Mathematics for Economists

Mitri Kitti
Aalto University
Implicit Function Theorem

Motivation

Motivation

- Most economic models analyze the relationship between endogenous and exogenous variables, e.g. GDP (endogenous) and public expenditure (exogenous) in the IS-LM model
- Sometimes, this relationship can be written as an explicit function

$$
y=F\left(x_{1}, \ldots, x_{n}\right)
$$

where y is the endogenous variable and the x_{i} 's are exogenous

- But often the best we can do is to express y as an implicit function of the exogenous variables:

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{n}, y\right)=0 \tag{1}
\end{equation*}
$$

- The Implicit Function Theorem will allow us to study how changes in the exogenous variables affect y when we have an implicit function like (1)

Motivation

- Example. Consider a profit-maximizing firm that uses a single input z to produce a single output through the production function $f(z)$
- The unit price of output is p, and the unit price of input is w
- The firm's profit is $p f(z)-w z$, and the first order condition for profit maximization is

$$
\begin{equation*}
p f^{\prime}(z)-w=0 \tag{2}
\end{equation*}
$$

- Equation (2) defines z as an implicit function of the exogenous variables w and p
- How does z change as we change w or p ?

Implicit Function

- Example. Suppose $x^{2}+y^{2}=1$. Around the point $(0,1)$, we can express y as an explicit function of x

The graph of $x^{2}+y^{2}=1$ near the point $(0,1)$.

Implicit Function

- However, we cannot express y as an explicit function of x around the point $(1,0)$

The graph of $x^{2}+y^{2}=1$ near the point $(1,0)$.

Implicit Function Theorem in \mathbb{R}^{2}

- We want to address the following questions

1. Given the implicit equation $G(x, y)=c$ and a point $\left(x_{0}, y_{0}\right)$ such that $G\left(x_{0}, y_{0}\right)=c$, does there exist a continuous function $y=y(x)$ defined on an interval I around x_{0} such that:
(a) $G(x, y(x))=c$ for all $x \in I$
(b) $y\left(x_{0}\right)=y_{0}$?
2. If $y\left(x_{0}\right)$ exists and is differentiable, what is $y^{\prime}\left(x_{0}\right)$?

- Note: We already know how to compute $y^{\prime}\left(x_{0}\right)$ in (2) through the Chain Rule...

Implicit Function Theorem in \mathbb{R}^{2}

Theorem (Implicit Function Theorem in \mathbb{R}^{2})
Let $G(x, y)$ be a C^{1} function on an open ball around $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Suppose that $G\left(x_{0}, y_{0}\right)=c$ and consider the implicit equation $G(x, y)=c$.

If $\frac{\partial G}{\partial y}\left(x_{0}, y_{0}\right) \neq 0$, then there exists a C^{1} function $y(x)$ defined on an interval $I \subset \mathbb{R}$ around x_{0} such that:

1. $G(x, y(x))=c$ for all $x \in I$;
2. $y\left(x_{0}\right)=y_{0}$;
3. $y^{\prime}\left(x_{0}\right)=-\frac{\frac{\partial G}{\partial x}\left(x_{0}, y_{0}\right)}{\frac{\partial G}{\partial y}\left(x_{0}, y_{0}\right)}$.

Implicit Function Theorem in \mathbb{R}^{2}

- Example: Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $G(x, y)=x^{2}-3 x y+y^{3}-7$
- At $\left(x_{0}, y_{0}\right)=(4,3)$, we have $G\left(x_{0}, y_{0}\right)=0$
- Consider the implicit equation $G(x, y)=x^{2}-3 x y+y^{3}-7=0$
- We have that

$$
\frac{\partial G}{\partial y}(4,3)=-3 x+\left.3 y^{2}\right|_{(4,3)}=15 \neq 0
$$

- By the implicit function theorem, $G(x, y)$ defines y as a C^{1} function of x around $(4,3)$ and

$$
y^{\prime}\left(x_{0}\right)=-\frac{\frac{\partial G}{\partial x}\left(x_{0}, y_{0}\right)}{\frac{\partial G}{\partial y}\left(x_{0}, y_{0}\right)}=\frac{1}{15} .
$$

Implicit Function Theorem in \mathbb{R}^{2}

- Example: Consider the implicit equation $G(x, y)=x^{2}+y^{2}-1=0$
- At $\left(x_{0}, y_{0}\right)=(0,1)$, we have that $\frac{\partial G}{\partial y}(0,1)=2 \neq 0$. Therefore, $G(x, y)$ implicitly defines y as a function of x around this point
- However, at $\left(x_{0}, y_{0}\right)=(1,0)$, we have that $\frac{\partial G}{\partial y}(1,0)=0$. Thus the Implicit Function Theorem does not hold at this point

