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Intended Learning Outcomes

After this lecture, you will be able to:
Identify and construct scalar and vector linear models;
apply and derive (weighted, regularized, and sequential)
linear least squares estimators;
investigate the properties of linear least squares
estimators.
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Recap

Sensor fusion involves three components:
1 Sensor: Measures a variable of interest, directly or

indirectly
2 Model: A mathematical formulation that relates the

variables of interest to the measurements
3 Estimation Algorithm: Combines the measurements and

models to estimate the variables of interest

Multiple measurements and multidimensional
measurements can be written in the same vector notation.
The least squares method is a good way for deriving
estimators.
(Plain) least squares, weighted least squares, and
regularized least squares are useful criteria for estimators.
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Scalar Model: Model & Cost Function

Many sensors measure (a scaled) version of a single
unknown x

yn = gx + rn,

with E{rn} = 0 and var{rn} = σ2
r ,n

The error for one measurement is

en = yn − gx

and the least squares cost function is given by

JLS(x) =
N∑

n=1

(yn − gx)2
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Scalar Model: Example

Example
Radar measures the time
difference between the
sent and reflected signals.
Double distance divided by
the speed of light
τ = 2px/c, where
c = 299792458 m/s.
The measurement model
is (beware of the notation!)

yn =
2
c

px+rn, n = 1, . . . ,N.

y1

px

y2 py
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Scalar Model: Minimizing the Cost

The derivative is given by

∂JLS(x)
∂x

= −2g
∑
n=1

yn + 2Ng2x

Setting the derivative to zero and solving for x yields

x̂LS =
1

Ng

N∑
n=1

yn.

This is the least squares estimator for the model

yn = gx + rn.
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Scalar Model: Estimator Properties
What are the estimator’s statistical properties?
Expected value:

E{x̂LS} = x +
N∑

n=1

E{rn} = x

Variance:

var{x̂} = 1
N2g2

N∑
n=1

σ2
r ,n

and when σ2
r ,n = σ2 we get

var{x̂} = σ2

N g2 and std{x̂} = 1√
N
σ

|g|
.

The expectation of x̂ is x ⇒ estimator is unbiased.
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Scalar Model: Example
Example
Let us consider the wall-distance measurement model and
assume that we estimate px with N measurements:

x̂1 =
c

2N

N∑
n=1

yn.

This estimator is unbiased. Further assume that the standard
deviation of the measurement is σ = 10−9 s (1 nanosecond).
Then the standard deviation of the estimator is

std{x̂1} =
1√
N

c σ
2
.

With a single measurement we get the error of 15 cm whereas
by averaging 100 measurements the error drops to 1.5 cm.
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Vector Models
Scalar observations, several parameters x1, x2, . . . , xK :

yn = g1x1 + g2x2 + · · ·+ gK xK + rn

= gx + rn

Slightly more generally:

yn = gnx + rn

Stacking measurements together gives:
y1
y2
...

yN

 =


g1
g2
...

gN

x +


r1
r2
...

rN


This has the general form

y = Gx + r, with Cov{r} = R = diag(σ2
r ,1, . . . , σ

2
r ,N).
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Vector Models (cont.)
Vector observations, several parameters:

yn =


g11 g12 . . . g1K
g21 g22 . . . g1K

...
...

. . .
...

gdy 1 gdy 2 . . . gdy K




x1
x2
...

xK

+ rn

= Gnx + rn,

Batch notation: 
y1
y2
...

yN

 =


G1
G2
...

GN

x +


r1
r2
...

rN


In compact notation we again get the same general form:

y = Gx + r, with Cov{r} = R = diag(R1, . . . ,RN).
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General Linear Model: Definition

General form of a linear models:

y = Gx + r,

with E{r} = 0 and Cov{r} = R.
This is the general linear model, both the scalar and vector
cases can be expressed in this way.
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Affine Models

We might also have a constant bias b in the model:

y = Gx + b + r.

We can now compute a modified measurement ỹ = y− b
and rewrite this as

ỹ = Gx + r.

Thus is again a general linear model.
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Example: Localizing a Drone
Recall the drone model:

y1 = px + r1,

y2 = py + r2,

y3 =
1√
2
(px − x0) +

1√
2

py + r3.

It has the affine form:

y = G x + b + r.

Can be reduced to linear
model by defining

ỹ1 = y1,

ỹ2 = y2,

ỹ3 = y3 +
1√
2

x0.

y1

px

y3
y2 py
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Example: Localizing a Car
We have:

y1 = sx
1 − px + r1,

y2 = sy
1 − py + r2,

...

y2M = sy
M − py + r2M .

Again leads to form

y = G x + b + r.

We can now define

ỹ1 = y1 − sx
1 ,

...

