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Intended Learning Outcomes

After this lecture, you will be able to:
@ |dentify the need for non-linear models;
@ understand the principles of gradient decent and
Gauss—Newton methods;
@ apply gradient decent and Gauss—Newton methods to
nonlinear sensor fusion problems.
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Recap (1)

@ The general linear model is given by
y=Gx+r, E{r} =0, Cov{r} =R

@ Affine models can be tackled by rewriting

y=Gx+b+r,
y—b=Gx+r.
—

y
@ Different least squares estimators:
Xs = (G'G) "Gy,
Xws = (G'R'G)'G'Ry,
XgeLs = (G'TR'G+P )" (G'TR" 'y + P 'm).

@ We also computed their expectations and covariances.
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Recap (2)

@ Alternative form of regularized least squares estimator:
K=PG'(GPG" +R)",
XRoLs = m -+ K(y — Gm),
Cov{Xpers} = P — K(GPG' + R)K'.
@ Sequential (weighted/regularized) least squares estimator:
Kn = Pn—1G;I7-(GnPn—1G-,|; + Rn)_1y
Xn = Xp_1 + Kn(yn — GnXp_1),
Py =Py 1 — Ks(GnPs 1G], + Ry)K].
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Static Nonlinear Models

@ Linear models have closed form solutions, but are limited
in many cases

@ General nonlinear model has the form:
y=g(x)+r,
@ General cost function that we consider:
Jwis(X) = (y — g(x)) 'R~ (y — g(x)).

@ For some models, closed form solutions do exist — but for
most they do not.

@ Regularized cost functions can be handled with an
augmentation trick — we will come back to that.
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Nonlinear Model of an Autonomous Car

@ We measure the range to
each landmark:

YR =\J(si - PR+ (sl P2l N

R

Vit =\/(sty = PR + (sly — P2 + 1 O | |
@ This is a non-linear model
U ,\/\/\/\/\Q

y=9(x)+r
@ We can find x = (p*, p¥) by @P’\’\ H J

minimizing the cost function

dwes(X) = (y—g(x))"R™' (y—g(x)).
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Numerical Optimization

@ lterative algorithms can be used to find the minima of a
cost function.

@ Generally find local minima = require good initialization.

@ Today, we will look at two approaches:

@ Gradient descent method
@ the Gauss—Newton algorithm
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Gradient Descent: Formulation
@ The gradient of J(x) w.r.t. x points to the direction where
J(x) increases as a function of x
@ Changing x in the opposite direction of the gradient
decreases J(x)
@ If the function to minimize is Jy s(x), the cost is decreased
by the iteration
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Gradient Descent: Derivation (1/3)

@ Let us start by considering scalar LS cost function

N
ds(X) = D_(yn = gnlx))?
n=1
@ The gradient is
N
ansx(X) _ % ;(yn — gn(x))?
N
=Y —2(yn - gn(x))agan)(()()
n=1
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Gradient Descent: Derivation (2/3)
@ Vector form'

oY, Ogn(x
LS Z —2(¥n — gn(X)) g)(()

0
¥ g1(x)
r X
_ ofomx)  da(x) saun] | | 72| _ |92
| Ox ox t ox .
N In(X)
r9g1(x) 99 (x) Ogn(X)
X4 X4 e Xy
3%1 (x) a%2(’() :
=_2| %% X2 ' —g(x
: L oa (y —g(x))
) OXK_1
991(x) Ign—1(X)  Agn(X)
L Oxk e OXK OXK
= —2G(x) (Y — 9(x))-
@ Gy is the Jacobian matrix of g(x)
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Gradient Descent: Derivation (3/3)

@ Generalization to WLS cost function:

ddwis(x) 0 _
o = oxY —9) R (y —g(x))

= —2Gx(x) R (y — 9(x)).

@ The direction of negative gradient is G (x) R~'(y — g(x)).
@ The parameter update becomes:

KD = %0 14 G (xO) R (y — g(x1)).

