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Decision Analysis
Lecture 4
• Risk measures
• Value trees
• Axioms for preference relations
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Motivation 

❑ Last time we learned how : 

– To model the DM’s preferences over risk by eliciting her utility function

– The shape (concave / linear / convex) of the utility function reflects the DM’s 
risk attitude (risk averse / neutral / seeking)

– Decision recommendations can be inferred from stochastic dominance even if
the utility function is not (completely) specified:

– If the DM prefers more to less, she should not choose an FSD dominated alternative

– If the DM is also risk averse, she should not choose an SSD dominated alternative

❑ This time (’Part A’):

– We cover risk measures and examine how they characterize the risks of 
different alternatives
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Risk measures

❑ Risk measure is a real-valued function that maps each decision

alternative to a single number which represents the risk level

– E.g., variance 𝑉𝑎𝑟 𝑋 = 𝐸[(𝑋 − 𝐸[𝑋])2]
– The higher the variance, the higher the risk

❑ Risk measures are not based on EUT, but can be used in combination 

with expected values to generate decision recommendations

– Risk constraint: From the set of alternatives whose risk is below a given threshold, 
select the one which offers the highest expected value 

– Risk minimization: From the set of alternative expected value exceeds a given 
threshold, select the one with minimum risk

– Efficient frontier: Select an alternative such that these exists no other alternative 
which would give (i) higher or equal expected value and (ii) lower or equal risk, with 
strict preference for either (i) or (ii)

29.9.2022

3



-10 -5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 

 

10%

90%

-10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

t euros

 

 

F
Y
(t)

F
X
(t)

Risk measures: Value-at-Risk (VaR)

❑ Value-at-Risk (VaR𝛼[𝑋]) is the outcome such that

the probability of getting an outcome which is 

worse than or equal to this outcome is 𝛼:

න
−∞

VaR𝛼[𝑋]

𝑓𝑋 𝑡 𝑑𝑡 = 𝐹𝑋 VaR𝛼[𝑋] =𝛼.

❑ Higher VaR means smaller risk
– Unless applied to a loss distribution

❑ Common values for 𝛼: 1%, 5%, and 10%

❑ Problem: The length/shape of the tail is not

taken into account
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VaR10% 𝑋 = 0.6€
VaR10% 𝑌 = −1.4€



Mining example revisited

❑ Assess VaR5% for 

strategies 1 and 25
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Risk measures: Conditional Value-at-
Risk (CVaR)

❑ Computation of CVaR 𝑋 to discrete and continuous X:

𝐸 𝑋 𝑋 ≤ VaR𝛼 𝑋 = σ
𝑡≤VaR𝛼 𝑋

𝑡
𝑓𝑋(𝑡)

𝛼
, 𝐸 𝑋 𝑋 ≤ VaR𝛼 𝑋 = ∞−

VaR𝛼 𝑋
𝑡
𝑓𝑋(𝑡)

𝛼
𝑑𝑡.

– Note: 𝛼 = 𝑃 𝑋 ≤ VaR𝛼 𝑋 ; PMF/PDF 𝑓𝑋(𝑡) is scaled such that it sums/integrates up to 1. 
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❑ Conditional Value-at-Risk (CVaR𝛼[𝑋]) is the

expected outcome given that the outcome is at 

most VaR𝛼:
CVaR 𝑋 = 𝐸[𝑋|𝑋 ≤ VaR𝛼 𝑋 ]

❑ Higher CVaR means smaller risk 

(unless X represents losses)

𝑓𝑋(𝑡)

𝑓𝑌(𝑡)

VaR10% 𝑋 = −1.85
VaR10% 𝑌 = −0.97

CVaR10% 𝑋 = −3.26
CVaR10% 𝑌 = −4.23



Computation of VaR and CVaR

❑ If the inverse CDF of X is well-defined, VaR can be obtained from 

VaR𝛼 𝑋 = 𝐹𝑋
−1(𝛼)

– In Excel: norm.inv, lognorm.inv, beta.inv, binom.inv etc

– In Matlab: norminv, logninv, betainv, binoinv etc

❑ CVaR can then be computed using the formulas on the previous slide
– Sometimes an analytic solution can be obtained; if, e.g., 𝑋~𝑁 𝜇, 𝜎2 and VaR𝛼 𝑋 = 𝛽, then

CVaR𝛼 𝑋 = 𝜇 − 𝜎
𝜙

𝛽−𝜇

𝜎

Φ
𝛽−𝜇

𝜎

,

where 𝜙 and Φ are the standard normal PDF and CDF, respectively.

