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L Last time we learned how :

— To model the DM’s preferences over risk by eliciting her utility function

— The shape (concave / linear / convex) of the utility function reflects the DM’s
risk attitude (risk averse / neutral / seeking)

— Decision recommendations can be inferred from stochastic dominance even if
the utility function is not (completely) specified:

—  Ifthe DM prefers more to less, she should not choose an FSD dominated alternative
— Ifthe DM is also risk averse, she should not choose an SSD dominated alternative

O This time (Part A’):

— We cover risk measures and examine how they characterize the risks of
different alternatives
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O Risk measure is a real-valued function that maps each decision
alternative to a single number which represents the risk level

— E.g., variance Var[X] = E[(X — E[X])?]
—  The higher the variance, the higher the risk

1 Risk measures are not based on EUT, but can be used in combination
with expected values to generate decision recommendations

— Risk constraint: From the set of alternatives whose risk is below a given threshold,
select the one which offers the highest expected value

— Risk minimization: From the set of alternative expected value exceeds a given
threshold, select the one with minimum risk

— Efficient frontier: Select an alternative such that these exists no other alternative
which would give (i) higher or equal expected value and (ii) lower or equal risk, with
strict preference for either (i) or (ii)
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Risk measures: Value-at-Risk (VaR)

—F,0
0.8 | —F,®

O Value-at-Risk (VaR,[X]) is the outcome such that
the probability of getting an outcome which is
worse than or equal to this outcome is a:

jVaRa[X] 02

fx(®)dt = Fx(VaR,[X]) =«a.

ike)

— 00
0.08

0.07r

O Higher VaR means smaller risk

0.06-

— Unless applied to a loss distribution 005/

Qd Common values for a: 1%, 5%, and 10% o
Q Problem: The length/shape of the tail is not o0
taken into account 001
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Mining example revisited

. CDFs of Strategies
’ |
D Assess VaRS% for i ® Strategy 1: Bid High Alone

B Strategy 2: Bid High with Partner
I X Strategy 17: Bid Low with Partner
Strategles 1 and 25 0.8 -1 A Strategy 25: Develop Own Property

with Partner

0.7 4

0.6 4

0.5

Probability

0.4

93 =
0.2 A
0.1+
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Risk measures: Conditional Value-at-
Risk (CVaR)

A Conditional Value-at-Risk (CVaR,[X]) is the 10
expected outcome given that the outcome is at

most VaR,:
CVaR[X] = E[X|X < VaR,[X]]

VaRlo%[X] = _185
VaR,qo[Y] = —0.97 |

CVaR; g0, [X] = —3.26 |
0.08F CVaRlO%[Y] = —4.23

0.06

fr(®)

0.04r

O Higher CVaR means smaller risk 0.02/
(unless X represents losses) 0-—n . > n
d Computation of CVaR[X] to discrete and continuous X:
VaR,
E[X|X < VaR,[X]] = %, .var gt E[X|X < VaRg[x]] = [ 2Rl ¢ 20 gy,

— Note: @ = P(X < VaR,[X]); PMF/PDF f(t) is scaled such that it sums/integrates up to 1.
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Computation of VaR and CVaR

O If the inverse CDF of X is well-defined, VaR can be obtained from
VaRa[X] = F)Zl(a)

In Excel: norm.inv, lognorm.inv, beta.inv, binom.inv etc

— In Matlab: norminv, logninv, betainv, binoinv etc

0 CVaR can then be computed using the formulas on the previous slide
—  Sometimes an analytic solution can be obtained; if, e.g., X~N(u, 02) and VaR,[X] = B, then

(B2
CVaR,[X]=u—-o @Eé”;’

where ¢ and ® are the standard normal PDF and CDF, respectively.
— Sometimes numerical integration is needed
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Computation of VaR and CVaR

O With discrete random variables VaR and CVaR are not always well
defined for small values of a

— Example:
t -10 -3 1 10 20
. () 0.06 0.02 0.02 0.5 0.4

- VaRyg[X]=1

0.06(—10)+0.02(-5)+0.02(1
- CVaRygy[X] = ( o.o)6+o.02(+(5)?o2 W68

— But what are VaRg, [X], CVaRso, [X]? Formally, VaR(X) can now be defined as

VaR,(X) = —inf{z ¢ R: Fx(z) > a} = F;'(1 - )



