Mathematics for Economists

Mitri Kitti

Aalto University

Implicit Function Theorem

Motivation

Motivation

 Most economic models analyze the relationship between endogenous and exogenous variables, e.g. GDP (endogenous) and public expenditure (exogenous) in the IS-LM model

Sometimes, this relationship can be written as an *explicit* function

 $y = F(x_1,\ldots,x_n),$

where y is the endogenous variable and the x_i 's are exogenous

But often the best we can do is to express y as an *implicit* function of the exogenous variables:

$$G(x_1,\ldots,x_n,y)=0 \tag{1}$$

The Implicit Function Theorem will allow us to study how changes in the exogenous variables affect y when we have an implicit function like (1)

Motivation

- **Example.** Consider a profit-maximizing firm that uses a single input z to produce a single output through the production function f(z)
- ▶ The unit price of output is *p*, and the unit price of input is *w*
- The firm's profit is pf(z) wz, and the first order condition for profit maximization is

$$pf'(z) - w = 0 \tag{2}$$

Equation (2) defines z as an *implicit* function of the exogenous variables w and p

How does z change as we change w or p?

Implicit Function

Example. Suppose $x^2 + y^2 = 1$. Around the point (0, 1), we can express y as an explicit function of x

The graph of $x^2 + y^2 = 1$ near the point (0, 1).

Implicit Function

• However, we cannot express y as an explicit function of x around the point (1,0)

We want to address the following questions

1. Given the implicit equation G(x, y) = c and a point (x_0, y_0) such that $G(x_0, y_0) = c$, does there exist a continuous function y = y(x) defined on an interval I around x_0 such that:

(a)
$$G(x, y(x)) = c$$
 for all $x \in I$

(b) $y(x_0) = y_0?$

2. If $y(x_0)$ exists and is differentiable, what is $y'(x_0)$?

Note: We already know how to compute $y'(x_0)$ in (2) through the Chain Rule...

Theorem (Implicit Function Theorem in \mathbb{R}^2) Let G(x, y) be a C^1 function on an open ball around $(x_0, y_0) \in \mathbb{R}^2$. Suppose that $G(x_0, y_0) = c$ and consider the implicit equation G(x, y) = c.

If $\frac{\partial G}{\partial y}(x_0, y_0) \neq 0$, then there exists a C^1 function y(x) defined on an interval $I \subset \mathbb{R}$ around x_0 such that:

1.
$$G(x, y(x)) = c$$
 for all $x \in I$;

2. $y(x_0) = y_0;$

3.
$$y'(x_0) = -\frac{\frac{\partial G}{\partial x}(x_0, y_0)}{\frac{\partial G}{\partial y}(x_0, y_0)}.$$

Example: Let $G : \mathbb{R}^2 \to \mathbb{R}$ be such that $G(x, y) = x^2 - 3xy + y^3 - 7$

• At
$$(x_0, y_0) = (4, 3)$$
, we have $G(x_0, y_0) = 0$

• Consider the implicit equation $G(x, y) = x^2 - 3xy + y^3 - 7 = 0$

• We have that
$$\frac{\partial G}{\partial y}(4,3) = -3x + 3y^2 \big|_{(4,3)} = 15 \neq 0$$

By the implicit function theorem, G(x, y) defines y as a C¹ function of x around (4,3) and

$$y'(x_0) = -rac{\partial G}{\partial x}(x_0, y_0) = rac{1}{15}.$$

Example: Consider the implicit equation $G(x, y) = x^2 + y^2 - 1 = 0$

- At $(x_0, y_0) = (0, 1)$, we have that $\frac{\partial G}{\partial y}(0, 1) = 2 \neq 0$. Therefore, G(x, y) implicitly defines y as a function of x around this point
- However, at $(x_0, y_0) = (1, 0)$, we have that $\frac{\partial G}{\partial y}(1, 0) = 0$. Thus the Implicit Function Theorem does not hold at this point