– Sometimes numerical integration is needed 
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Computation of VaR and CVaR

❑ With discrete random variables VaR and CVaR are not always well

defined for small values of 𝛼

– Example: 

– VaR10% 𝑋 =1

– CVaR10% 𝑋 =
0.06(−10)+0.02(−5)+0.02(1)

0.06+0.02+0.02
=-6.8

– But what are VaR5% 𝑋 , CVaR5% 𝑋 ?  Formally, VaR(X) can now be defined as 
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t -10 -5 1 10 20

fX(t) 0.06 0.02 0.02 0.5 0.4



VaR and CVaR with Monte Carlo - Excel
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=PERCENTILE.INC(C12:C211;0.1)

=IF(C12<=$F$10;C12;”above”)

=AVERAGE(D12:D211)

Note! 200 samples is very 

little, because only 1/10=20 

are used to estimate CVaR



VaR and CVaR with Monte Carlo -
Matlab
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Risk measures and stochastic 
dominance
❑ Recall that FSD and SSD were 

implied by the cumulative distribution 

function

❑ Theorem: X ≽FSD Y if and only if

VaR𝛼 𝑋 ≥ VaR𝛼 𝑌 ∀𝛼 ∈ 0,1

❑ Theorem: X ≽SSD Y if and only if

CVaR𝛼 𝑋 ≥ CVaR𝛼 𝑌 ∀𝛼 ∈ 0,1
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EUT vs. Risk measures

❑ EUT provides a comprehensive way to capture the DM’s preferences

over uncertain outcomes

❑ With risk measures, one must answer questions such as

– Which risk measure should one use?

– Which 𝛼 to use in VaR and CVaR?

– How to combine EV and the value of a risk measure into an overall performance
measure?

❑ Yet, if the answers to these questions are known and incontestable, 

the use of risk measures can be justified

– They may be dictated by laws, regulations, industry standards etc.
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Motivation 

❑ So far: 

– We have considered decision-making situations in which the DM has one
objective (e.g., maximize the expected value/utility of a monetary payoff)

❑ This time:

– We consider decision-making situations in which the DM has
multiple objectives or, more precisely…

– Multiple attributes with regard to which the achievement of some
fundamental objective is measured
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Multiattribute value theory

❑ Ralph Keeney and Howard Raiffa (1976): Decisions with Multiple Objectives: 

Preferences and Value Tradeoffs, Cambridge University Press.   

❑ James Dyer and Rakesh Sarin (1979): Measurable multiattribute value 

functions, Operations Research Vol. 27, pp. 810-822

❑ Elements of MAVT
– A value tree consisting of objectives, attributes, and alternatives

– Preference relation over the alternatives’ attribute-specific performances and differences thereof & 
their representation with an attribute-specific value function

– Preference relation over the alternatives’ overall performances and differences thereof & their
representation with a multiattribute value function
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Value tree: objectives, attributes and 
alternatives
❑ A value tree consists of

– A fundamental objective

– Possible lower-level objectives

– Attributes that measure the 
achievement of the objectives

– Alternatives whose attribute-
specific performances are being 
measured
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Car quality

Driving Economy

Top speedAccelerationPrice Expenses

Citroën C5VW PassatAudi A4



Relations between objectives 
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Car quality

Driving Economy

Top speedAccelerationPrice Expenses

Citroën C5VW PassatAudi A4

❑ Fundamental objectives are the 

essential reasons you care about 

a decision 

❑ Means objectives help generate 

alternatives and deepen your 

understanding of the decision 

problem

❑ The division may not be very clear, though



Choosing a restaurant for dining
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Source: Clemen, Dillon, Reilly, Making Hard Decisions with DecitionTools, Terence Reilly: Revised 2001.



