Statistical Mechanics
EO0415

Fall 2022, lecture 3
Correlations & Dissipation



‘paper’ groups

1. Negative temperatures Aron Dahlberg, Miklés Nemesszeghy, Emil Straka (7.10)

2. Physics & single cell biology Eero Saariniemi, Jere Haavisto, Urho Koljonen (14.10)

3. Non-equilibrium transition & Game of Life Alisa Haukisalmi, Juuso Attenberg, Jan Loder (28.)
4. Jarzynski inequality Angelos Stathakis, Kiran Thamke, Clara Précheur Llarena, Tharindu
Koralage ( 4.11)

5. Negative Representation and Instability in Democratic Elections Anna Huttunen, Emma Lehto,
Heidi Kivijarvi, Atso lkaheimo (11.)

6. Quantum phase transition Pelin Yildrim, Jonas Tjepkema, Evren Korkmazgil (18.)

7. Entropy production Ville-Eemeli Kovanen, ALgot Silvennoinen, Mikael Tuokkola (25.11)

8. Avalanches and their shape Sofia Boling, Gentrit Zenuni, Valtteri Turkki (2.12)

9. Sinan Inel, (Zeno effect TBD), TBD



2.t

Let us turn this into an exercise in gambling. You play heads and tails (toss a coin, and

T k h 2 guess the outcome: win or lose the coin). Three questions: you start with 10 coins. Give
a e O I I I e an argument how the distribution of times it takes for you to lose all your coins looks like.
What happens if you play till you have zero, or until you won all the 10 coins of your
friend? Let us now consider the case where the coin is not fair: the fractional Brownian

motion, where the subsequent outcomes are correlated (positively or negatively). How does
that influence qualitatively those outcomes?

"We can think of the total number of coins after each flip/guess as a 1D random walk where ... is increased or
decreased by 1 with a 50/50 probability. Since the distribution of endpoints of a random walk are given by a
Gaussian function, we can guess that p(N) would also look Gaussian-like, but discrete and modi_x001c_fied
such that it is zero for N<10. The RMS distance of the N-step random walk isVN, thereforevN= 10 =N= 100 and
p(N) is centered somewhere around N= 100."

"If you play until you have won or lostall 10 coins,it would most likely take around 100 attempts. However, as
the RMS only tells us about the averageit could also be done in close to 10 moves or you could be stuck there
for a long time, possibly the rest of your life even if that is unlikely.”



Comments:

The first question is actually a so-called First Passage problem. For an
unbounded domain (your friend is immensely rich so you can win ad
infinitum) the average time is... infinite. That Is b/c the first passage
time (to reach zero) t scales with an exponent of -3/2 (is a power-law).
You may note that this is related to the Gaussian distribution of -1/2
exponent, and the FP time is its derivative. “Diffusive flux”.

fBm: trends and anti-trends



Correlation functions

“Fields” s(x,y): how to find
regularltles?

CEo*(r) = (Si(x,t)S(x +r,t))

&

Clr,7) = (S(x,{)S(x+r,t+7)

s: height, magnetization, activity..
Limiting behaviors (1, x —0)!

Scale-free behavior (2nd order phase
transitions).

Check Google Maps for s(x,y)...
Retkeilypaikka...
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Fig. 10.1 Phase separation in
an lmng model, quenched (asbrogptly
conled) from high temperatures to sero
temperature [124]. The model quickly
separates imto local blobs of up- and
down-spins, which grow and merge,
coarsening to larger blob sizes (Sec-

tion 11.4.1).
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Fig. 10.5 Power-law correlations.
The schematic correlation function of
figure 10.4 on a log—log plot, both at T
(straight line, representing the power
law € ~ p-ld=240)) and above T
(where the dependence shifts to C ~
e*_"-"-'-j ! at distances bevond the cor-
relation length £(T')). See Chapter 12.

Fig. 10.2 Surface annealing. An
5TM image of a surface, created by
:-|:-rn|:- wding a close-packed gﬂld sur-

ace with noble-gas atoms, and then
4_|-::M- ng the :'rlgu_ ar surface bo ther-
||J_I'i- ':" b ] LTt l._'lln:ll. II_J: E%J—
bara H. Cooper | !-"-' The figure shows
rl': |'| |d.|-|'.\] ut L'F[l'll':.:— 1L |Eh|. slepE Elﬂ' J:
rows each show a single step pit maide
another pit. The charactenstic sizes of
the pits and lands grow as the surface
evolves and fatbens.
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Experimental measures

X-rays, neutrons scatter (from what? Electrons,

Nuclear spins...) and produce... the Fourier Transform of the equal-time

Correlation function. How?

