Mathematics for Economists

Mitri Kitti
Aalto University
Convex Analysis

Convex and concave

Convex and concave, litograph by M.S.C Escher 1955

From local to global optima

- In the last lecture, we introduced first and second order conditions for local maximizers and minimizers
- If we want to look for global maximizers or minimizers, we have to compare local extrema with the value of the function at the "boundary" of its domain
- In general, we don't have nice necessary and sufficient conditions for global extrema
- However, global extrema are relatively easy to find for a class of functions that are commonly used in Economics: concave and convex functions

Sufficiency of First Order Conditions under Concavity

Proposition (Sufficient conditions for global extrema)
Let $f: U \rightarrow \mathbb{R}$ and $U \subseteq \mathbb{R}^{n}$ be an open and convex set.

1. If f is a concave function, then $\mathbf{x}^{*} \in U$ is a global maximizer of f if and only if \mathbf{x}^{*} is a critical point of f.
2. If f is a convex function, then $\mathbf{x}^{*} \in U$ is a global minimizer of f if and only if \mathbf{x}^{*} is a critical point of f.

Convex sets

- A set is convex if, for every $\mathbf{x}, \mathbf{y} \in U$, and for every $t \in[0,1]$, we have that

$$
t x+(1-t) y \in U
$$

- In words, if we take any two points \mathbf{x} and \mathbf{y} in a convex set, the line segment joining \mathbf{x} to \mathbf{y} is entirely contained in U

Convex sets

- All the sets in panel (a) are convex, whereas all those in panel (b) are not convex

(a)

(b)

Convex sets

- Examples
- hyperplanes $\mathbf{p} \cdot \mathbf{x}=c$, (open and closed) half spaces $\mathbf{p} \cdot \mathbf{x} \leq c$, (also $\mathbf{p} \cdot \mathbf{x}<c$, $\mathbf{p} \cdot \mathbf{x}>c)$, polyhedral sets $=$ intersections of half spaces, ellipsoids $\mathbf{x} \cdot V \mathbf{x} \leq c(V$ pos.def.), solutions of linear equations, simplex
- Note: sets $\{\mathbf{x}\}, \emptyset$, and \mathbb{R}^{n} are convex

Concave and convex functions

- Let $f: U \rightarrow \mathbb{R}$ be a function, where $U \subseteq \mathbb{R}^{n}$ is a convex set.
- We say that f is a concave function if, for all $\mathbf{x}, \mathbf{y} \in U$, and for all $t \in[0,1]$,

$$
f(t \mathbf{x}+(1-t) \mathbf{y}) \geq t f(\mathbf{x})+(1-t) f(\mathbf{y})
$$

- We say that f is a convex function if, for all $\mathbf{x}, \mathbf{y} \in U$, and for all $t \in[0,1]$,

$$
f(t \mathbf{x}+(1-t) \mathbf{y}) \leq t f(\mathbf{x})+(1-t) f(\mathbf{y})
$$

- In words, a function is concave if any secant line connecting two points on the graph of f lies below the graph. On the other hand, a function is convex if any secant line connecting two points on its graph lies above its graph

Concave and convex functions

The geometric interpretation of the definition of a concave function.

Concave and convex functions

The graph of the convex function $z=x_{1}^{2}+x_{2}^{2}$.

Properties of concave and convex functions

- The domain of a convex or concave function is required to be a convex set
- A function f is concave if and only if $-f$ is convex
- A function $f: U \rightarrow \mathbb{R}$ is concave if and only if the set

$$
\begin{equation*}
\{(\mathbf{x}, y) \in U \times \mathbb{R}: y \leq f(\mathbf{x})\} \tag{1}
\end{equation*}
$$

is convex. The set (1) is called the hypograph of f and is the set of points lying on or below the graph of f