Structuring objectives 
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Objectives for choosing a telescope
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Value tree: objectives, attributes and 
alternatives
❑ The attributes a1,…, an have

measurement scales Xi, i=1,…,n; e.g.,
– X1=[1000€/month, 6000€/month]

– X2 =[2 weeks/year, 8 weeks/year]

– X3 =[0 days/year, 200 days/year]

– X4 ={poor, fair, good, excellent}

❑ Alternatives 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛) are

characterized by their performance

w.r.t. the attributes; e.g., 

– Banker=(6000€/month, 5 weeks/year, 40 
days/year, fair) ∈ 𝑋1 × 𝑋2 × 𝑋3 × 𝑋4.
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Job

Fit with 
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Business 

travel
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Researcher Consultant
Engineer in 

industry
Banker



Types of attributes

1. Natural attributes
• Shared interpretation by all

• “Cost measured in euros”

• “Distance to the closest ski lift in kilometers”

2. Constructed attributes
• No natural measurement scale

• Developed for the decision context

• Often define/clarify what is meant
by the objectives

• E.g., scales for measuring pain
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3. Proxy attributes
• Indirect measures to achievement of 

the objective

• “Accommodation quality measured in 
average review rating” 

From Keeney (1992):  Value-Focused Thinking, Harvard 

University Press



Preference relation: attribute-specific 
performance 

❑ Let ≽ be a preference relation among performance levels a and b on 

a given attribute

Preference 𝑎 ≽ 𝑏: 𝑎 at least as preferred as 𝑏

Strict preference 𝑎 ≻ 𝑏 defined as ¬ 𝑏 ≽ 𝑎

Indifference 𝑎~𝑏 defined as 𝑎 ≽ 𝑏 ∧ 𝑏 ≽ 𝑎
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Axioms for preference relation

❑ A1: ≽ is complete 

– For any 𝑎, 𝑏 ∈ 𝑋, either 𝑎 ≽ 𝑏 or 𝑏 ≽ 𝑎 or both

❑ A2: ≽ is transitive 

– If 𝑎 ≽ 𝑏 and 𝑏 ≽ 𝑐, then 𝑎 ≽ 𝑐
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Ordinal value function

Theorem: Let axioms A1-A2 hold. Then, there exists an ordinal

value function 𝑣𝑖 ∙ : 𝑋𝑖 → ℝ that represents preference relation ≽ in 

the sense that
𝑣𝑖 𝑎 ≥ 𝑣𝑖 𝑏 ⟺ 𝑎 ≽ 𝑏

❑ An ordinal value function does not capture strength of preference, 

i.e., it does not indicate by how much more an object is preferred to 

another
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Ordinal value function

❑Assume you have two different mopeds A and B with top speeds of 30 
and 35km/h, respectively

❑You have two (mutually exclusive) alternatives for upgrade
❑ Increase top speed of moped A to 40 

❑ Increase top speed of moped B to 45

❑You prefer a higher top speed to a lower one
❑ 45>40>35>30

❑ v(45)=1, v(40)=0.8, v(35)=0.5, v(30)=0.4

❑w(45)=0.9, w(40)=0.8, w(35)=0.6, w(30)=0.4

❑Both v and w are ordinal value functions representing your 
preferences but they do not describe your preferences between the two 
upgrade alternatives

❑ v(45)-v(35)=0.5 > v(40)-v(30)=0.4, but w(45)-w(35)=0.3 < w(40)-w(30) =0.4
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Ordinal value function

Theorem: Ordinal value functions 𝑣𝑖 ∙ and 𝑤𝑖 ∙ represent the same 

preference relation ≽ if and only if there exists a strictly increasing 

function 𝜙:ℝ → ℝ such that 𝑤𝑖 𝑎 = 𝜙 𝑣𝑖 ∙ ∀𝑎 ∈ 𝐴.

Example: Let consultant ≻ professor ≻ janitor be Jim’s preferences over 

these jobs and 𝑣(consultant) = 10 > 𝑣(professor) = 8 > 𝑣(janitor) = 7.

Then 𝑣′ and 𝑣′′ both represent the same preferences as ordinal

value function 𝑣
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consultant professor janitor

𝑣 10 8 7

𝑣′ 20 16 14

𝑣′′ 20 16 8



For cardinal measurement, a preference 
relation over differences is needed

❑ Let ≽𝑑 be preference relation for differences in performance levels on a 

given attribute

– Preference (𝑎 ← 𝑏) ≽𝑑 (𝑐 ← 𝑑): a change from 𝑏 to 𝑎 is at least as preferred
as a change from 𝑑 to 𝑐

– Strict preference (𝑎 ← 𝑏) ≻𝑑 (𝑐 ← 𝑑) defined as 
¬((𝑐 ← 𝑑) ≽𝑑 (𝑎 ← 𝑏))

– Indifference 𝑎 ← 𝑏 ~𝑑(𝑐 ← 𝑑) defined as 
(𝑎 ← 𝑏) ≽𝑑 (𝑐 ← 𝑑) ∧ (𝑐 ← 𝑑) ≽𝑑 (𝑎 ← 𝑏)
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Axioms for preference relation (cont’d)

