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Unconstrained optimization

▶ Let f : U → R be a function, with U ⊆ Rn

▶ The problem of maximizing f is written as

max
x∈U

f (x)

▶ In words, we want to find a point x∗ in the domain of f such that f (x∗) is the
largest value that f can attain in its domain

▶ f is called the objective function, x is the choice variable

▶ The maximization problem is unconstrained because the choice variable does not
have to satisfy any constraint other than being in the domain U of f

2 / 29



Local and Global Maxima

▶ x∗ ∈ U is a global maximizer of f if f (x∗) ≥ f (x) for all x ∈ U

▶ x∗ ∈ U is a strict global maximizer of f if f (x∗) > f (x) for all x ∈ U such that
x ̸= x∗

▶ x∗ ∈ U is a local maximizer of f if there is a ball Br (x∗) around x∗ such that
f (x∗) ≥ f (x) for all x ∈ Br (x∗) ∩ U

▶ x∗ ∈ U is a strict local maximizer of f if there is a ball Br (x∗) around x∗ such
that f (x∗) > f (x) for all x ∈ Br (x∗) ∩ U such that x ̸= x∗

▶ Terminology: x∗ is the maximizer, f (x∗) is the maximum value of f
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Local and Global Maxima

▶ A global maximizer is also a local maximizer, but the converse is not necessarily
true

▶ For example, consider the function f (x) = cos(2πx)
x defined over the interval [0.1, 2]
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Local and Global Minima

▶ x∗ ∈ U is a global minimizer of f if f (x∗) ≤ f (x) for all x ∈ U

▶ x∗ ∈ U is a strict global minimizer of f if f (x∗) < f (x) for all x ∈ U such that
x ̸= x∗

▶ x∗ ∈ U is a local minimizer of f if there is a ball Br (x∗) around x∗ such that
f (x∗) ≤ f (x) for all x ∈ Br (x∗) ∩ U

▶ x∗ ∈ U is a strict local minimizer of f if there is a ball Br (x∗) around x∗ such
that f (x∗) < f (x) for all x ∈ Br (x∗) ∩ U such that x ̸= x∗

▶ Terminology: x∗ is the minimizer, f (x∗) is the minimum value of f

▶ Note: x∗ is a minimizer of f if and only if x∗ is a maximizer of −f
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Unconstrained optimization

▶ When looking for a (local or global) maximizer x∗, three cases are possible:

1. a maximizer does not exist. E.g., max(x,y)∈R2 x + y

2. a unique maximizer exists. E.g., maxx∈R −x2

3. more than one maximizer exist. E.g., maxx∈R sin(x)
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Weierstrass Theorem

▶ The fundamental result about the existence of maximizers and minimizers is
Weierstrass’s Theorem

Theorem (Weierstrass)

Let f : C → R be a continuous function whose domain is a compact set C ⊂ Rn.
Then there exists a global maximizer xM ∈ C of f , and there exists also a global
minimizer xm ∈ C of f .

▶ A set C ⊆ Rn is compact if and only if it is closed and bounded (Heine-Borel
Theorem)

▶ A set S ⊆ Rn is bounded if there exists a number B such that ||x|| ≤ B for all
x ∈ S . In other words, S is contained in some ball in Rn
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Weierstrass Theorem

▶ Weierstrass’s Theorem:

▶ gives sufficient conditions for the existence of global extrema (i.e. maximizers or
minimizers)

▶ does not say that extrema are unique

▶ does not tell us how to find extrema

▶ We will use first and second order conditions to find extrema
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First Order Necessary Optimality Condition

▶ The following proposition provides a necessary condition for extrema that are
both local and interior

Proposition (First order necessary condition for interior extrema)

Let f : U → Rn be a C 1 function, with U ⊆ Rn. If x∗ is a local maximizer or
minimizer of f and if x∗ is an interior point of U, then

∂f

∂xi
(x∗) = 0, for i = 1, . . . , n

▶ A point x ∈ U ⊆ Rn is an interior point of U if there exists an open ball Br (x)
around x such that Br (x) ⊆ U
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First Order Necessary Optimality Condition

▶ A point x ∈ U ⊆ Rn is an interior point of U if there exists an open ball Br (x)
around x such that Br (x) ⊆ U

▶ A point at which all the partial derivatives of f are equal to zero is called a critical
point of f

▶ If a local maximizer is not interior, then the above proposition does not hold.
E.g., maxx∈[0,1] x

2
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Optimality Geometrically
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Second Order Sufficient Optimality Condition

▶ The first order condition says that a local extremum must be a critical point. To
understand whether a critical point is a maximizer or a minimizer or neither, we
rely on the following second order sufficient condition

Proposition (Second order sufficient condition for interior extrema)
Let f : U → Rn be a C 2 function, where U ⊆ Rn is an open set. Suppose that x∗ is a
critical point of f .

1. If the Hessian D2f (x∗) is a negative definite symmetric matrix, then x∗ is a strict local
maximizer of f ;

2. If the Hessian D2f (x∗) is a positive definite symmetric matrix, then x∗ is a strict local
minimizer of f ;

3. If the Hessian D2f (x∗) is indefinite, then x∗ is neither a local maximizer nor a local
minimizer of f . In this case, we say that x∗ is a saddle point of f .
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Definite matrices

▶ Let A be an n × n symmetric matrix. Then A is:

▶ positive definite if xTAx > 0 for all x ̸= 0 in Rn

▶ positive semidefinite if xTAx ≥ 0 for all x ̸= 0 in Rn

▶ negative definite if xTAx < 0 for all x ̸= 0 in Rn

▶ negative semidefinite if xTAx ≤ 0 for all x ̸= 0 in Rn

▶ indefinite if xTAx > 0 for some x ∈ Rn and yTAy < 0 for some y ̸= x in Rn.