- A function $f: U \rightarrow \mathbb{R}$ is convex if and only if the set

$$
\begin{equation*}
\{(\mathbf{x}, y) \in U \times \mathbb{R}: y \geq f(\mathbf{x})\} \tag{2}
\end{equation*}
$$

is convex. The set (2) is called the epigraph of f and is the set of points lying on or above the graph of f

Upper and lower level sets

- Lower level set: $\mathcal{L}_{c}^{-}(f)=\{x \in U: f(\mathbf{x}) \leq c\}$
- Upper level set: $\mathcal{L}_{c}^{+}(f)=\{x \in U: f(\mathbf{x}) \geq c\}$
- Lower level sets of convex functions are convex sets
- Upper level sets of concave functions are convex sets

Examples of concave/convex functions

- Convex functions:
$f(x)=a x+b, a, b \in \mathbb{R}$
$f(x)=e^{a x}, a \in \mathbb{R}$
$f(x)=x^{\alpha}, x \in \mathbb{R}_{++}, \alpha \geq 1$ or $\alpha \leq 0$
- Concave functions:

$$
f(x)=a x+b, a, b \in \mathbb{R}
$$

$$
f(x)=\ln (x), x \in \mathbb{R}_{++}
$$

$$
f(x)=x^{\alpha}, x \in \mathbb{R}_{++}, 0 \leq \alpha \leq 1
$$

Examples of concave functions

- Model of a firm
- input vector $x \in \mathbb{R}^{n}$
\rightarrow production function $f: \mathbb{R}_{+}^{n} \mapsto \mathbb{R}_{+}=\{y \in \mathbb{R}: y \geq 0\}$ that is concave and increasing in all its arguments
- cost function $c: \mathbb{R}_{+}^{n} \mapsto \mathbb{R}$, convex and increasing in all its arguments
- price $p>0$, profits $p f(\mathbf{x})-c(x)$ defined for $\mathbf{x} \geq \mathbf{0}$
- Expenditure function $e(\mathbf{p})=\min _{\mathbf{x} \in X} \mathbf{p} \cdot \mathbf{x}$ is concave
- $\mathbf{p} \in \mathbb{R}^{n}$ is a vector of prices of inputs $x \in X \subset \mathbb{R}_{+}^{n}$, and X convex

Concave and convex functions

- A few properties:
- If f and g are concave functions, then $f(\mathbf{x})+g(\mathbf{x})$ is a concave function
- If f is a concave function, then $a f(\mathbf{x})+b$, where $a \geq 0$, is a concave function
- A function f is both concave and convex if and only if it is affine, i.e. $f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\cdots+a_{n} x_{n}+b$, where $a_{1}, \ldots, a_{n}, b \in \mathbb{R}$ are constants

Jensen's inequality

- Jensen's inequality is a property of convex or concave functions that is often used in microeconomics and finance in order to study an individual's attitude toward risk
- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a concave function. Given numbers x_{1}, \ldots, x_{k} in the domain of f,

$$
\begin{equation*}
f\left(\sum_{i=1}^{k} \lambda_{i} x_{i}\right) \geq \sum_{i=1}^{k} \lambda_{i} f\left(x_{i}\right) \tag{3}
\end{equation*}
$$

for all non-negative $\lambda_{1}, \ldots, \lambda_{k}$ such that $\sum_{i=1}^{k} \lambda_{i}=1$.

- If f is convex, the inequality in (3) is reversed

Strict concavity and convexity

- We say that f is a strictly concave function if, for all $\mathbf{x}, \mathbf{y} \in U, \mathbf{x} \neq \mathbf{y}$, and for all $t \in(0,1)$,

$$
f(t \mathbf{x}+(1-t) \mathbf{y})>t f(\mathbf{x})+(1-t) f(\mathbf{y})
$$

- We say that f is a convex function if, for all $\mathbf{x}, \mathbf{y} \in U, \mathbf{x} \neq \mathbf{y}$, and for all $t \in(0,1)$,

$$
f(t \mathbf{x}+(1-t) \mathbf{y})<t f(\mathbf{x})+(1-t) f(\mathbf{y})
$$

Second order test of concavity

Proposition

Let $f: U \rightarrow \mathbb{R}$ be a C^{2} function, where $U \subseteq \mathbb{R}^{n}$ is an open and convex set.