- Example: In microeconomics, we can invoke the Implicit Function Theorem to derive the Marginal Rate of Substitution (In the last lecture, we used the total differential to do that)
- ▶ Suppose $u : \mathbb{R}^2_+ \to \mathbb{R}$ is a C^1 utility function
- The implicit equation u(x, y) = c identifies the indifference curve that gives total utility c
- At (x₀, y₀), if the marginal utility of y is different from zero, we can use the Implicit Function Theorem to write

$$y'(x_0) = -rac{rac{\partial u}{\partial x}(x_0, y_0)}{rac{\partial u}{\partial y}(x_0, y_0)},$$

which is the Marginal Rate of Substitution at (x_0, y_0)

Implicit Function Theorem: a Real Valued Implicit Function

Theorem (Implicit Function Theorem)

Let $G(x_1, \ldots, x_k, y)$ be a C^1 function around the point $(x_1^*, \ldots, x_k^*, y^*)$. Suppose further that $(x_1^*, \ldots, x_k^*, y^*)$ satisfies

$$G(x_1^*,\ldots,x_k^*,y^*)=c \quad and \quad rac{\partial G}{\partial y}(x_1^*,\ldots,x_k^*,y^*)
eq 0.$$

Then there is a C^1 function $y = y(x_1, ..., x_k)$ defined on an open ball B around $(x_1^*, ..., x_k^*)$ such that

- 1. $G(x_1, ..., x_k, y(x_1, ..., x_k)) = c$ for all $(x_1, ..., x_k) \in B$;
- 2. $y(x_1^*,\ldots,x_k^*) = y^*;$

3. for each i,

$$\frac{\partial y}{\partial x_i}(x_1^*,\ldots,x_k^*)=-\frac{\frac{\partial G}{\partial x_i}(x_1^*,\ldots,x_k^*,y^*)}{\frac{\partial G}{\partial y}(x_1^*,\ldots,x_k^*,y^*)}.$$

Implicit Function Theorem: Example

- Example: Consider a profit-maximizing firm that uses a single input z to produce a single output through the production function f(z)
- The first-order condition for profit maximization is

$$pf'(z) - w = 0,$$
 (3)

where p and w are prices

- ▶ How does the optimal quantity of input *z* depend on prices *p* and *w*?
- ▶ The derivative of the implicit equation (3) w.r.t. z is

pf''(z),

which we assume is strictly negative (i.e. *f* is strictly concave)

Implicit Function Theorem: Example

By the Implicit Function Theorem, we have

$$\frac{\partial z}{\partial w}(p,w) = \frac{1}{pf''(z)} < 0$$

and

$$rac{\partial z}{\partial p}(p,w) = -rac{f'(z)}{pf''(z)} > 0$$

Linear implicit function theorem

Theorem

- Assume that $A \in \mathbb{R}^{m \times (n+m)}$, and $A = (A_x, A_y)$, with $A_x \in \mathbb{R}^{m \times n}$, $A_y \in \mathbb{R}^{m \times m}$ such that $A(\mathbf{x}, \mathbf{y}) = A_x \mathbf{x} + A_y \mathbf{y}$
- If A_y is invertible we obtain from $A(\mathbf{x}, \mathbf{y}) = \mathbf{0}$ the function $\mathbf{y}(\mathbf{x}) = -A_y^{-1}A_x\mathbf{x}$ (i.e., $D\mathbf{y}(\mathbf{x}) = -A_y^{-1}A_x$)
- If we write $A_x dx + A_y dy = 0$ we obtain $dy = -A_y^{-1}A_x dx$, when only one exogenous variable is changed, then we can use Cramer's rule to find dy

Implicit function theorem: Example

IS-LM model

$$(1-b)Y + i_1r = a + i_0 + G - bT$$

$$c_1Y - c_2r = M^s$$

Multiplier matrix [(Y, r) as endogenous]

$$A=egin{pmatrix} 1-b & i_1\ c_1 & -c_2 \end{pmatrix}$$

 \dots but what are the exogenous variables? For example what is the solution as a function of G?