▶ Note: In the definitions above, x is interpreted as a column vector in Rn
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Definite matrices

▶ Example. Consider the matrix

A =

(
1 −1
−1 4

)

▶ For any

(
x
y

)
∈ R2, we have

(
x y

)( 1 −1
−1 4

)(
x
y

)
= x2 + 4y2 − 2xy

= (x − y)2 + 3y2,

which is equal to zero if and only if x = y = 0, and strictly positive otherwise

▶ Hence A is positive definite
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Graphs of quadratic functions
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Definite matrices

▶ It is often convenient to study the definiteness of a matrix by using the leading
principal minors of the matrix itself

▶ Let A be an n × n matrix:

▶ The kth order leading principal submatrix of A is the submatrix obtained by
deleting the last n − k rows and the last n − k columns from A;

▶ The kth order leading principal minor of A is the determinant of the kth order
leading principal submatrix of A.
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Definite matrices
▶ Example. Let A be the 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33



▶ The three leading principal submatrices of A are

A1 =
(
a11

)
A2 =

(
a11 a12
a21 a22

)

A3 =

a11 a12 a13
a21 a22 a23
a31 a32 a33


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Definite matrices

▶ Let A be an n × n symmetric matrix. Then:

▶ A is positive definite if and only if all its n leading principal minors are strictly
positive;

▶ A is negative definite if and only if all its n leading principal minors alternate in
sign as follows:

det(A1) < 0, det(A2) > 0, det(A3) < 0, det(A4) > 0, . . .

In other words, the kth order leading principal minor should have the same sign as
(−1)k

▶ If some kth order leading principal minor is nonzero but does not fit either of the
above two cases, then A is indefinite
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Definite matrices

▶ Example. Consider again the matrix

A =

(
1 −1
−1 4

)

▶ The two leading principal minors are

det(A1) = 1 > 0

det(A2) = 5 > 0

▶ Hence A is positive definite
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Example

▶ Example. Let’s find all the local maximizers and minimizers of the function
f (x , y) = x3 − y3 + 9xy .

▶ First of all, we need to find the critical points of f , which turn out to be (0, 0)
and (3,−3)

▶ Then we use second order conditions to determine whether each of those two
critical points is a maximizer or a minimizer or a saddle point
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Example

▶ Example (cont’d). The Hessian of f is

D2f =

(
6x 9
9 −6y

)
▶ At the point (0, 0), the Hessian is

D2f (0, 0) =

(
0 9
9 0

)
▶ The two leading principal minors are 0 and −81. This implies that D2f (0, 0) is

indeterminate

▶ Thus we can conclude that (0, 0) is a saddle point of f

21 / 29



Example

▶ Example (cont’d). At the point (3,−3), the Hessian is

D2f (3,−3) =

(
18 9
9 18

)
▶ Now the two leading principal minors are 18 and 243. This implies that D2f (0, 0)

is positive definite

▶ Thus we can conclude that (3,−3) is a strict local minimizer of f

▶ Notice that (3,−3) is not a global minimizer of f . Indeed, f (3,−3) = −27, but
limn→∞ f (0, n) = −∞
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Example
▶ Example (cont’d). The graph of the function f (x , y) = x3 − y3 + 9xy
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Unconstrained optimization

▶ In addition to the second order sufficient conditions that we already introduced,
we can also give second order necessary conditions for local extrema

Proposition (Second order necessary condition for interior extrema)
Let f : U → Rn be a C 2 function, with U ⊆ Rn.

1. If x∗ is both an interior point of U and a local maximizer of f , then x∗ is a critical point
of f and the Hessian D2f (x∗) is negative semidefinite;

2. If x∗ is both an interior point of U and a local minimizer of f , then x∗ is a critical point
of f and the Hessian D2f (x∗) is positive semidefinite.
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Semi-definite matrices

▶ We can study the semi-definiteness of a matrix by using the principal minors of
the matrix itself (and not just its leading principal minors)

▶ Let A be an n × n matrix:

▶ A kth order principal submatrix of A is a k × k submatrix obtained by deleting
n − k rows and the same n − k columns from A;

▶ A kth order principal minor of A is the determinant of a kth order principal
submatrix of A.
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Semi-definite matrices
▶ Example. Let A be the 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33



▶ The matrix A itself is the only third order principal submatrix

▶ The second order principal submatrices of A are(
a11 a12
a21 a22

) (
a11 a13
a31 a33

) (
a22 a23
a32 a33

)
▶ The first order principal submatrices of A are(

a11
) (

a22
) (

a33
)
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Semi-definite matrices

▶ Let A be an n × n symmetric matrix. Then:

▶ A is positive semidefinite if and only if every principal minor of A is non-negative;

▶ A is negative semidefinite if and only if every principal minor of odd order is
non-positive and every principal minor of even order is non-negative.
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Semi-definite matrices

▶ How to check the definiteness of a matrix?

1. Find all the leading principal minors. If the conditions for positive (respectively,
negative) definiteness are satisfied, you can conclude that the matrix is positive
(respectively, negative) definite and positive (respectively, negative) semidefinite too

2. If the conditions for positive or negative definiteness are not satisfied, check if they
are strictly violated. If they are, then the matrix is indefinite

3. If the conditions for positive or negative definiteness are not strictly violated, find all
the principal minors and check if the conditions for positive or negative
semidefiniteness are satisfied
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Unconstrained optimization

▶ Exercise. Find all the local maximizers and minimizers of the function
f : R2 → R given by

f (x , y) = xy2 + x3y − xy .
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