VaR and CVaR with Monte Carlo - Excel

=AVERAGE(D12:D211)

c D ,4 F

A B
1 D — /
8 Col.mean Col.meagl CVaR-10%,
9 0.507501 1003.35@ VaR-10%
10 a105591/ =PERCENTILE.INC(C12:C211,0.1)
11 Sample u b Below VaR
12 1 0.691314 1249.789 above
13 2 0.603076 1130.659 above — =IF(C12<=$F$10;C12;"above”)
14 3 0.548331 1060.723 above
15 4 0.058081 214.4534 214.4534
16 5 0442469 927.6436 above
17 6 0.628886 1164.452 above
18 7 0.157181 496.9445 above
19 3 0.355657 814.9533 above
20 9 0.545768 1057.488 above
21 10 0416183 894.1666 above :
22 11 0.879097 1585.243 above NOtE! 200 Samples IS Very
23| 12 0022082 664468 -6.64468 little, because only 1/10=20
24 13 0.000927 -556.359 -556.359 .
25 14 0.071391 267.2461 267.2461 are used to estimate CVaR

A!
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VaR and CVaR with Monte Carlo -
Matlab

5=10"5;

mua=1000 ;

2igma=500;
Sample=normrnd (mu, sigma, 5, 1) ;
VaR=prctile (Sample,10)
TailIndices=find (Sample<=VaR) ;

CVaB=mean (Sample (Taillndices))

fS5anple =ize 10,000

FGenerates 1075 observations from N{ma, sigma)
fEeturns the 10% percentile of the =sample
3Returns the indices of those elements

$in the sample below or egqual to VaR
FComputes the arithmetic mean among those
Felements in the =ample belor or equal to VaR

A!!
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Risk measures and stochastic

dominance

[ Recall that FSD and SSD were
Implied by the cumulative distribution
function

d Theorem: X =ggp Y if and only if 04
VaR,[X] = VaR,|Y] Va € [0,1] 02l

Q Theorem: X >ggp Y if and only if oo tssﬁ R
CVaR,[X] = CVaR,[Y] Va € [0,1] £5
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O EUT provides a comprehensive way to capture the DM’s preferences
over uncertain outcomes

O With risk measures, one must answer guestions such as
—  Which risk measure should one use?
— Which « to use in VaR and CVaR?

— How to combine EV and the value of a risk measure into an overall performance
measure?

O Yet, if the answers to these questions are known and incontestable,
the use of risk measures can be justified
— They may be dictated by laws, regulations, industry standards etc.
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O So far:

— We have considered decision-making situations in which the DM has one
objective (e.g., maximize the expected value/utility of a monetary payoff)

O This time:

— We consider decision-making situations in which the DM has
multiple objectives or, more precisely...

— Multiple attributes with regard to which the achievement of some
fundamental objective is measured
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Multiattribute value theory

O Ralph Keeney and Howard Raiffa (1976): Decisions with Multiple Objectives:
Preferences and Value Tradeoffs, Cambridge University Press.

O James Dyer and Rakesh Sarin (1979): Measurable multiattribute value
functions, Operations Research Vol. 27, pp. 810-822

O Elements of MAVT

— Avalue tree consisting of objectives, attributes, and alternatives

— Preference relation over the alternatives’ attribute-specific performances and differences thereof &
their representation with an attribute-specific value function

— Preference relation over the alternatives’ overall performances and differences thereof & their
representation with a multiattribute value function
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Value tree: objectives, attributes and
alternatives

[ Avalue tree consists of - Car quality

— A fundamental objective

— Possible lower-level objectives > | Economy Driving
— Attributes that measure the
achievement of the objectives
— Alternatives whose attribute- \ _ _
.o . Price Expenses Acceleration Top speed
specific performances are being

measured \ M

Audi A4 VW Passat Citroén C5
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1 Fundamental objectives are the
essential reasons you care about
a decision

1 Means objectives help generate
alternatives and deepen your
understanding of the decision
problem

Car quality

Economy

Driving

Price

Expenses

Acceleration Top speed

==

Audi A4

VW Passat Citroén C5

O The division may not be very clear, though
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Choosing a restaurant for dining

P m e e —m—m———)
I i —_— . .
I | Time Driving time
| I
:: * Minimize I —— Ordering/serving
o cost I
*2 I|
g |
S | | Dollar cost
T i
o | I
= I I —— Atmosphere
T :: Maximize | _
> : b Location
i :: 2. experience |
I I: —— Menu
I I
:LEEﬁﬁﬁﬁﬁﬁﬁEEE Quality of food

Source: Clemen, Dillon, Reilly, Making Hard Decisions with DecitionTools, Terence Reilly: Revised 2001.
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Structuring objectives

Fundamental Objectives Means Objectives
To Move: Downward in the Hierarchy: Away from Fundamental Objectives:
Ask: "What do you mean by that?" "How could you achieve this?"
To Move: Upward in the Hierarchy: Toward Fundamental Objectives:
Ask: "Of what more general objective "Why is that important?”
is this an aspect?”
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Objectives for choosing atelescope