Implicit Function Theorem in \mathbb{R}^{2}

- Example: In microeconomics, we can invoke the Implicit Function Theorem to derive the Marginal Rate of Substitution (In the last lecture, we used the total differential to do that)
- Suppose $u: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ is a C^{1} utility function
- The implicit equation $u(x, y)=c$ identifies the indifference curve that gives total utility c
- At $\left(x_{0}, y_{0}\right)$, if the marginal utility of y is different from zero, we can use the Implicit Function Theorem to write

$$
y^{\prime}\left(x_{0}\right)=-\frac{\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)}{\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)},
$$

which is the Marginal Rate of Substitution at $\left(x_{0}, y_{0}\right)$

Implicit Function Theorem: a Real Valued Implicit Function

Theorem (Implicit Function Theorem)

Let $G\left(x_{1}, \ldots, x_{k}, y\right)$ be a C^{1} function around the point $\left(x_{1}^{*}, \ldots, x_{k}^{*}, y^{*}\right)$. Suppose further that $\left(x_{1}^{*}, \ldots, x_{k}^{*}, y^{*}\right)$ satisfies

$$
G\left(x_{1}^{*}, \ldots, x_{k}^{*}, y^{*}\right)=c \quad \text { and } \quad \frac{\partial G}{\partial y}\left(x_{1}^{*}, \ldots, x_{k}^{*}, y^{*}\right) \neq 0 .
$$

Then there is a C^{1} function $y=y\left(x_{1}, \ldots, x_{k}\right)$ defined on an open ball B around $\left(x_{1}^{*}, \ldots, x_{k}^{*}\right)$ such that

1. $G\left(x_{1}, \ldots, x_{k}, y\left(x_{1}, \ldots, x_{k}\right)\right)=c$ for all $\left(x_{1}, \ldots, x_{k}\right) \in B$;
2. $y\left(x_{1}^{*}, \ldots, x_{k}^{*}\right)=y^{*}$;
3. for each i,

$$
\frac{\partial y}{\partial x_{i}}\left(x_{1}^{*}, \ldots, x_{k}^{*}\right)=-\frac{\frac{\partial G}{\partial x_{i}}\left(x_{1}^{*}, \ldots, x_{k}^{*}, y^{*}\right)}{\frac{\partial G}{\partial y}\left(x_{1}^{*}, \ldots, x_{k}^{*}, y^{*}\right)}
$$

Implicit Function Theorem: Example

- Example: Consider a profit-maximizing firm that uses a single input z to produce a single output through the production function $f(z)$
- The first-order condition for profit maximization is

$$
\begin{equation*}
p f^{\prime}(z)-w=0 \tag{3}
\end{equation*}
$$

where p and w are prices

- How does the optimal quantity of input z depend on prices p and w ?
- The derivative of the implicit equation (3) w.r.t. z is

$$
p f^{\prime \prime}(z)
$$

which we assume is strictly negative (i.e. f is strictly concave)

Implicit Function Theorem: Example

- By the Implicit Function Theorem, we have

$$
\frac{\partial z}{\partial w}(p, w)=\frac{1}{p f^{\prime \prime}(z)}<0
$$

and

$$
\frac{\partial z}{\partial p}(p, w)=-\frac{f^{\prime}(z)}{p f^{\prime \prime}(z)}>0
$$

Linear implicit function theorem

Theorem

- Assume that $A \in \mathbb{R}^{m \times(n+m)}$, and $A=\left(A_{x}, A_{y}\right)$, with $A_{x} \in \mathbb{R}^{m \times n}, A_{y} \in \mathbb{R}^{m \times m}$ such that $A(\mathbf{x}, \mathbf{y})=A_{x} \mathbf{x}+A_{y} \mathbf{y}$
- If A_{y} is invertible we obtain from $A(\mathbf{x}, \mathbf{y})=\mathbf{0}$ the function $\mathbf{y}(\mathbf{x})=-A_{y}^{-1} A_{x} \mathbf{x}$ (i.e., $\left.D \mathbf{y}(\mathbf{x})=-A_{y}^{-1} A_{x}\right)$
- If we write $A_{x} d x+A_{y} d y=0$ we obtain $d y=-A_{y}^{-1} A_{x} d x$, when only one exogenous variable is changed, then we can use Cramer's rule to find dy

Implicit function theorem: Example

IS-LM model

$$
\begin{aligned}
(1-b) Y+i_{1} r & =a+i_{0}+G-b T \\
c_{1} Y-c_{2} r & =M^{s}
\end{aligned}
$$

Multiplier matrix [($Y, r)$ as endogenous]

$$
A=\left(\begin{array}{cc}
1-b & i_{1} \\
c_{1} & -c_{2}
\end{array}\right)
$$

... but what are the exogenous variables? For example what is the solution as a function of G ?

