Problem Set 3 Due date: Friday 7.10 at 12.15

Exercise 1

- (a) Let $f : \mathbb{R}^3_+ \to \mathbb{R}$ be such that $f(x_1, x_2, x_3) = 10x_1^{\frac{1}{3}}x_2^{\frac{1}{2}}x_3^{\frac{1}{6}}$. We want to approximate the value of this function around the point x = (27, 16, 64).
 - 1. Use differentials to approximate the value of f when x_1 increases to 27.1, x_2 decreases to 15.7, and x_3 remains the same.
 - 2. Compare the approximated value you obtained in the previous answer with the actual value of the function at the new point.
 - 3. Answer again to questions 1. and 2. for $dx_1 = dx_2 = 0.2$ and $dx_3 = -0.4$.
- (b) Find the first and second order approximations of the function $f(x,y) = e^{x+2y}$ at (x,y) = (0,0).

Exercise 2

Consider the set S in \mathbb{R}^2 defined as $S = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < 1\}$. Show that S is an open set. Is $\hat{S} = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, 0 \le y \le 1\}$ open or closed?

Exercise 3

Check if the following equations define z implicitly as a function g(x, y) in a neighbourhood of the given point (x_0, y_0, z_0) . If so, calculate $\frac{\partial g}{\partial x}(x_0, y_0)$ and $\frac{\partial g}{\partial y}(x_0, y_0)$.

1.
$$x^3 + y^3 + z^3 - xyz - 1 = 0$$
, $(x_0, y_0, z_0) = (0, 0, 1)$;

2.
$$e^{z} - z^{2} - x^{2} - y^{2} = 0$$
, $(x_{0}, y_{0}, z_{0}) = (1, 0, 0)$.

Exercise 4

- a) At a given moment of time, the marginal product of labor is 2.5 and the marginal product of capital is 3, the amount of capital is increasing by 2 each unit of time and the rate of change of labor is 0.5. What is the rate of change of output?
- b) Assume that $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable, fix $\mathbf{x}^*, \mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq 0$, and form a function $g(t), t \in \mathbb{R}$, by setting $g(t) = f(\mathbf{x}^* + t\mathbf{d})$. Find g'(0).

Exercise 5

Let $u : \mathbb{R}^2_+ \to \mathbb{R}$ be a C^1 utility function, and let $f : \mathbb{R} \to \mathbb{R}$ be a C^1 function such that f'(x) > 0 for every $x \in \mathbb{R}$ (i.e. f is a strictly increasing function). Define the composite function $v := f \circ u$. Recall that the Marginal Rate of Substitution of u at a point (x_0, y_0) is

$$MRS^{u}(x_{0}, y_{0}) = -\frac{\frac{\partial u}{\partial x}(x_{0}, y_{0})}{\frac{\partial u}{\partial y}(x_{0}, y_{0})}.$$

- (a) Write the expression of the MRS at (x_0, y_0) for the composite function v.
- (b) Use the chain rule to show that the MRS of u and v at (x_0, y_0) is the same.
- (c) Now assume that u is also homogeneous of degree k. Show that the MRS of u is a homogeneous function of degree zero.

Exercise 6

For each of the following production functions, determine whether the corresponding returns to scale are *decreasing*, *increasing*, or *constant*. Throughout the exercise, assume that the parameters a, b, and c are all strictly positive.

(a)
$$f(x_1, x_2) = ax_1^c + bx_2^c$$

(b) $f(x_1, x_2) = \min\{ax_1, bx_2\}.$

(c)
$$f(x_1, x_2) = x_1^a x_2^b$$
.

(d) $f(x_1, x_2) = \frac{1}{\frac{1}{x_1} + \frac{1}{x_2}}$.