx)'R™(y — Gx) + (m —x)"P~(m — x)

- B2 1 2 (- ()
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Example: Localizing a Car (3)

X2

o WLS

oRelS
.

Xq

A
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Example: Localizing a Car (4)

X2

o WLS

oRelS
.

X4

A
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Sequential Linear Least Squares (1/2)

@ In many cases, the sensor data arrives sequentially at the
estimator.

@ Assume that we have calculated the weighted least
squares (WLS) estimate using Y1.,—1 = {Y1,¥2,...,¥n_1}:

Xn_1 = (Glp_ 1R1n 1G1n1)” "Gl 1R1n 1Y1:n-1,
Cov{Xk_1} = (G1:nf1R;nf1G11”—1) =Pn1.

@ We can now rewrite the WLS the cost function in
sequential form
Jsts(X) = (Y1:n-1 — G1:n—1X) 'Ry (Yi:n—1 — Gipo1X)
+ (Yn — an)TR;1 (Yn — GnX).
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Sequential Linear Least Squares (2/2)
@ Setting gradient to zero and substituting the already

computed result gives:
Xn = (G].,_R;.} _Gi.n 1 +GR,'Gp) !
x (G1., 1Ry} V101 + GAR, 'yn)
= (P, +GiR,'Gn) "(G{.n_Ry},_ (Y11 +GiR,TYn).

@ Using matrix inversion formula gives

Kn= Pn—1GZ(GnPn—1GE + Rn)_1,
Xn = Xp_1 + Kn(yn — GnXp_1),
Cov{Xn} = Pr_y — Kn(GyP,_1G] + R,)K! = P,
@ This is now a recursion for the estimates.
@ Regularized least squares results from X, = m and Py = P.
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Example: Localizing a Car (5)

X2 e WLS
#SLS 1
®
Xi
X2 e WLS
eSLS?2
®

A
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Summary (1)
@ The general linear model is given by

y=Gx+r, E{r} =0, Cov{r} =R

@ Affine models can be tackled by rewriting

y=Gx+b+r,
y—b=Gx+r.
—
y

@ Different least squares estimators:
Xs = (G'G) "Gy,
Xws = (G'R'G)'G'Ry,
XgeLs = (G'TR'G+P )" (G'TR" 'y + P 'm).

@ We also computed their expectations and covariances.
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Summary (2)

@ Alternative form of regularized least squares estimator:
K=PG'(GPG" +R)",
XRoLs = m -+ K(y — Gm),
Cov{Xpers} = P — K(GPG' + R)K'.
@ Sequential (weighted/regularized) least squares estimator:
Kn = Pn—1G;I7-(GnPn—1G-,|; + Rn)_1y
Xn = Xp_1 + Kn(yn — GnXp_1),
Py =Py 1 — Ks(GnPs 1G], + Ry)K].
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