Implicit function theorem: General Form

Theorem

$G: \mathbb{R}^{n+m} \mapsto \mathbb{R}^{m}$ continuously differentiable on $B_{\varepsilon}\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right)$ for some $\varepsilon>0$ and $G\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right)=\mathbf{0}, \operatorname{det}\left(D_{y} G\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right)\right) \neq 0$, then there is $\delta>0$ and function $\mathbf{y}(\mathbf{x}) \in C^{1}\left(B_{\delta}\left(\mathbf{x}^{0}\right)\right)$ such that

1. $G(\mathbf{x}, \mathbf{y}(\mathbf{x}))=\mathbf{0}$
2. $\mathbf{y}\left(\mathbf{x}^{0}\right)=\mathbf{y}^{0}$
3. $D_{x} \mathbf{y}\left(\mathbf{x}^{0}\right)=-\left(D_{y} G\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right)\right)^{-1} D_{x} G\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right)$

Example 1

- $G(\mathbf{x}, \mathbf{y})=\binom{G_{1}(\mathbf{x}, \mathbf{y})}{G_{2}(\mathbf{x}, \mathbf{y})}, G_{1}(\mathbf{x}, \mathbf{y})=y_{1} y_{2}^{2}-x_{1} x_{2}+x_{2}-7$,

$$
G_{2}(\mathbf{x}, \mathbf{y})=y_{1}-x_{1} / y_{2}+x_{2}-5
$$

- Let us take $\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right)=(-2,2,1,1)\left(x_{1}^{0}=-2, x_{2}^{0}=2, y_{1}^{0}=1, y_{2}^{0}=1\right)$

$$
\begin{aligned}
D_{y} G\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right) & =\left(\begin{array}{cc}
\frac{\partial G_{1}\left(x^{0}, y^{0}\right)}{\partial y_{y}} & \frac{\partial G_{1}\left(x^{0}, y^{0}\right)}{\partial G_{2}\left(x^{0}, y^{0}\right)} \\
\frac{\partial G_{1}}{\partial y_{1}} & \frac{\left.\partial x_{2}^{0}, y^{0}\right)}{\partial y_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(y_{2}^{0}\right)^{2} & 2 y_{1}^{0} y_{2}^{0} \\
1 & x_{1}^{0} /\left(y_{2}^{0}\right)^{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
1 & -2
\end{array}\right) \\
D_{x} G\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right)= & \left(\begin{array}{ll}
\frac{\partial G_{1}\left(x^{0}, y^{0}\right)}{\partial x^{0}} & \frac{\partial G_{1}\left(x^{0}, y^{0}\right)}{\partial x_{2}} \\
\frac{\partial G_{2}\left(x^{0}, y^{0}\right)}{\partial x_{1}} & \frac{\partial G_{2}\left(x_{2}, y^{0}\right)}{\partial x_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\left(x_{2}^{0}\right) & 1-x_{2}^{0} \\
-1 / y_{2}^{0} & 1
\end{array}\right)=\left(\begin{array}{cc}
-2 & -1 \\
-1 & 1
\end{array}\right)
\end{aligned}
$$

Example 1

- How does change in x_{1} affect the endogenous variables \mathbf{y} ?

$$
D_{y} G\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right)\binom{d y_{1}}{d y_{2}}+D_{x_{1}} G\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right) d x_{1}=\binom{0}{0}
$$

we get

$$
\left(\begin{array}{cc}
1 & 2 \\
1 & -2
\end{array}\right)\binom{d y_{1}}{d y_{2}}+\binom{-2}{-1} d x_{1}=\binom{0}{0}
$$

by Cramer's rule

$$
\begin{aligned}
& d y_{1}=\frac{\operatorname{det}\left(\begin{array}{cc}
2 & 2 \\
1 & -2
\end{array}\right)}{\operatorname{det}\left(\begin{array}{cc}
1 & 2 \\
1 & -2
\end{array}\right)} d x_{1}=\frac{1}{2} d x_{1} \\
& d y_{2}=\frac{\operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)}{\operatorname{det}\left(\begin{array}{cc}
1 & 2 \\
1 & -2
\end{array}\right)} d x_{1}=\frac{1}{4} d x_{1}
\end{aligned}
$$

