Aalto University School of Science

MS-E2135
 Decision Analysis Lecture 4

- Risk measures
- Value trees
- Axioms for preference relations

Motivation

- Last time we learned how :
- To model the DM's preferences over risk by eliciting her utility function
- The shape (concave / linear / convex) of the utility function reflects the DM's risk attitude (risk averse / neutral / seeking)
- Decision recommendations can be inferred from stochastic dominance even if the utility function is not (completely) specified:
- If the DM prefers more to less, she should not choose an FSD dominated alternative
- If the DM is also risk averse, she should not choose an SSD dominated alternative

\square This time ('Part A'):

- We cover risk measures and examine how they characterize the risks of different alternatives

Risk measures

\square Risk measure is a real-valued function that maps each decision alternative to a single number which represents the risk level

- E.g., variance $\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]$
- The higher the variance, the higher the risk
\square Risk measures are not based on EUT, but can be used in combination with expected values to generate decision recommendations
- Risk constraint: From the set of alternatives whose risk is below a given threshold, select the one which offers the highest expected value
- Risk minimization: From the set of alternative expected value exceeds a given threshold, select the one with minimum risk
- Efficient frontier: Select an alternative such that these exists no other alternative which would give (i) higher or equal expected value and (ii) lower or equal risk, with strict preference for either (i) or (ii)

Risk measures: Value-at-Risk (VaR)

\square Value-at-Risk $\left(\operatorname{VaR}_{\alpha}[X]\right)$ is the outcome such that the probability of getting an outcome which is worse than or equal to this outcome is α :

$$
\int_{-\infty}^{\operatorname{VaR}_{\alpha}[X]} f_{X}(t) d t=F_{X}\left(\operatorname{VaR}_{\alpha}[X]\right)=\alpha
$$

\square Higher VaR means smaller risk

- Unless applied to a loss distribution

Common values for α : $1 \%, 5 \%$, and 10%
\square Problem: The length/shape of the tail is not taken into account

Mining example revisited

\square Assess $\mathrm{VaR}_{5 \%}$ for strategies 1 and 25

Risk measures: Conditional Value-at-

 Risk (CVaR)- Conditional Value-at-Risk $\left(\mathrm{CVaR}_{\alpha}[X]\right)$ is the expected outcome given that the outcome is at most VaR_{α} :

$$
\operatorname{CVaR}[X]=E\left[X \mid X \leq \operatorname{VaR}_{\alpha}[X]\right]
$$

\square Higher CVaR means smaller risk (unless X represents losses)

- Computation of $\operatorname{CVaR}[X]$ to discrete and continuous X :
$E\left[X \mid X \leq \operatorname{VaR}_{\alpha}[X]\right]=\sum_{t \leq \operatorname{VaR}_{\alpha}[X]} t \frac{f_{X}(t)}{\alpha}$,

$$
E\left[X \mid X \leq \operatorname{VaR}_{\alpha}[X]\right]=\int_{-\infty}^{\operatorname{VaR}_{\alpha}[X]} t \frac{f_{X}(t)}{\alpha} d t
$$

- Note: $\alpha=P\left(X \leq \operatorname{VaR}_{\alpha}[X]\right) ; \operatorname{PMF} / \operatorname{PDF} f_{X}(t)$ is scaled such that it sums/integrates up to 1.

Computation of VaR and CVaR

\square If the inverse CDF of X is well-defined, VaR can be obtained from

$$
\operatorname{VaR}_{\alpha}[X]=F_{X}^{-1}(\alpha)
$$

- In Excel: norm.inv, lognorm.inv, beta.inv, binom.inv etc
- In Matlab: norminv, logninv, betainv, binoinv etc
- CVaR can then be computed using the formulas on the previous slide
- Sometimes an analytic solution can be obtained; if, e.g., $X \sim N\left(\mu, \sigma^{2}\right)$ and $\operatorname{VaR}_{\alpha}[X]=\beta$, then

$$
\mathrm{CVaR}_{\alpha}[X]=\mu-\sigma \frac{\phi\left(\frac{\beta-\mu}{\sigma}\right)}{\Phi\left(\frac{\beta-\mu}{\sigma}\right)},
$$

where ϕ and Φ are the standard normal PDF and CDF, respectively.