1. f is a concave function if and only if the Hessian $D^{2} f(\mathbf{x})$ is negative semidefinite for all $x \in U$.
2. f is a convex function if and only if the Hessian $D^{2} f(\mathbf{x})$ is positive semidefinite for all $x \in U$.

Note 1: for strict concavity/convexity semidefinitiness is replaced by definiteness
Note 2: the semidefiniteness of $D^{2} f(\mathbf{x})$ must be checked for all $\mathbf{x} \in U$
Recall that if a matrix is positive (respectively, negative) definite, then it is also positive (respectively, negative) semidefinite

Second order test of concavity

- Example. Consider the Cobb-Douglas production function $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x^{a} y^{b}$, with $a, b>0$
- When is f concave?
- The Hessian of f is

$$
D^{2} f(x, y)=\left(\begin{array}{cc}
a(a-1) x^{a-2} y^{b} & a b x^{a-1} y^{b-1} \\
a b x^{a-1} y^{b-1} & b(b-1) x^{a} y^{b-2}
\end{array}\right)
$$

- The Hessian has three principal submatrices/minors

Second order test of concavity

- Example (cont'd). $D^{2} f(x, y)$ is negative semidefinite if and only if the following two conditions are met:

1. The two first order principal minors $a(a-1) x^{a-2} y^{b}$ and $b(b-1) x^{a} y^{b-2}$ are non-positive. This happens when $a, b \leq 1$
2. The second order principal minor $\operatorname{det}\left(D^{2} f(x, y)\right)$ is non-negative, which happens when $a+b \leq 1$

- Recalling that $a, b>0$ by assumption, we can conclude that f is concave if and only if

$$
0<a<1, \quad 0<b<1, \quad \text { and } \quad a+b \leq 1
$$

- Notice that f is concave if and only if returns to scale are constant or decreasing

Second order test of concavity

- Example (cont'd). When is f convex?
- $D^{2} f(x, y)$ is positive semidefinite if and only if the following two conditions are met:

1. The two first order principal minors $a(a-1) x^{a-2} y^{b}$ and $b(b-1) x^{a} y^{b-2}$ are non-negative. This happens when $a, b \geq 1$
2. The second order principal minor $\operatorname{det}\left(D^{2} f(x, y)\right)$ is non-negative, which happens when $a+b \leq 1$

- We clearly have that the two conditions $a, b \geq 1$ and $a+b \leq 1$ cannot hold simultaneously
- Thus we conclude that f is:
- concave when $a+b \leq 1$
- neither concave nor convex when $a+b>1$

Second order test of concavity

- Example (cont'd). The concave production function $f(x, y)=x^{0.3} y^{0.5}$

Second order test of concavity

- Example (cont'd). The production function $f(x, y)=x^{1.8} y^{0.9}$, which is neither convex nor concave

Unconstrained optimization

- Exercise. Which of the following functions defined on \mathbb{R}^{n} are concave or convex?

1. $f(x)=3 e^{x}+5 x^{4}-\ln x$
2. $f(x, y)=-3 x^{2}+2 x y-y^{2}+3 x-4 y+1$
3. $f(x, y, z)=3 e^{x}+5 y^{4}-\ln z$

Constrained optimization with concave functions

- The result stated at the beginning of this lecture that critical points of concave or convex functions are global extrema holds for functions having an open domain
- If the domain of a concave or convex function is not an open set, it could be the case that global extrema are on the boundary of the domain, e.g. $\max _{x \in[0,1]} x^{2}$. In those cases, critical points need not be global extrema
- The following result will give us conditions to identify global extrema even when they are possibly located on the boundary of the domain

Constrained optimization with concave functions

Proposition

Let $f: U \rightarrow \mathbb{R}$ be a C^{1} function, where $U \subseteq \mathbb{R}^{n}$ is a convex (and not necessarily open) set.