ỹ2M = y2M − sy
M .
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General Linear Model: Least Squares (1)

The least squares cost function to minimize:

JLS(x) = (y−Gx)T(y−Gx)

= yTy− yTGx− xTGTy + xTGTGx

Some vector calculus identities (when A is symmeric):

∂xTa
∂x

=
∂aTx
∂x

= a

∂xTAx
∂x

= 2Ax
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General Linear Model: Least Squares (2)

The least squares estimator for the general linear model is

x̂LS = (GTG)−1GTy

Its statistical properties are

E{x̂LS} = x

Cov{x̂LS} = (GTG)−1GTRG((GTG)−1)T.
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Example: Localizing a Car (1)

x1

x2
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Weighted Linear Least Squares (1)

Recall the general linear model:

y = Gx + r.

with E{r} = 0 and Cov{r} = R.
Weighted least squares cost function:

JWLS(x) = (y−Gx)TR−1(y−Gx)

We can now derive the estimator in the same way as for
(plain) least squares.
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Weighted Linear Least Squares (2)

Weighted linear least squares estimator:

x̂WLS = (GTR−1G)−1GTR−1y.

Properties:

E{x̂WLS} = x

Cov{x̂WLS} = (GTR−1G)−1

It can be shown that W = R−1 minimizes Cov{x̂WLS} over
all choices for W and in this case

Cov{x̂WLS} ≤ Cov{x̂LS}
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Example: Localizing a Car (2)

x1

x2 LS
WLS
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Regularized Linear Least Squares (1/2)

The regularized least squares criterion

JReLS(x) = (y−Gx)TR−1(y−Gx) + (x−m)TP−1(x−m).

The regularized linear least squares estimator

x̂ReLS = (GTR−1G + P−1)−1(GTR−1y + P−1m).

The expectation is not x!
The covariance of the estimator is

Cov{x̂ReLS} = (GTR−1G + P−1)−1.

The covariance is always smaller (or equal) to the WLS
estimator.
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Regularized Linear Least Squares (2/2)
By using the matrix inversion formula we can write

(GTR−1G + P−1)−1 = P− P GT (G P GT + R)−1 G P.

This gives

K = PGT(GPGT + R)−1,

x̂ReLS = m + K(y−Gm),

Cov{x̂ReLS} = P− K(GPGT + R)KT.

Finally, we can always rewrite regularized least squares as
weighted least squares:

JReLS(x) = (y−Gx)TR−1(y−Gx) + (m− x)TP−1(m− x)

=

([
y
m

]
−
[
G
I

]
x
)T [R−1 0

0 P−1

]([
y
m

]
−
[
G
I

]
x
)
.
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Example: Localizing a Car (3)

x1

x2 WLS
ReLS
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Example: Localizing a Car (4)

x1

x2 WLS
ReLS
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Sequential Linear Least Squares (1/2)
In many cases, the sensor data arrives sequentially at the
estimator.
Assume that we have calculated the weighted least
squares (WLS) estimate using y1:n−1 = {y1,y2, . . . ,yn−1}:

x̂n−1 = (GT
1:n−1R−1

1:n−1G1:n−1)
−1GT

1:n−1R−1
1:n−1y1:n−1,

Cov{x̂k−1} = (GT
1:n−1R−1

1:n−1G1:n−1)
−1 = Pn−1.

We can now rewrite the WLS the cost function in
sequential form

JSLS(x) = (y1:n−1 −G1:n−1x)TR−1
1:n−1(y1:n−1 −G1:n−1x)

+ (yn −Gnx)TR−1
n (yn −Gnx).
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Sequential Linear Least Squares (2/2)
Setting gradient to zero and substituting the already
computed result gives:

x̂n = (GT
1:n−1R−1

1:n−1G1:n−1 + GT
nR−1

n Gn)
−1

× (GT
1:n−1R−1

1:n−1y1:n−1 + GT
nR−1

n yn)

= (P−1
n−1 + GT

nR−1
n Gn)

−1(GT
1:n−1R−1

1:n−1y1:n−1 + GT
nR−1

n yn).

Using matrix inversion formula gives

Kn = Pn−1GT
n(GnPn−1GT

n + Rn)
−1,

x̂n = x̂n−1 + Kn(yn −Gnx̂n−1),

Cov{x̂n} = Pn−1 − Kn(GnPn−1GT
n + Rn)KT

n = Pn.

This is now a recursion for the estimates.
Regularized least squares results from x̂0 = m and P0 = P.
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Example: Localizing a Car (5)

x1

x2 WLS
SLS 1

x1

x2 WLS
SLS 2

x1

x2 WLS
SLS 3

x1

x2 WLS
SLS 4
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Summary (1)
The general linear model is given by

y = Gx + r, E{r} = 0, Cov{r} = R

Affine models can be tackled by rewriting

y = Gx + b + r,
y− b︸ ︷︷ ︸

ỹ

= Gx + r.

Different least squares estimators:

x̂LS = (GTG)−1GTy,

x̂WLS = (GTR−1G)−1GTR−1y,

x̂ReLS = (GTR−1G + P−1)−1(GTR−1y + P−1m).

We also computed their expectations and covariances.
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Summary (2)

Alternative form of regularized least squares estimator:

K = PGT(GPGT + R)−1,

x̂ReLS = m + K(y−Gm),

Cov{x̂ReLS} = P− K(GPGT + R)KT.

Sequential (weighted/regularized) least squares estimator:

Kn = Pn−1GT
n(GnPn−1GT

n + Rn)
−1,

x̂n = x̂n−1 + Kn(yn −Gnx̂n−1),

Pn = Pn−1 − Kn(GnPn−1GT
n + Rn)KT

n .
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