|p(k)|? = p(k)*plk) = ./.tlx'{rik'fp:;x’}j.u:lxtr_ik'x;;f}:j

dx «

Ix' e~

i [(.‘lx’ p(x)p(x" + 1)

f dr T (r)
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Fig. 10.68 X-ray scattering. A beam
of wavevector kp scatters off a density
variation p(x) with wavevector k to a
final wavevector kp + k; the intensity
of the scattered beam is proportional
to |#(k)|? [0, chapter 6].




|deal gases: equal time correlations

Easiest, illustrative case (with no Pl o), ) — po) kT (o) — 1]
correlations). We need to compute  Hemholtz' e
. .. P F ) 2
from the FE free energy and and its derivative . kgT/po = Po/p?
density the fluctuations, and then
consider what happens if we break Flo) = La(p— po)? P{o(x)} oc -7 [ Halo—rm)
. V) = o g — o Aplx)oca T AT AT ;
the system into many sub-volumes 2
(un-correlated). Distributions of free energy and
... density fluctuations in equilibrium
e —po)t) = -
- ! T Al
videal ; . l ;o
Dirac’ delta-function: no correlations. C (r,0) = —d(r).
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Enter Onsager...



Lars Onsager

Lars Onsager (November 27, 1903
- October 5, 1976): Norvegian
physicist/chemist.

Known for: electrolytes... phase
transitions... Onsager relations....

Nobel prize (in Chemistry) in 1968.




Enter Onsager...

How to treat deviations from the
equilibrium (read: correlations)?

O’s regression hypothesis:

...we may assume that a spontaneous deviation from the
equilibrium decays according to the same laws as one that
has been produced artificially.

Average over initial conditions,
thermal history. We get for the C
the diffusion equation, again:

Aideal a8 "
- ={ 77 lp(r, )], (p:(0) — po)

BT ot
= {DV?[p(r,1)],, (1:(0) — po) }
\ = [ L /e

eq

q

= DV? cf::.r?:;r, f-:I].fii (pi(0) — ,r?n']l}

! eq
= DV {(p(r,t) — po)(p(0,0) — po)).,
= PVAC = 1),

WX +r.t+7) — po)lp(xt) — po)i.,
r.7) — po)(p(0,0) — pa)),

((Up(r. )], = o) (p1(0) - 7))

Example: 3D ideal gas from the DE

: .
—r= 4| r
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Fig. 10.7 MNoisy decay of a fluctu-
ation. An unusual fluctuation at ¢t =0
will slowly decay to a more typical ther-
mal configuration at a later time 7.
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Fig. 10.8 Deterministic decay of
an initial state. An initial condition
with the same density will slowly decay
to Zero.



Susceptibility and linear response

The idea: define a measure for the
response to a perturbation.

We assume that this can be
measured “based on the past” via a
response function . Note how and
why this is linear (in f).

Then FT everything, and call iy as the
AC susceptibility (language of
magnets).

(Electricity: polarizability,

Magnetism: susceptibility again)

Fe(t) = —[ dx f(x,t)s(x,t).

s(x,t) = [-:l:h:“ / dt’ vix—x",t —t") f(x",t").

ik, w) = ¥(k,w) fk,w),



Dissipation

v splits into real and imaginary

parts and Im y relates to the T [-:1:-: dt et %y (x. ) = ¥’ (k.w) + ix"(k, w)
“lag” of the response and to

the dissipation per cycle

- wiful? = w| fus|? ;
(oscillatory force). plw) = “,r; / dr y(7)sin(wr) = ”_:;'l Im[y(w)]

—

2
= wli“. x"(w).

The zero-frequency limit
(electrical analogue) relates
the conductivity to limit of the o = lim w? &)
polarizability. w - 0



Static susceptibility

Define via perturbed equilibrium
(no time-dependence).

Fluctuation-dissipation relation:
susceptibility vs. correlation
function in the zero frequency
limit.

Relation of these to fluctuations in
equilibrium and their (non-
extensive) scaling.

s(x) = /dx’ vo(x — x") f(x").
yvo(r) = BC(r, D).

volk) = vik,w =0).

keTXok=0)=C(k=0,t =0) = [ dr (s(r + x)s(x))
' \

[[11' if/‘dx ~,|'r+x'a'x')

—1X [(1r.1—[f1:-:ax



Fluctuation-dissipation theorem

Susceptibility ¢ relates to the
correlations, thus the field and its | 8C(x, 1)
fluctuations. R o1

In frequency domain, the imaginary
part does the same. non - B

Thus also dissipated power: S
fluctuations are related to dissipation.

