
ELEC-E8740 — Static Nonlinear Models,
Gradient Descent, and Gauss–Newton
Simo Särkkä
Aalto University

October 4, 2022



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

2 / 30

Contents

1 Intended Learning Outcomes and Recap

2 Static Nonlinear Models

3 Gradient Descent Algorithm

4 Gauss–Newton Algorithm

5 Summary



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

4 / 30

Intended Learning Outcomes

After this lecture, you will be able to:
Identify the need for non-linear models;
understand the principles of gradient decent and
Gauss–Newton methods;
apply gradient decent and Gauss–Newton methods to
nonlinear sensor fusion problems.



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

5 / 30

Recap (1)
The general linear model is given by

y = Gx + r, E{r} = 0, Cov{r} = R

Affine models can be tackled by rewriting

y = Gx + b + r,
y− b︸ ︷︷ ︸

ỹ

= Gx + r.

Different least squares estimators:

x̂LS = (GTG)−1GTy,

x̂WLS = (GTR−1G)−1GTR−1y,

x̂ReLS = (GTR−1G + P−1)−1(GTR−1y + P−1m).

We also computed their expectations and covariances.



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

6 / 30

Recap (2)

Alternative form of regularized least squares estimator:

K = PGT(GPGT + R)−1,

x̂ReLS = m + K(y−Gm),

Cov{x̂ReLS} = P− K(GPGT + R)KT.

Sequential (weighted/regularized) least squares estimator:

Kn = Pn−1GT
n(GnPn−1GT

n + Rn)−1,

x̂n = x̂n−1 + Kn(yn −Gnx̂n−1),

Pn = Pn−1 − Kn(GnPn−1GT
n + Rn)KT

n .



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

8 / 30

Static Nonlinear Models

Linear models have closed form solutions, but are limited
in many cases
General nonlinear model has the form:

y = g(x) + r,

General cost function that we consider:

JWLS(x) = (y− g(x))TR−1(y− g(x)).

For some models, closed form solutions do exist – but for
most they do not.
Regularized cost functions can be handled with an
augmentation trick – we will come back to that.



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

9 / 30

Nonlinear Model of an Autonomous Car
We measure the range to
each landmark:

yR
1 =

√
(sx

1 − px )2 + (sy
1 − py )2 + rR

1 ,

...

yR
M =

√
(sx

M − px )2 + (sy
M − py )2 + rR

M .

This is a non-linear model

y = g(x) + r

We can find x = (px ,py ) by
minimizing the cost function

JWLS(x) = (y−g(x))TR−1(y−g(x)).



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

11 / 30

Numerical Optimization

Iterative algorithms can be used to find the minima of a
cost function.
Generally find local minima⇒ require good initialization.
Today, we will look at two approaches:

1 Gradient descent method
2 the Gauss–Newton algorithm



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

12 / 30

Gradient Descent: Formulation
The gradient of J(x) w.r.t. x points to the direction where
J(x) increases as a function of x
Changing x in the opposite direction of the gradient
decreases J(x)
If the function to minimize is JWLS(x), the cost is decreased
by the iteration

x̂(i+1) = x̂(i) − γ ∂JWLS(x)

∂x

∣∣∣∣
x=x̂(i)

,

6 8 10
2

3

4

5

6

x1

x 2

6 8 10
2

3

4

5

6

x1

x 2



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

13 / 30

Gradient Descent: Derivation (1/3)

Let us start by considering scalar LS cost function

JLS(x) =
N∑

n=1

(yn − gn(x))2

The gradient is

∂JLS(x)

∂x
=

∂

∂x

N∑
n=1

(yn − gn(x))2

=
N∑

n=1

−2(yn − gn(x))
∂gn(x)

∂x
.



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

14 / 30

Gradient Descent: Derivation (2/3)
Vector form:

∂JLS(x)

∂x
=

N∑
n=1

−2(yn − gn(x))
∂gn(x)

∂x

= −2
[
∂g1(x)
∂x

∂g2(x)
∂x . . . ∂gN (x)

∂x

]


y1
y2
...

yN

−


g1(x)
g2(x)

...
gN(x)




= −2


∂g1(x)
∂x1

∂g2(x)
∂x1

. . . ∂gN (x)
∂x1

∂g1(x)
∂x2

∂g2(x)
∂x2

...
...

. . . ∂gN (x)
∂xK−1

∂g1(x)
∂xK

. . .
∂gN−1(x)

∂xK

∂gN (x)
∂xK

 (y− g(x))

= −2GT
x(x) (y− g(x)).

Gx is the Jacobian matrix of g(x)



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

15 / 30

Gradient Descent: Derivation (3/3)

Generalization to WLS cost function:

∂JWLS(x)

∂x
=

∂

∂x
(y− g(x))TR−1(y− g(x))

= −2GT
x(x) R−1(y− g(x)).

The direction of negative gradient is GT
x(x) R−1(y− g(x)).

The parameter update becomes:

x̂(i+1) = x̂(i) + γGT
x(x̂(i)) R−1(y− g(x̂(i))).

We have absorbed the factor 2 into the constant γ.



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

16 / 30

Gradient Descent: Step Size

How long the step length γ should be chosen?
Choosing γ too large may cause the cost function to
increase.
Too small steps might cause unnecessarily slow
convergence.

A typical strategy is to simply choose it small enough so
that the cost decreases at every step.
Advisable to change the step length during the iterations in
one way or another.
One way is to use a line search – but we come back to that
next time.