Best Telesc ope

Maximize im age Maximize Maximize qua lity

clarity* enjoy ment of of astrophotography
T ] viewing se ssions

Maximize = Maximiz Maximize
brightmess image stability
’ de fnition
Max \ ?
ap erture Max quality Max Max quality
of optics stability of of racking devic

mount

Max additional
viewing ac cessories

Min light
pollution in sky

\ Min cost

Max visits to A/Oftelescope

. . . . . dark-sky site
Means objectives in italics. f Min
Max

total weight
29.9.2022

transp ortabilit
P y‘\ Minimize 21

Source: Clemen, Dillon, Reilly, Making Hard Decisions with DecitionTools, Terence Reilly: Revised 2001. .
telescope size



Value tree: objectives, attributes and

alternatives

d The attributes a,,..., a, have
measurement scales X, i=1,...,n; e.g.,
— X,=[1000€/month, 6000€/month]
— X, =[2 weeks/year, 8 weeks/year]
— X, =[o days/year, 200 days/year]
— X, ={poor, fair, good, excellent}

O Alternatives x = (x4, x5, ... x,) are
characterized by their performance
w.r.t. the attributes; e.qg.,

— Banker=(6000€/month, 5 weeks/year, 40
days/year, fair) € X; X X, X X3 X X,.

Job

7\

Salary

Vacation

travel

Business

Fit with
interests

Banker

Researcher

industry

Engineer in

Consultant
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: 3. Proxy attributes
Ty p eS Of a.tt r I b U teS . Indirect measures to achievement of

the objective
1 Natural attributes . “Accommodation quality measured in

average review rating”

¢ Shared interpretation by all From Keeney (1992): Value-Focused Thinking, Harvard
. “Cost measured in euros” University Press
° “l)istance to the closest Skl ll.ft in kilometers” Table 4.3. A constructed attribute Y of site biological impact
Attribute
2 . CO n S t r u Cted att r I b u tes level Description of attribute level
0 No loss of productive wetlands or rare species habitat.
* NO IlatllI'al meaSU.I'emeIlt Scale 1 Loss of 320 acres of productive wetlands and no loss of rare
. . species habirtat.
¢ Developed for the deCISIOn conteXt 2 Loss of 640 acres of productive wetlands and no loss of rare
. . . species habitat or loss of 30 acres of rare species habitat and
i Often deflne/CIarlfy What 1S meant no loss of productive wetlands.
by the Objectives 3 :)(: (I:zs: l(])i:'b;i)lx::fluaivc wetlands and loss of 50 acres of rare
* E.g., ScaleS fOI‘ meaSUI‘ing pain 4 Loss of 640 acres of productive wetlands and loss of 40
acres of rare species habitat.
5 Loss of 640 acres of productive wetlands and loss of 50

acres of rare species habitat.

0-10 NUMERIC PAIN RATING SCALE
CATEGORICAL SCALE

1] 1 2 3 4 5 6 7 8 9 10
| | | | | | | | | | |
! | | | | | | | | | L
NO

HURTS HURTS A HURTS HURTS A HURTS
PAIN A LITTLE LITTLE MORE EVEN MORE WHOLE LOT WORST

NONE MILD MODERATE SEVERE



Preference relation: attribute-specific
performance

O Let > be a preference relation among performance levels a and b on
a given attribute

Preference a > b: a at least as preferred as b
Strict preference a > b defined as —(b > a)

Indifference a~b definedasa >=b Ab = a

, , Aalto University
School of Science 29.9.2022
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Axioms for preference relation

Q Al: > is complete
— Foranya,b € X, eithera > b or b > a or both

O A2: >=Is transitive
— Ifa>bandb >=c,thena > c

, , Aalto University
School of Science 29.9.2022
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Theorem: Let axioms A1-A2 hold. Then, there exists an ordinal
value function v;(:): X; — R that represents preference relation > in

the sense that
vi(a) = v;(b) & a>b

O An ordinal value function does not capture strength of preference,
l.e., it does not indicate by how much more an object is preferred to
another

A’, Aalto University



dAssume you have two different mopeds A and B with top speeds of 30
and 35km/h, respectively

dYou have two (mutually exclusive) alternatives for upgrade

O Increase top speed of moped A to 40
O Increase top speed of moped B to 45

dYou prefer a higher top speed to a lower one
U 45>40>35>30
Qv(45)=1, v(40)=0.8, v(35)=0.5, v(30)=0.4
Q w(45)=0.9, w(40)=0.8, w(35)=0.6, w(30)=0.4
dBoth v and w are ordinal value functions representing your
preferences but they do not describe your preferences between the two
upgrade alternatives
0 v(45)-v(35)=0.5 > v(40)-v(30)=0.4, but w(45)-w(35)=0.3 < w(40)-w(30) =0.4

A,, Aalto University



Ordinal value function

Theorem: Ordinal value functions v;(-) and w;(-) represent the same
preference relation > if and only if there exists a strictly increasing
function ¢: R — R such that w;(a) = ¢[v;(-)] Va € A.

