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Convex and concave

Convex and concave, litograph by M.S.C Escher 1955
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From local to global optima

▶ In the last lecture, we introduced first and second order conditions for local
maximizers and minimizers

▶ If we want to look for global maximizers or minimizers, we have to compare local
extrema with the value of the function at the “boundary” of its domain

▶ In general, we don’t have nice necessary and sufficient conditions for global
extrema

▶ However, global extrema are relatively easy to find for a class of functions that are
commonly used in Economics: concave and convex functions

3 / 30



Sufficiency of First Order Conditions under Concavity

Proposition (Sufficient conditions for global extrema)

Let f : U → R and U ⊆ Rn be an open and convex set.

1. If f is a concave function, then x∗ ∈ U is a global maximizer of f if and only if
x∗ is a critical point of f .

2. If f is a convex function, then x∗ ∈ U is a global minimizer of f if and only if x∗

is a critical point of f .
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Convex sets

▶ A set is convex if, for every x, y ∈ U, and for every t ∈ [0, 1], we have that

tx + (1− t)y ∈ U

▶ In words, if we take any two points x and y in a convex set, the line segment
joining x to y is entirely contained in U
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Convex sets

▶ All the sets in panel (a) are convex, whereas all those in panel (b) are not convex
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Convex sets

▶ Examples
▶ hyperplanes p · x = c , (open and closed) half spaces p · x ≤ c , (also p · x < c ,

p · x > c), polyhedral sets = intersections of half spaces, ellipsoids x · V x ≤ c (V
pos.def.), solutions of linear equations, simplex

▶ Note: sets {x}, ∅, and Rn are convex
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Concave and convex functions
▶ Let f : U → R be a function, where U ⊆ Rn is a convex set.

▶ We say that f is a concave function if, for all x, y ∈ U, and for all t ∈ [0, 1],

f (tx+ (1− t)y) ≥ tf (x) + (1− t)f (y).

▶ We say that f is a convex function if, for all x, y ∈ U, and for all t ∈ [0, 1],

f (tx+ (1− t)y) ≤ tf (x) + (1− t)f (y).

▶ In words, a function is concave if any secant line connecting two points on the
graph of f lies below the graph. On the other hand, a function is convex if any
secant line connecting two points on its graph lies above its graph
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Concave and convex functions
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Concave and convex functions
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Properties of concave and convex functions
▶ The domain of a convex or concave function is required to be a convex set

▶ A function f is concave if and only if −f is convex

▶ A function f : U → R is concave if and only if the set

{(x, y) ∈ U × R : y ≤ f (x)} (1)

is convex. The set (1) is called the hypograph of f and is the set of points lying
on or below the graph of f

▶ A function f : U → R is convex if and only if the set

{(x, y) ∈ U × R : y ≥ f (x)} (2)

is convex. The set (2) is called the epigraph of f and is the set of points lying on
or above the graph of f
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Upper and lower level sets

▶ Lower level set: L−
c (f ) = {x ∈ U : f (x) ≤ c}

▶ Upper level set: L+
c (f ) = {x ∈ U : f (x) ≥ c}

▶ Lower level sets of convex functions are convex sets

▶ Upper level sets of concave functions are convex sets
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Examples of concave/convex functions

▶ Convex functions:

f (x) = ax + b, a, b ∈ R
f (x) = eax , a ∈ R
f (x) = xα, x ∈ R++, α ≥ 1 or α ≤ 0

▶ Concave functions:

f (x) = ax + b, a, b ∈ R
f (x) = ln(x), x ∈ R++

f (x) = xα, x ∈ R++, 0 ≤ α ≤ 1
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Examples of concave functions

▶ Model of a firm
▶ input vector x ∈ Rn

▶ production function f : Rn
+ 7→ R+ = {y ∈ R : y ≥ 0} that is concave and increasing

in all its arguments
▶ cost function c : Rn

+ 7→ R, convex and increasing in all its arguments
▶ price p > 0, profits pf (x)− c(x) defined for x ≥ 0