- Sometimes numerical integration is needed

Computation of VaR and CVaR

With discrete random variables VaR and CVaR are not always well defined for small values of α

- Example:

t	-10	-5	1	10	20
$f_{x}(t)$	0.06	0.02	0.02	0.5	0.4

- $\operatorname{VaR}_{10 \%}[X]=1$
$-\operatorname{CVaR}_{10 \%}[X]=\frac{0.06(-10)+0.02(-5)+0.02(1)}{0.06+0.02+0.02}=-6.8$
- But what are $\operatorname{VaR}_{5 \%}[X], \operatorname{CVaR}_{5 \%}[X]$? Formally, $\operatorname{VaR}(X)$ can now be defined as

$$
\operatorname{VaR}_{\alpha}(X)=-\inf \left\{x \in \mathbb{R}: F_{X}(x)>\alpha\right\}=F_{Y}^{-1}(1-\alpha)
$$

VaR and CVaR with Monte Carlo - Excel

VaR and CVaR with Monte Carlo Matlab

```
S=10^5; %Sample size 10,000
mu=1000;
sigma=500;
Sample=normrnd(mu, sigma,S,1); sGenerates 10^5 observations from N(mu,sigma)
VaR=prctile(Sample,10) %Returns the 10% percentile of the sample
TailIndices=find(Sample<=VaR); s%Returns the indices of those elements
    %in the sample below or equal to VaR
CVaR=mean(Sample(TailIndices)) sComputes the arithmetic mean among those
%elements in the sample belor or equal to VaR
```


Risk measures and stochastic dominance

\square Recall that FSD and SSD were implied by the cumulative distribution function

Theorem: $X \succcurlyeq_{\mathrm{FSD}} Y$ if and only if $\operatorname{VaR}_{\alpha}[X] \geq \operatorname{VaR}_{\alpha}[Y] \forall \alpha \in[0,1]$
\square Theorem: $X \succcurlyeq_{\text {SSD }} Y$ if and only if $\mathrm{CVaR}_{\alpha}[X] \geq \mathrm{CVaR}_{\alpha}[Y] \forall \alpha \in[0,1]$

EUT vs. Risk measures

E EUT provides a comprehensive way to capture the DM's preferences over uncertain outcomes
\square With risk measures, one must answer questions such as

- Which risk measure should one use?
- Which α to use in VaR and CVaR?
- How to combine EV and the value of a risk measure into an overall performance measure?

Yet, if the answers to these questions are known and incontestable, the use of risk measures can be justified

- They may be dictated by laws, regulations, industry standards etc.

Motivation

So far:

- We have considered decision-making situations in which the DM has one objective (e.g., maximize the expected value/utility of a monetary payoff)

\square This time:

- We consider decision-making situations in which the DM has multiple objectives or, more precisely...
- Multiple attributes with regard to which the achievement of some fundamental objective is measured

Multiattribute value theory

\square Ralph Keeney and Howard Raiffa (1976): Decisions with Multiple Objectives: Preferences and Value Tradeoffs, Cambridge University Press.

- James Dyer and Rakesh Sarin (1979): Measurable multiattribute value functions, Operations Research Vol. 27, pp. 810-822
- Elements of MAVT
- A value tree consisting of objectives, attributes, and alternatives
- Preference relation over the alternatives' attribute-specific performances and differences thereof \& their representation with an attribute-specific value function
- Preference relation over the alternatives' overall performances and differences thereof \& their representation with a multiattribute value function

Value tree: objectives, attributes and alternatives

\square A value tree consists of

- A fundamental objective
- Possible lower-level objectives
- Attributes that measure the achievement of the objectives
- Alternatives whose attributespecific performances are being measured

Citroën C5

Relations between objectives

\square Fundamental objectives are the essential reasons you care about a decision
\square Means objectives help generate alternatives and deepen your understanding of the decision problem

The division may not be very clear, though

Choosing a restaurant for dining

Source: Clemen, Dillon, Reilly, Making Hard Decisions with DecitionTools, Terence Reilly: Revised 2001

Structuring objectives

	Fundamental Objectives	Means Objectives
To Move:	Downward in the Hierarchy:	Away from Fundamental Objectives:
Ask:	"What do you mean by that?"	"How could you achieve this?"
To Move:	Upward in the Hierarchy: Ask:"Of what more general objective is this an aspect?"	"Why is that important?" Fundamental Objectives:

Objectives for choosing a telescope

Means objectives in italics.

Value tree: objectives, attributes and alternatives

\square The attributes a_{1}, \ldots, a_{n} have measurement scales $\mathrm{X}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$; e.g.,

- $X_{1}=[1000 € / m o n t h, 6000 € /$ month $]$
- $\mathrm{X}_{2}=[2$ weeks/year, 8 weeks/year]
- $\mathrm{X}_{3}=$ [o days/year, 200 days/year]
- $\mathrm{X}_{4}=\{$ poor, fair, good, excellent $\}$
\square Alternatives $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ are characterized by their performance w.r.t. the attributes; e.g.,

- Banker=(6000€/month, 5 weeks/year, 40 days/year, fair) $\in X_{1} \times X_{2} \times X_{3} \times X_{4}$.