Example: Let consultant > professor > janitor be Jim’s preferences over
these jobs and v(consultant) = 10 > v(professor) = 8 > v(janitor) = 7.

Then v' and v"" both represent the same preferences as ordinal
value function v

. |consultant |professor |janitor
% 10 8 4

v’ 20 16 14
vll 20 16 8 29.9.20;;



For cardinal measurement, a preference
relation over differences is needed

O Let >, be preference relation for differences in performance levels on a
given attribute

—  Preference (a < b) >, (¢ < d): a change from b to a is at least as preferred
as a change from d to ¢

—  Strict preference (a < b) >, (¢ « d) defined as
—((c < d) 74 (a < D))

— Indifference (a « b)~,(c « d) defined as
(a<b)z3(c=d)AN(c<d) =4 (a<b)

, , Aalto University
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Axioms for preference relation (cont’d)

O A3:Vabc€X;: azbe (a<b) =4 (c<0)
— Ifais preferred to b, then a change from b to a is preferred to no change
O Ad:VabcdeX;:(a<b)z;(ced)e(dec)z;(b<a)

— E.g., if an increase in salary from 1500€ to 2000€ is preferred to an increase from 2000€ to 2500€, then a decrease
from 2500€ to 2000€ is preferred to a decrease from 2000€ to 1500€

O A5:Vab,cdefeXg:(aeb)zg(d—e)AN(bec)zg(e—f)=(aec)=s(d<f)

—  If two incremental changes are both preferred to some other two, then the overall change resulting from the first two

O A6: Vb,c,d € X; 3a € X; such that (a « b)~4(c « d) and Vb,c € X; 3a € X; suchthat (b « a)~4(a « ¢)
—  Equally preferred differences between attribute levels can always be constructed

—  There is always an attribute level a between b and ¢ such that a change from c to a is equally preferred to
a change from a to b.

QO A7: The set (or sequence) {a,|b > a, where(a, < a,_1)~q4(a,< ay)} is finite for any b in X;
—  The sequence of equally preferred differences over a fixed interval is finite
—  “No b can be infinitely better than other performance levels”

This defines preferred changes that represent preferences

, , Aalto University
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 Theorem: Let axioms A1-A7 hold. Then, there exists a cardinal
value function v;(-): X; — R that represents preference relations >
and >, in the sense that

vi(a) = v;(b) & a>b
vi(a) —v;(b) =2 v;(c) —v;(d) & (a « b) 74 (c < d).

Note: A cardinal value function is unique up to positive affine
transformations, i.e., v;(x) and v;(x) = av;(x) + 8,a > 0 and
represent the same preferences
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Cardinal value function: positive affine
transformations

Example: Let consultant > professor > janitor and ( consultant «
professor) =4 (professor « janitor) be Jim'’s preferences and
v(consultant) = 10 > v(professor) = 8 > v(janitor) = 7.

Then v' and v"" both represent same preferences as cardinal value

function v

. |consultant |professor |janitor
v 10 8 4

v =2v 20 16 14
v''=v"'—10 10 6 4

,, Aalto University
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Attribute-specific value functions

O A value function maps the

1 B (T§ == NATURAL SCALE ———— VALUE SCALE ~——>> dTILITY SCALE
attribute-specific measurement -
scale onto a numerical scale in - g msye —> ML EERRTE
H H OFFICE OF DRIVING
accordance with the DM’s ; DITANCES
preferences Iy > (L) — yld) = aiv)
O Value and utility: 100 il
— Value is a measure of preference > 1 ‘z'o—_>§ k — ;
under certainty Distance 0o 2 o 100
o . Distance Valve
—  Utility is a measure of preference SET
under uncertaintv Figure 7.2. The four steps needed to construct value and utility functions.
, , Aalto University
A School of Science 29.9.2022
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O Value trees are used model decisions with multiple objectives

O Under the stated axioms, the DM'’s preferences for changes on a
measurement scale can be captured by a cardinal (measurable)
value function

O “I prefer a change from 0 euros to 10 euros to a change from 10
euros to 22 euros”
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