
CS–E4500 Advanced Course in Algorithms
Week 03 – Tutorial

In a logical formula, a literal is either a Boolean variable or the negation of a Boolean variable. We use
x to denote the negation of the variable x. A satis�ability (SAT) problem, or a SAT formula, is a logical
expression that is the conjunction (AND) of a set of clauses, where each clause is the junction (OR) of
literals. For example, the following expression is an instance of SAT:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1) .

A solution to an instance of a SAT formula is an assignment of the variables to the values True and False
so that all the clauses are satis�ed. That is, there is at least one true literal in each clause. For example,
assigning x1 to True, x2 to False, x3 to False, and x4 to True satis�es the preceding SAT formula. In
general, determining if a SAT formula has a solution is NP-hard.

A related goal, given a SAT formula, is satisfying as many of the clauses as possible. In what follows,
let us assume that no clause contains both a variable and its complement, since in this case the clause
is always satis�ed.

1. Given a set of m clauses, let ki be the number of literals in the ith clause for i = 1, . . . ,m. Let
k = minmi=1 ki. Show that there is a truth assignment that satis�es at least m(1− 2−k) clauses.

Solution. Assign values independently and uniformly at random to the variables. The probability
that the ith clause with ki literals is satis�ed is at least (1− 2−ki). The expected number of satis�ed
clauses is therefore at least

m∑
i=1

(1− 2−ki) ≥ m(1− 2−k) ,

and there must be an assignment that satis�es at least that many clauses. Note that if every clause
has exactly k literals, the expected number of satis�ed clauses is therefore exactly m(1− 2−k).

2. Consider the following two-player game. The game begins with k tokens placed at the number 0
on the integer number line spanning [0, n]. Each round, one player, called the chooser, selects two
disjoint and nonempty sets of tokens A and B. (The sets A and B need not cover all the remaining
tokens; they only need to be disjoint.) The second player, called the remover, takes all the tokens
from one of the sets o� the board. The tokens from the other set all move up one space on the number
line from their current position. The chooser wins if any token ever reaches n. The remover wins if
the chooser �nishes with one token that has not reached n.

(a) Give a winning strategy for the chooser when k ≥ 2n.

(b) Use the probabilistic method to show that there must exist a winning strategy for the remover
when k < 2n.

Solution.
(a) At each round, the chooser splits the tokens up into two equal size sets (or sets as equal as
possible) A and B. By induction, after j rounds, the chooser has at least 2n− j tokens at position
j, and hence has at least one token at position n after n rounds.

(b) Suppose that the remover just chooses a set to remove randomly (via an independent, fair coin
�ip) each time. Let X be the number of tokens that ever reach position n when the remover uses this
strategy. Let Xm = 1 if the mth token ever reaches position n and 0 otherwise, so X =

∑k
i=1Xm.



For the mth token to reach position n, it has to be moved forward n times; each time the chooser
puts it in a set, it is removed with probability 1/2. Hence the probability it reaches position n is
at most 1/2n, from which we have E[Xm] ≤ 1/2n and thus E[X] ≤ k/2n < 1. Since a random
strategy yields on average less than 1 token that reaches position n, there must be a strategy that
yields 0 tokens that reach position n.