Types of attributes

1. Natural attributes

- Shared interpretation by all
- "Cost measured in euros"
- "Distance to the closest ski lift in kilometers"

2. Constructed attributes

- No natural measurement scale
- Developed for the decision context
- Often define/clarify what is meant by the objectives
- E.g., scales for measuring pain

0-10 NUMERIC PAIN RATING SCALE

3. Proxy attributes

- Indirect measures to achievement of the objective
- "Accommodation quality measured in average review rating"

From Keeney (1992): Value-Focused Thinking, Harvard University Press

Table 4.3. A constructed attribute Y of site biological impact

Attribute level	Description of attribute level
0	No loss of productive wetlands or rare species habitat. 1
Loss of 320 acres of productive wetlands and no loss of rare species habitat.	
2	Loss of 640 acres of productive wetlands and no loss of rare species habitat or loss of 30 acres of rare species habitat and no loss of productive wetlands.
3	No loss of productive wetlands and loss of 50 acres of rare species habitat. 4Loss of 640 acres of productive wetlands and loss of 40 acres of rare species habitat.
5	Loss of 640 acres of productive wetlands and loss of 50 acres of rare species habitat.

CATEGORICAL SCALE

HURTS HURTS
EVEN MORE
 HURTS A
WHOLE LOT

Preference relation: attribute-specific performance

\square Let \geqslant be a preference relation among performance levels a and b on a given attribute

Preference $a \succcurlyeq b: a$ at least as preferred as b
Strict preference $a \succ b$ defined as $\neg(b \geqslant a)$
Indifference $a \sim b$ defined as $a \succcurlyeq b \wedge b \succcurlyeq a$

Axioms for preference relation

- A1: \geqslant is complete
- For any $a, b \in X$, either $a \succcurlyeq b$ or $b \geqslant a$ or both
- A2: \geqslant is transitive
- If $a \succcurlyeq b$ and $b \succcurlyeq c$, then $a \succcurlyeq c$

Ordinal value function

Theorem: Let axioms A1-A2 hold. Then, there exists an ordinal value function $v_{i}(\cdot): X_{i} \rightarrow \mathbb{R}$ that represents preference relation \geqslant in the sense that

$$
v_{i}(a) \geq v_{i}(b) \Leftrightarrow a \succcurlyeq b
$$

An ordinal value function does not capture strength of preference, i.e., it does not indicate by how much more an object is preferred to another

Ordinal value function

\square Assume you have two different mopeds A and B with top speeds of 30 and $35 \mathrm{~km} / \mathrm{h}$, respectively
\square You have two (mutually exclusive) alternatives for upgrade
\square Increase top speed of moped A to 40
\square Increase top speed of moped B to 45
\square You prefer a higher top speed to a lower one

$$
\begin{aligned}
& 45>40>35>30 \\
& \mathrm{v}(45)=1, \mathrm{v}(40)=0.8, \mathrm{v}(35)=0.5, \mathrm{v}(30)=0.4 \\
& \mathrm{w}(45)=0.9, \mathrm{w}(40)=0.8, \mathrm{w}(35)=0.6, \mathrm{w}(30)=0.4
\end{aligned}
$$

\square Both v and w are ordinal value functions representing your preferences but they do not describe your preferences between the two upgrade alternatives

$$
\square \mathrm{v}(45)-\mathrm{v}(35)=0.5>\mathrm{v}(40)-\mathrm{v}(30)=0.4 \text {, but } \mathrm{w}(45)-\mathrm{w}(35)=0.3<\mathrm{w}(40)-\mathrm{w}(30)=0.4
$$

Ordinal value function

Theorem: Ordinal value functions $v_{i}(\cdot)$ and $w_{i}(\cdot)$ represent the same preference relation \geqslant if and only if there exists a strictly increasing function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ such that $w_{i}(a)=\phi\left[v_{i}(\cdot)\right] \forall a \in A$.