[FYI: there is a large universe of attempts to use plw) = —= | " (w) =
this in out of equilibrium systems: measure y 82| ful?
and C, in order to define an effective =— Clw).
temperature B.y.|




Role of causality

The FT (frequency-dependent) susceptibility

has real and imaginary parts: two functions
instead of one (y(t)). >

oy
Fig. 10.12 Kramers—Krinig con-

o .o o . tour. A contour O, in the complex w’
Th |S Ca n used (Kra merS-Kon |g - relatlon) to plane. The horizontal axis is Refw'] and
the vertical axis is Im[w’]. The inte-

relate these to each other. The derivation grotion conton e slons e real
follows from Cauchy’s theorem in complex {f‘.}fjli';.‘122?:3:1'“5-5‘;]‘2;'Ef;..‘?fi;r];;.]J fﬁ?cf{f:?
infimty, where '\.I:n'.n.."' ) vamshes rapidly.

analysis (With the K_K Contour). The contour encloses no singularities,

g0 Cauchy's theorem tells us the inte-
. I o . l = I'[]]_[i:._;__'ll ;I] , 1 o0 "i .'.I'I:.L;J.I' : .
X (w) = Re[¥(w)] = — ————dw' = — _ dw’.
-

gral around it is zero.
™
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1.3 Generating random walks (Sethna 2.5 p. 28) HOMEWORK (5§ points)

m Pleass note that this exercize 1z computstional, so in order to get help with posable prob-
O e W O r lems, take a laptop to the exercise session or alternatively send your code and problem
in sdvance to the TA. The preferred programming tool to use (from the point of view of

debugging and getting TA help) is Python, but slso others are acceptable.

fa) Write a roufine {0 gemernfe an V-siep rondom walk in d dimensions, with cach sep
urdformiy disgtribufed in the range (1,2, 1/2) in coch dimension.  [Generafe the sieps
first as an | x d| oroy, then do o comulafive sem.) Plof 1, versus § for o few 10
(Ol step random walks.  Plof © versus y for a few fwo dimensonal ondom walks, with
N = 10, 1000, 100000, (Try fo keep dhe aspect rofio of the XV plof equal fo one. ) Does
mulliplying the number of seps by one hundred roughly increase the nef disfance by fen?

Egch random walk iz different and unpredicteble, but the ensemble of rendom walks has
elegant, predictable properties.

{b) Write o routine fo coleulste the endpoints of W randem walks with NV sfeps each in d
dimenmions. Do o seaffer plof of the endpoinés of 10000 rendom walks wiEh N = 1 and
10, superimposed on the same plof Nofice thaf the longer random walks are disiribufed
in o dgrewlarly symmetnic palfern, cven though the single sfep random walk N = 1 has a
sguare probabiliy distribwfion fansing from the single sfep range, see Fig 210 from Sethna
p 28]

This is an emergent symmetry; even though the walker steps longer distances along the
diagonals of a square, & random welk several steps long hes nearly perfect rotetional
symmetry. The most useful property of random walks 15 the central limit theorem. The
endpoints of an ensemble of N step one-dimensional rendom walks with root-mean-square
[RAMS) step-sme a has a Gaussian or normal probability distribution as ¥ — oo,

1
plz) = ﬁﬂl}[—fﬁﬂz,‘: (L

with & = Wa.

o) Caleulafe the RMS step-size a for one-dimensional steps uniformily distribufed in (—1/2, 1,/2).
Write o roufine thof plots o histogram of the cndpoinds of W one-dimensonal random walks
with N steps and 50 Wins, along with the predicfion of above equafion for x in (-3, 7). o

a kisfogram with W = 10000 and N = 1,2, 3,5. How quickly docs fhe Gaussman distnbufion
become o good appromimaiion fo the rondom walk?



Take home

This lecture looks at the classical measures of correlations and their decay. We shall get
back to these topics later on, but you should read through the chapter and think of
conditional probabilities. Read first the Chapter and check then the lecture slides again.

The take home consists of answering to the following three questions:

Give an example of X and Y that are correlated but there is no causal relation (X because
of Y or X because of Y happened before) between them.

Take a (time) series of the binary kind 0110110011000111.... (or subtract -1/2 from all
the values so that the average might become zero). When would this be correlated?

Take instead a series like this: ...00001111111(...)111000.... This is clearly not a random
one. Now start tossing a coin (0/1) and replace according to each toss one of the values
with the new one. Does this correspond to the Onsager hypothesis and why? If the coin
is biased, does the process relate to linear response?
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