1. If f is a concave function, $\mathbf{x}^{*} \in U$ is a global maximizer of f if and only if $\nabla f\left(\mathbf{x}^{*}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{*}\right) \leq 0$ for all $\mathbf{x} \in U$.
2. If f is a convex function, $\mathbf{x}^{*} \in U$ is a global minimizer of f if and only if $\nabla f\left(\mathbf{x}^{*}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{*}\right) \geq 0$ for all $\mathbf{x} \in U$.

Note: $\nabla f(x)^{T}$ is the $1 \times n$ matrix whose columns are the partial derivatives of f with respect to x_{i}.

$$
\nabla f(\mathbf{x})^{T}=\left(\begin{array}{llll}
\frac{\partial f}{\partial x_{1}}(x) & \frac{\partial f}{\partial x_{2}}(x) & \ldots & \frac{\partial f}{\partial x_{n}}(x)
\end{array}\right)
$$

Constrained optimization with concave functions

- Example. Let the concave function $f(x, y)=x^{\frac{1}{4}} y^{\frac{1}{4}}$ be defined on the following compact and convex domain

$$
U=\left\{(x, y) \in \mathbb{R}^{2}: x+y \leq 2\right\} .
$$

- The global maximizer of f on U is the point $(1,1)$. Indeed, for any $(x, y) \in U$ we have

$$
\begin{aligned}
\left(\frac{\partial f}{\partial x}(1,1) \quad \frac{\partial f}{\partial y}(1,1)\right)\binom{x-1}{y-1} & =\frac{\partial f}{\partial x}(1,1)(x-1)+\frac{\partial f}{\partial y}(1,1)(y-1) \\
& =\frac{1}{4}(x-1)+\frac{1}{4}(y-1) \\
& =\frac{1}{4}(x+y-2) \\
& \leq 0
\end{aligned}
$$

where the inequality follows from $x+y \leq 2$ in the definition of U.

Constrained optimization with concave functions

- Assume that f is a concave function defined on a convex set U
- Does $\max _{\mathbf{x} \in U} f(\mathbf{x})$ have a solution?
concavity of f and convexity of U do not guarantee the existence of a solution (continuity and compactness are needed) note: a concave/convex function is continuous on the interior of its domain (discontinuities are possible on the boundary)
- If there is a solution, is it unique?
no, but the set of maximizers is a convex set
for uniqueness strict concavity is needed

Concavity and transformations

- Assume that $f: U \mapsto \mathbb{R}$ is a concave function, and $U \subseteq \mathbb{R}^{n}$ is a convex set
- Let $g: \mathbb{R} \mapsto \mathbb{R}$ be a strictly increasing function
- Reminder: \mathbf{x}^{*} is a solution of $\max _{\mathbf{x} \in U} f(\mathbf{x})$ is and only if it is a solution of $\max _{\mathbf{x} \in U} g(f(\mathbf{x}))$
- Assume that \mathbf{x}^{*} satisfies first order optimality conditions of $\max _{\mathbf{x} \in U} g(f(\mathbf{x}))$, and $g(f(\mathbf{x}))$ is a concave function
- What can you say about the optimality of \mathbf{x}^{*} ?

Log-concavity

- $f: U \mapsto \mathbb{R}_{++}$is said to be log-concave if $\ln (f(x)$ is concave note that $\ln (x)$ is strictly increasing function
- Example: $f(x, y)=A x^{a} y^{b}$, where $A, a, b>0$
- this function is log-concave
\rightarrow even if a Cobb-Douglas function does not satisfy constant or decreasing returns to scale, we may be able to say something about the optimality of points that satisfy the first order optimality conditions