Example 2

- Assume that $F: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is continuously differentiable such that $\operatorname{det}(D F(\mathbf{x})) \neq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$, consider the equation $F(\mathbf{x})=\mathbf{b}$
- Set $G(\mathbf{x}, \mathbf{b})=F(\mathbf{x})-\mathbf{b}$
- Apply the implicit function theorem, what do you get?
- Implicit function theorem tells us that there is $\mathbf{x}(\mathbf{b})$ around any $\mathbf{b} \in \mathbb{R}^{n}$ such that $F(\mathbf{x}(\mathbf{b}))=\mathbf{b}$ and $D \mathbf{x}(\mathbf{b})=[D F(\mathbf{x}(\mathbf{b}))]^{-1}$
- This result is known as the inverse function theorem
- note that $\mathbf{x}(\mathbf{b})$ is (a local) inverse function

Homogeneous Functions

- Homogeneous functions are an important class of functions studied in economics
- Let $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ be a function. For any scalar k, we say that f is homogeneous of degree k if

$$
f\left(t x_{1}, \ldots, t x_{n}\right)=t^{k} f\left(x_{1}, \ldots, x_{n}\right) \text { for all }\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n} \text { and all } t>0
$$

Homogeneous Functions

- Example: Let $f(x, y)=x^{2} y^{3}$
- For any $t>0$ we have

$$
f(t x, t y)=(t x)^{2}(t y)^{3}=t^{5}\left(x^{2} y^{3}\right)=t^{5} f(x, y)
$$

- Hence f is homogeneous of degree 5
- An example of a non-homogeneous function is $g(x, y)=x^{2}+y^{3}$

Homogeneous Functions

- Homogeneous functions are closely related to the concept of returns to scale in economics
- Suppose f is a production function. Then f has
- Constant returns to scale if $f\left(t x_{1}, \ldots, t x_{n}\right)=t f\left(x_{1}, \ldots, x_{n}\right)$ for all $t>0$
- Decreasing returns to scale if $f\left(t x_{1}, \ldots, t x_{n}\right)<t f\left(x_{1}, \ldots, x_{n}\right)$ for all $t>1$
- Increasing returns to scale if $f\left(t x_{1}, \ldots, t x_{n}\right)>t f\left(x_{1}, \ldots, x_{n}\right)$ for all $t>1$

Homogeneous Functions

- Let $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ be a C^{1} function homogeneous of degree k. Then its first order partial derivatives are homogeneous of degree $k-1$.
- To prove this result, take the following definition of homogeneity of degree k and then use the chain rule to differentiate both sides w.r.t. any x_{i} :

$$
f\left(t x_{1}, \ldots, t x_{n}\right)=t^{k} f\left(x_{1}, \ldots, x_{n}\right)
$$

Homogeneous Functions

- Let $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ be a C^{1} function homogeneous of degree k. Then the tangent planes to the level sets of f have constant slope along each ray from the origin
- For utility (production) functions, this says that the Marginal Rate of (Technical) Substitution is constant along each ray from the origin

Homogeneous Functions

- Euler's theorem. Let $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ be a C^{1} function homogeneous of degree k. Then, for all $\boldsymbol{x} \in \mathbb{R}_{+}^{n}$,

$$
x_{1} \frac{\partial f}{\partial x_{1}}(\boldsymbol{x})+x_{2} \frac{\partial f}{\partial x_{2}}(\boldsymbol{x})+\cdots+x_{n} \frac{\partial f}{\partial x_{n}}(\boldsymbol{x})=k f(\boldsymbol{x}) .
$$

- Conversely, if f is such that

$$
x_{1} \frac{\partial f}{\partial x_{1}}(\boldsymbol{x})+x_{2} \frac{\partial f}{\partial x_{2}}(\boldsymbol{x})+\cdots+x_{n} \frac{\partial f}{\partial x_{n}}(\boldsymbol{x})=k f(\boldsymbol{x}) .
$$

for all $\boldsymbol{x} \in \mathbb{R}_{+}^{n}$, then f is homogeneous of degree k.

- A couple of properties:
- The product of homogeneous functions is homogeneous
- The sum of two functions that are homogeneous of different degrees is not homogeneous

Homogeneous Functions

- Exercise: Look at all the production functions listed in the slides from Lecture 5. Are they homogeneous? If so, of what degree?