@ We have absorbed the factor 2 into the constant .
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Gradient Descent: Step Size

@ How long the step length ~ should be chosen?
e Choosing v too large may cause the cost function to
increase.
o Too small steps might cause unnecessarily slow
convergence.
@ Atypical strategy is to simply choose it small enough so
that the cost decreases at every step.
@ Advisable to change the step length during the iterations in
one way or another.
@ One way is to use a line search — but we come back to that
next time.
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Gradient Descent: Algorithm

Algorithm 1 Gradient Descent

Require: Initial parameter guess X(%), data y, function g(x), Jacobian
Gx(x)
Ensure: Parameter estimate Xy s
1: Seti«+ 0
2: repeat
3: Calculate the update direction

AX(+D = GLRD) R (y — (%)

»

Select a suitable ~(+1)
Calculate

a

RO+ = g0) | (1) Ay (i+1)

6: Seti« i+ 1
7: until Converged
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Example: Localizing a Car (1)

@ We have
91(x)
B (ss—p R+ (sh—p 2+, ax)=| :
@ The Jacobian is
—(sf=p") —(sY—p")

¢(sx P V(S5 =P+ —p?
Gix(x) = :
~(s}-p") —~(sy—=P")
(sl (sh—p )R+l —p)?

@ Tip: always, always check the Jacobian numerically!
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Example: Localizing a Car (2)

Y.
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Example: Localizing a Car (3)

N\
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Gauss—Newton Algorithm: Derivation (1/2)

@ Idea: Given x(), we can linearize the nonlinear
measurement model around that point
@ Linearized measurement model:

9(x) ~ g(X1) + Gy (X)) (x — %)
@ Cost function approximation:
s ~ (¥ - g(&) — Gu(&) (x - &) R~
% (v - 9(&D) - Gx(x) (x - %))
— <e(i) ~ Ge(XD) (x — ﬁ(l)))T R
x <e(’) — Gy(xD) (x — )“((’))>

@ This can now be minimized w.r.t. X in the same way as
linear models.
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Gauss—Newton Algorithm: Derivation (2/2)
@ Gradient of the cost function approximation w.r.t. x:

Odwis(X) 0 1, inT M) (aTR-Ta. (4() ()
O~ ((e")TR™el) — (eM)TR™Gx(X™) (x — 1)

— (x—xMN)TGI(xD)R~ el
RO TGO R™GH(X0) x ~ )
= —2G;(X")R7"e® + 2G; (X)) R G (X)) (x — %)

° Setting to zero and solving for x gives:
x =% + (G (X ’))R TG (X)) "Gl (xD)Rel)
= X(’) + (Gx (X)) RGx(x)) ' GR (X)) R~ (y — g(x1)).
@ The Gauss—Newton method we used the above solution x

as the next iterate X(+1),
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Gauss—Newton Algorithm: Algorithm

Algorithm 2 Gauss—Newton Algorithm

Require: Initial parameter guess X(%), data y, function g(x), Jacobian
Gix
Ensure: Parameter estimate Xys
1: Seti«+ 0
2: repeat
3: Calculate the update direction

AXD = (GX(%)R~1G(X?)) ' GI(RO)R(y - g(%))

4: Calculate
%O — %) 1 Ax(+1)

A

Seti«i+1
: until Converged
. Set ﬁWLS = x(

~N O

School of Electrical Simo Sérkka

— S —
A Aalto University Static Nonlinear Models, Gradient Descent, and Gauss—Newton
Engineering 24/30



Gauss—Newton Algorithm: Covariance of the
Estimate

@ The covariance of the estimate is hard to compute in the
non-linear case.

@ However, we can use the linearization approximation:

g(x) =~ g(XwLs) + Gx(Xwis) (X — Xwis)

@ The covariance for this linear model can be used as
approximation for the covariance:

Cov{Zwis} =~ (Gf(RwLs) R "Gx(Xwis))
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Example: Localizing a Car (4)

N

—»— Gradient descent

Gauss—Newton

N

—x»— Gradient descent

- » - Gauss—Newton
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Example: Localizing a Car (5)

7/ ~ < X ~
> —%— Gradient descent

- % - Gauss—Newton
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Gauss—Newton Algorithm: Challenges

@ When the initial point is far away, the convergence can fail.
v We can try several starting points or select them cleverly.
@ The full step using the linearized model might go too far:
v Line search can be used to select a good step length.
v~ We could use regularized solution for the linearized model.

@ The latter two methods will be presented next time.
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Summary

@ Sensor fusion problems are often nonlinear.
@ General nonlinear model has the form:

y=9(x)+r,

@ General cost function that we considered:

dwes(X) = (y — 9(x))" R~ (y — g(x)).

@ Gradient descent algorithm takes steps towards the
direction of negative gradient.

@ Gauss—Newton iteratively linearizes the model and solves
the linear optimization problem.
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