❑ A3: ∀𝑎, 𝑏, 𝑐 ∈ 𝑋𝑖: 𝑎 ≽ 𝑏 ⇔ (𝑎 ← 𝑏) ≽𝑑 (𝑐 ← 𝑐)

– If a is preferred to b, then a change from b to a is preferred to no change

❑ A4: ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋𝑖: (𝑎 ← 𝑏) ≽𝑑 (𝑐 ← 𝑑) ⇔ (𝑑 ← 𝑐) ≽𝑑 (𝑏 ← 𝑎)

– E.g., if an increase in salary from 1500€ to 2000€ is preferred to an increase from 2000€ to 2500€, then a decrease
from 2500€ to 2000€ is preferred to a decrease from 2000€ to 1500€

❑ A5: ∀𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ 𝑋𝑖: (𝑎 ← 𝑏) ≽𝑑 (𝑑 ← 𝑒) ∧ (𝑏 ← 𝑐) ≽𝑑 (𝑒 ← 𝑓) ⇒ (𝑎 ← 𝑐) ≽𝑑 (𝑑 ← 𝑓)

– If two incremental changes are both preferred to some other two, then the overall change resulting from the first two
increments is also preferred.

❑ A6: ∀𝑏, 𝑐, 𝑑 ∈ 𝑋𝑖 ∃𝑎 ∈ 𝑋𝑖 such that 𝑎 ← 𝑏 ~𝑑 𝑐 ← 𝑑 and ∀𝑏, 𝑐 ∈ 𝑋𝑖 ∃𝑎 ∈ 𝑋𝑖 such that 𝑏 ← 𝑎 ~𝑑 𝑎 ← 𝑐

– Equally preferred differences between attribute levels can always be constructed

– There is always an attribute level a between b and c such that a change from c to a is equally preferred to 
a change from a to b.

❑ A7: The set (or sequence) 𝑎𝑛|𝑏 ≻ 𝑎𝑛 𝑤ℎ𝑒𝑟𝑒 𝑎𝑛 ← 𝑎𝑛−1 ~𝑑(𝑎1← 𝑎0) is finite for any b in Xi

– The sequence of equally preferred differences over a fixed interval is finite

– “No b can be infinitely better than other performance levels”
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This defines preferred changes that represent preferences



Cardinal value function

❑ Theorem: Let axioms A1-A7 hold. Then, there exists a cardinal

value function 𝑣𝑖 ∙ : 𝑋𝑖 → ℝ that represents preference relations ≽
and ≽𝑑 in the sense that

𝑣𝑖 𝑎 ≥ 𝑣𝑖 𝑏 ⟺ 𝑎 ≽ 𝑏
𝑣𝑖 𝑎 − 𝑣𝑖 𝑏 ≥ 𝑣𝑖 𝑐 − 𝑣𝑖 𝑑 ⟺ 𝑎 ← 𝑏 ≽𝑑 𝑐 ← 𝑑 .

Note: A cardinal value function is unique up to positive affine

transformations, i.e., 𝑣𝑖(𝑥) and 𝑣𝑖
′ 𝑥 = 𝛼𝑣𝑖(𝑥) + 𝛽, 𝛼 > 0 and 

represent the same preferences
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Cardinal value function: positive affine
transformations

Example: Let consultant ≻ professor ≻ janitor and (
)

𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑛𝑡 ←
𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 ≽𝑑 𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 ← 𝑗𝑎𝑛𝑖𝑡𝑜𝑟 be Jim’s preferences and 

𝑣(consultant) = 10 > 𝑣(professor) = 8 > 𝑣(janitor) = 7.

Then 𝑣′ and 𝑣′′ both represent same preferences as cardinal value

function 𝑣
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consultant professor janitor

𝑣 10 8 7

𝑣′ = 2𝑣 20 16 14

𝑣′′ = 𝑣′ − 10 10 6 4



Attribute-specific value functions

❑ A value function maps the

attribute-specific measurement

scale onto a numerical scale in 

accordance with the DM’s 

preferences

❑ Value and utility:
– Value is a measure of preference

under certainty

– Utility is a measure of preference
under uncertainty
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Summary

❑ Value trees are used model decisions with multiple objectives

❑ Under the stated axioms, the DM’s preferences for changes on a 

measurement scale can be captured by a cardinal (measurable) 

value function

❑ “I prefer a change from 0 euros to 10 euros to a change from 10 
euros to 22 euros”
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