Implicit function theorem: General Form

Theorem

 $G : \mathbb{R}^{n+m} \mapsto \mathbb{R}^m$ continuously differentiable on $B_{\varepsilon}(\mathbf{x}^0, \mathbf{y}^0)$ for some $\varepsilon > 0$ and $G(\mathbf{x}^0, \mathbf{y}^0) = \mathbf{0}$, $\det(D_y G(\mathbf{x}^0, \mathbf{y}^0)) \neq 0$, then there is $\delta > 0$ and function $\mathbf{y}(\mathbf{x}) \in C^1(B_{\delta}(\mathbf{x}^0))$ such that

- 1. $G(\mathbf{x}, \mathbf{y}(\mathbf{x})) = \mathbf{0}$
- **2**. $y(x^0) = y^0$
- 3. $D_x \mathbf{y}(\mathbf{x}^0) = -(D_y G(\mathbf{x}^0, \mathbf{y}^0))^{-1} D_x G(\mathbf{x}^0, \mathbf{y}^0)$

Example 1

•
$$G(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} G_1(\mathbf{x}, \mathbf{y}) \\ G_2(\mathbf{x}, \mathbf{y}) \end{pmatrix}$$
, $G_1(\mathbf{x}, \mathbf{y}) = y_1 y_2^2 - x_1 x_2 + x_2 - 7$,
 $G_2(\mathbf{x}, \mathbf{y}) = y_1 - x_1 / y_2 + x_2 - 5$
• Let us take $(\mathbf{x}^0, \mathbf{y}^0) = (-2, 2, 1, 1)$ $(x_1^0 = -2, x_2^0 = 2, y_1^0 = 1, y_2^0 = 1)$

$$D_{y}G(\mathbf{x}^{0},\mathbf{y}^{0}) = \begin{pmatrix} \frac{\partial G_{1}(\mathbf{x}^{0},\mathbf{y}^{0})}{\partial y_{1}} & \frac{\partial G_{1}(\mathbf{x}^{0},\mathbf{y}^{0})}{\partial y_{2}} \\ \frac{\partial G_{2}(\mathbf{x}^{0},\mathbf{y}^{0})}{\partial y_{1}} & \frac{\partial G_{2}(\mathbf{x}^{0},\mathbf{y}^{0})}{\partial y_{2}} \end{pmatrix} \\ = \begin{pmatrix} (y_{2}^{0})^{2} & 2y_{1}^{0}y_{2}^{0} \\ 1 & x_{1}^{0}/(y_{2}^{0})^{2} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}$$

$$D_{\mathbf{x}}G(\mathbf{x}^{0},\mathbf{y}^{0}) = \begin{pmatrix} \frac{\partial G_{1}(\mathbf{x}^{0},\mathbf{y}^{0})}{\partial \mathbf{x}_{1}} & \frac{\partial G_{1}(\mathbf{x}^{0},\mathbf{y}^{0})}{\partial \mathbf{x}_{2}} \\ \frac{\partial G_{2}(\mathbf{x}^{0},\mathbf{y}^{0})}{\partial \mathbf{x}_{1}} & \frac{\partial G_{2}(\mathbf{x}^{0},\mathbf{y}^{0})}{\partial \mathbf{x}_{2}} \end{pmatrix}$$
$$= \begin{pmatrix} -(\mathbf{x}_{2}^{0}) & 1 - \mathbf{x}_{2}^{0} \\ -1/y_{2}^{0} & 1 \end{pmatrix} = \begin{pmatrix} -2 & -1 \\ -1 & 1 \end{pmatrix}$$

Example 1

• How does change in x_1 affect the endogenous variables **y**?

$$D_{y}G(\mathbf{x}^{0},\mathbf{y}^{0})\begin{pmatrix}dy_{1}\\dy_{2}\end{pmatrix}+D_{x_{1}}G(\mathbf{x}^{0},\mathbf{y}^{0})dx_{1}=\begin{pmatrix}0\\0\end{pmatrix}$$

we get

$$\begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} dy_1 \\ dy_2 \end{pmatrix} + \begin{pmatrix} -2 \\ -1 \end{pmatrix} dx_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

by Cramer's rule

$$dy_{1} = \frac{\det \begin{pmatrix} 2 & 2 \\ 1 & -2 \end{pmatrix}}{\det \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}} dx_{1} = \frac{1}{2} dx_{1}$$
$$dy_{2} = \frac{\det \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}}{\det \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}} dx_{1} = \frac{1}{4} dx_{1}$$