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

17 / 30

Gradient Descent: Algorithm

Algorithm 1 Gradient Descent

Require: Initial parameter guess x̂(0), data y, function g(x), Jacobian
Gx(x)

Ensure: Parameter estimate x̂WLS
1: Set i ← 0
2: repeat
3: Calculate the update direction

∆x(i+1) = GT
x(x̂(i)) R−1(y− g(x̂(i)))

4: Select a suitable γ(i+1)

5: Calculate
x̂(i+1) = x̂(i) + γ(i+1)∆x(i+1)

6: Set i ← i + 1
7: until Converged



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

18 / 30

Example: Localizing a Car (1)
We have

yR
n =

√
(sx

n − px )2 + (sy
n − py )2︸ ︷︷ ︸

gn(x)

+rR
n , g(x) =

g1(x)
...

gM(x)


The Jacobian is

Gx(x) =


−(sx

1−px )√
(sx

1−px )2+(sy
1−py )2

−(sy
1−py )√

(sx
1−px )2+(sy

1−py )2

...
...

−(sx
M−px )√

(sx
M−px )2+(sy

M−py )2

−(sy
M−py )√

(sx
M−px )2+(sy

M−py )2


Tip: always, always check the Jacobian numerically!



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

19 / 30

Example: Localizing a Car (2)

x1

y2



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

20 / 30

Example: Localizing a Car (3)

x1

y2

px

py



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

22 / 30

Gauss–Newton Algorithm: Derivation (1/2)
Idea: Given x̂(i), we can linearize the nonlinear
measurement model around that point
Linearized measurement model:

g(x) ≈ g(x̂(i)) + Gx(x̂(i)) (x− x̂(i))

Cost function approximation:

JWLS(x) ≈
(

y− g(x̂(i))−Gx(x̂(i)) (x− x̂(i))
)T

R−1

×
(

y− g(x̂(i))−Gx(x̂(i)) (x− x̂(i))
)

=
(

e(i) −Gx(x̂(i)) (x− x̂(i))
)T

R−1

×
(

e(i) −Gx(x̂(i)) (x− x̂(i))
)

This can now be minimized w.r.t. x in the same way as
linear models.



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

23 / 30

Gauss–Newton Algorithm: Derivation (2/2)
Gradient of the cost function approximation w.r.t. x:

∂JWLS(x)

∂x
≈ ∂

∂x

(
(e(i))TR−1e(i) − (e(i))TR−1Gx(x̂(i)) (x− x̂(i))

− (x− x̂(i))TGT
x(x̂(i)) R−1e(i)

+(x− x̂(i))TGT
x(x̂(i)) R−1Gx(x̂(i)) (x− x̂(i))

)
= −2GT

x(x̂(i)) R−1e(i) + 2GT
x(x̂(i)) R−1Gx(x̂(i)) (x− x̂(i))

Setting to zero and solving for x gives:

x = x̂(i) + (GT
x(x̂(i)) R−1Gx(x̂(i)))−1GT

x(x̂(i)) R−1e(i)

= x̂(i) + (GT
x(x̂(i)) R−1Gx(x̂(i)))−1GT

x(x̂(i)) R−1(y− g(x̂(i))).

The Gauss–Newton method we used the above solution x
as the next iterate x̂(i+1).



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

24 / 30

Gauss–Newton Algorithm: Algorithm

Algorithm 2 Gauss–Newton Algorithm

Require: Initial parameter guess x̂(0), data y, function g(x), Jacobian
Gx

Ensure: Parameter estimate x̂WLS
1: Set i ← 0
2: repeat
3: Calculate the update direction

∆x(i+1) = (GT
x(x̂(i))R−1Gx(x̂(i)))−1GT

x(x̂(i))R−1(y− g(x̂(i)))

4: Calculate
x̂(i+1) = x̂(i) + ∆x(i+1)

5: Set i ← i + 1
6: until Converged
7: Set x̂WLS = x̂(i)



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

25 / 30

Gauss–Newton Algorithm: Covariance of the
Estimate

The covariance of the estimate is hard to compute in the
non-linear case.
However, we can use the linearization approximation:

g(x) ≈ g(x̂WLS) + Gx(x̂WLS) (x− x̂WLS)

The covariance for this linear model can be used as
approximation for the covariance:

Cov{x̂WLS} ≈ (GT
x(x̂WLS) R−1Gx(x̂WLS))−1.



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

26 / 30

Example: Localizing a Car (4)

x1

x2 Gradient descent

Gauss–Newton

x1

x2 Gradient descent

Gauss–Newton



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

27 / 30

Example: Localizing a Car (5)

x1

x2 Gradient descent

Gauss–Newton



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

28 / 30

Gauss–Newton Algorithm: Challenges

When the initial point is far away, the convergence can fail.
X We can try several starting points or select them cleverly.

The full step using the linearized model might go too far:
X Line search can be used to select a good step length.
X We could use regularized solution for the linearized model.

The latter two methods will be presented next time.



Static Nonlinear Models, Gradient Descent, and Gauss–Newton
Simo Särkkä

30 / 30

Summary

Sensor fusion problems are often nonlinear.
General nonlinear model has the form:

y = g(x) + r,

General cost function that we considered:

JWLS(x) = (y− g(x))TR−1(y− g(x)).

Gradient descent algorithm takes steps towards the
direction of negative gradient.
Gauss–Newton iteratively linearizes the model and solves
the linear optimization problem.


	Intended Learning Outcomes and Recap
	Static Nonlinear Models
	Gradient Descent Algorithm
	Gauss–Newton Algorithm
	Summary