Example: Let consultant $>$ professor $>$ janitor be Jim's preferences over these jobs and v (consultant) $=10>v$ (professor) $=8>v$ (janitor) $=7$.
Then v^{\prime} and $v^{\prime \prime}$ both represent the same preferences as ordinal value function v

	consultant	professor	janitor
v	10	8	7
v^{\prime}	20	16	14
$v^{\prime \prime}$	20	16	8

For cardinal measurement, a preference relation over differences is needed

L Let \succcurlyeq_{d} be preference relation for differences in performance levels on a given attribute

- Preference $(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d)$: a change from b to a is at least as preferred as a change from d to c
- Strict preference $(a \leftarrow b)\rangle_{d}(c \leftarrow d)$ defined as

$$
\neg\left((c \leftarrow d) \succcurlyeq_{d}(a \leftarrow b)\right)
$$

- Indifference $(a \leftarrow b) \sim_{d}(c \leftarrow d)$ defined as

$$
(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d) \wedge(c \leftarrow d) \succcurlyeq_{d}(a \leftarrow b)
$$

Axioms for preference relation (cont'd)

- A3: $\forall a, b, c \in X_{i}: a \succcurlyeq b \Leftrightarrow(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow c)$
- If a is preferred to b, then a change from b to a is preferred to no change
\square A4: $\forall a, b, c, d \in X_{i}:(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d) \Leftrightarrow(d \leftarrow c) \succcurlyeq_{d}(b \leftarrow a)$
- E.g., if an increase in salary from $1500 €$ to $2000 €$ is preferred to an increase from $2000 €$ to $2500 €$, then a decrease from $2500 €$ to $2000 €$ is preferred to a decrease from $2000 €$ to $1500 €$
\square A5: $\forall a, b, c, d, e, f \in X_{i}:(a \leftarrow b) \succcurlyeq_{d}(d \leftarrow e) \wedge(b \leftarrow c) \succcurlyeq_{d}(e \leftarrow f) \Rightarrow(a \leftarrow c) \succcurlyeq_{d}(d \leftarrow f)$
- If two incremental changes are both preferred to some other two, then the overall change resulting from the first two increments is also nreferred
A6: $\forall b, c, d \in X_{i} \exists a \in X_{i}$ such that $(a \leftarrow b) \sim_{d}(c \leftarrow d)$ and $\forall b, c \in X_{i} \exists a \in X_{i}$ such that $(b \leftarrow a) \sim_{d}(a \leftarrow c)$
- Equally preferred differences between attribute levels can always be constructed
- There is always an attribute level a between b and c such that a change from c to a is equally preferred to a change from a to b.
\square A7: The set (or sequence) $\left\{a_{n} \mid b \succ a_{n}\right.$ where $\left.\left(a_{n} \leftarrow a_{n-1}\right) \sim_{d}\left(a_{1} \leftarrow a_{0}\right)\right\}$ is finite for any b in X_{i}
- The sequence of equally preferred differences over a fixed interval is finite
- "No b can be infinitely better than other performance levels"

This defines preferred changes that represent preferences

Cardinal value function

Theorem: Let axioms A1-A7 hold. Then, there exists a cardinal value function $v_{i}(\cdot): X_{i} \rightarrow \mathbb{R}$ that represents preference relations \geqslant and \succcurlyeq_{d} in the sense that

$$
\begin{gathered}
v_{i}(a) \geq v_{i}(b) \Leftrightarrow a \succcurlyeq b \\
v_{i}(a)-v_{i}(b) \geq v_{i}(c)-v_{i}(d) \stackrel{\Leftrightarrow}{\Leftrightarrow}(a \leftarrow b) \succcurlyeq_{d}(c \leftarrow d) .
\end{gathered}
$$

Note: A cardinal value function is unique up to positive affine transformations, i.e., $v_{i}(x)$ and $v_{i}^{\prime}(x)=\alpha v_{i}(x)+\beta, \alpha>0$ and represent the same preferences

Cardinal value function: positive affine transformations

Example: Let consultant $>$ professor \succ janitor and (consultant \leftarrow professor) \succcurlyeq_{d} (professor \leftarrow janitor) be Jim's preferences and v (consultant) $=10>v$ (professor) $=8>v$ (janitor) $=7$.
Then v^{\prime} and $v^{\prime \prime}$ both represent same preferences as cardinal value function v

	consultant	professor	janitor
v	10	8	7
$v^{\prime}=2 v$	20	16	14
$v^{\prime \prime}=v^{\prime}-10$	10	6	4

Attribute-specific value functions

. A value function maps the attribute-specific measurement scale onto a numerical scale in accordance with the DM's preferences

- Value and utility:
- Value is a measure of preference under certainty
- Utility is a measure of preference under uncertainty

Figure 7.2. The four steps needed to construct value and utility functions.

Summary

\square Value trees are used model decisions with multiple objectives

U Under the stated axioms, the DM's preferences for changes on a measurement scale can be captured by a cardinal (measurable) value function

- "I prefer a change from o euros to 10 euros to a change from 10 euros to 22 euros"