Example 2

- Assume that F : ℝⁿ → ℝⁿ is continuously differentiable such that det(DF(x)) ≠ 0 for all x ∈ ℝⁿ, consider the equation F(x) = b
- $\blacktriangleright \text{ Set } G(\mathbf{x}, \mathbf{b}) = F(\mathbf{x}) \mathbf{b}$
- Apply the implicit function theorem, what do you get?
- ▶ Implicit function theorem tells us that there is $\mathbf{x}(\mathbf{b})$ around any $\mathbf{b} \in \mathbb{R}^n$ such that $F(\mathbf{x}(\mathbf{b})) = \mathbf{b}$ and $D\mathbf{x}(\mathbf{b}) = [DF(\mathbf{x}(\mathbf{b}))]^{-1}$
- This result is known as the inverse function theorem
 - note that x(b) is (a local) inverse function

- Homogeneous functions are an important class of functions studied in economics
- Let f : ℝⁿ₊ → ℝ be a function. For any scalar k, we say that f is homogeneous of degree k if

$$f(tx_1,\ldots,tx_n)=t^kf(x_1,\ldots,x_n)$$
 for all $(x_1,\ldots,x_n)\in\mathbb{R}^n_+$ and all $t>0$.

• **Example:** Let
$$f(x, y) = x^2 y^3$$

For any t > 0 we have

$$f(tx, ty) = (tx)^2 (ty)^3 = t^5 (x^2 y^3) = t^5 f(x, y)$$

• An example of a *non-homogeneous* function is $g(x, y) = x^2 + y^3$

Homogeneous functions are closely related to the concept of *returns to scale* in economics

Suppose f is a production function. Then f has

- Constant returns to scale if $f(tx_1, \ldots, tx_n) = tf(x_1, \ldots, x_n)$ for all t > 0
- Decreasing returns to scale if $f(tx_1, \ldots, tx_n) < tf(x_1, \ldots, x_n)$ for all t > 1
- Increasing returns to scale if $f(tx_1, \ldots, tx_n) > tf(x_1, \ldots, x_n)$ for all t > 1

- Let f : ℝⁿ₊ → ℝ be a C¹ function homogeneous of degree k. Then its first order partial derivatives are homogeneous of degree k − 1.
- To prove this result, take the following definition of homogeneity of degree k and then use the chain rule to differentiate both sides w.r.t. any x_i:

$$f(tx_1,\ldots,tx_n)=t^kf(x_1,\ldots,x_n)$$

- ▶ Let $f : \mathbb{R}^n_+ \to \mathbb{R}$ be a C^1 function homogeneous of degree k. Then the tangent planes to the level sets of f have constant slope along each ray from the origin
- For utility (production) functions, this says that the Marginal Rate of (Technical) Substitution is constant along each ray from the origin

▶ Euler's theorem. Let $f : \mathbb{R}^n_+ \to \mathbb{R}$ be a C^1 function homogeneous of degree k. Then, for all $\mathbf{x} \in \mathbb{R}^n_+$,

$$x_1\frac{\partial f}{\partial x_1}(\boldsymbol{x}) + x_2\frac{\partial f}{\partial x_2}(\boldsymbol{x}) + \cdots + x_n\frac{\partial f}{\partial x_n}(\boldsymbol{x}) = kf(\boldsymbol{x}).$$

Conversely, if f is such that

$$x_1\frac{\partial f}{\partial x_1}(\mathbf{x}) + x_2\frac{\partial f}{\partial x_2}(\mathbf{x}) + \cdots + x_n\frac{\partial f}{\partial x_n}(\mathbf{x}) = kf(\mathbf{x}).$$

for all $\mathbf{x} \in \mathbb{R}^n_+$, then f is homogeneous of degree k.

- ► A couple of properties:
 - The product of homogeneous functions is homogeneous
 - The sum of two functions that are homogeneous of different degrees is not homogeneous

Exercise: Look at all the production functions listed in the slides from Lecture 5. Are they homogeneous? If so, of what degree?