▶ Expenditure function e(p) = minx∈X p · x is concave
▶ p ∈ Rn is a vector of prices of inputs x ∈ X ⊂ Rn

+, and X convex
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Concave and convex functions

▶ A few properties:

▶ If f and g are concave functions, then f (x) + g(x) is a concave function

▶ If f is a concave function, then af (x) + b, where a ≥ 0, is a concave function

▶ A function f is both concave and convex if and only if it is affine, i.e.
f (x1, . . . , xn) = a1x1 + · · ·+ anxn + b, where a1, . . . , an, b ∈ R are constants
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Jensen’s inequality

▶ Jensen’s inequality is a property of convex or concave functions that is often
used in microeconomics and finance in order to study an individual’s attitude
toward risk

▶ Let f : R → R be a concave function. Given numbers x1, . . . , xk in the domain of
f ,

f

(
k∑

i=1

λixi

)
≥

k∑
i=1

λi f (xi ) (3)

for all non-negative λ1, . . . , λk such that
∑k

i=1 λi = 1.

▶ If f is convex, the inequality in (3) is reversed
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Strict concavity and convexity

▶ We say that f is a strictly concave function if, for all x, y ∈ U, x ̸= y, and for
all t ∈ (0, 1),

f (tx+ (1− t)y) > tf (x) + (1− t)f (y).

▶ We say that f is a convex function if, for all x, y ∈ U, x ̸= y, and for all
t ∈ (0, 1),

f (tx+ (1− t)y) < tf (x) + (1− t)f (y).
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Second order test of concavity

Proposition

Let f : U → R be a C 2 function, where U ⊆ Rn is an open and convex set.

1. f is a concave function if and only if the Hessian D2f (x) is negative
semidefinite for all x ∈ U.

2. f is a convex function if and only if the Hessian D2f (x) is positive
semidefinite for all x ∈ U.

Note 1 : for strict concavity/convexity semidefinitiness is replaced by definiteness

Note 2: the semidefiniteness of D2f (x) must be checked for all x ∈ U

Recall that if a matrix is positive (respectively, negative) definite, then it is also
positive (respectively, negative) semidefinite
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Second order test of concavity

▶ Example. Consider the Cobb-Douglas production function f : R2
+ → R given by

f (x , y) = xayb, with a, b > 0

▶ When is f concave?

▶ The Hessian of f is

D2f (x , y) =

(
a(a− 1)xa−2yb abxa−1yb−1

abxa−1yb−1 b(b − 1)xayb−2

)

▶ The Hessian has three principal submatrices/minors
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Second order test of concavity

▶ Example (cont’d). D2f (x , y) is negative semidefinite if and only if the following
two conditions are met:

1. The two first order principal minors a(a− 1)xa−2yb and b(b − 1)xayb−2 are
non-positive. This happens when a, b ≤ 1

2. The second order principal minor det(D2f (x , y)) is non-negative, which happens
when a+ b ≤ 1

▶ Recalling that a, b > 0 by assumption, we can conclude that f is concave if and
only if

0 < a < 1, 0 < b < 1, and a+ b ≤ 1.

▶ Notice that f is concave if and only if returns to scale are constant or decreasing
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Second order test of concavity
▶ Example (cont’d). When is f convex?

▶ D2f (x , y) is positive semidefinite if and only if the following two conditions are
met:

1. The two first order principal minors a(a− 1)xa−2yb and b(b − 1)xayb−2 are
non-negative. This happens when a, b ≥ 1

2. The second order principal minor det(D2f (x , y)) is non-negative, which happens
when a+ b ≤ 1

▶ We clearly have that the two conditions a, b ≥ 1 and a+ b ≤ 1 cannot hold
simultaneously

▶ Thus we conclude that f is:
▶ concave when a+ b ≤ 1
▶ neither concave nor convex when a+ b > 1
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Second order test of concavity

▶ Example (cont’d). The concave production function f (x , y) = x0.3y0.5
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Second order test of concavity

▶ Example (cont’d). The production function f (x , y) = x1.8y0.9, which is neither
convex nor concave
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Unconstrained optimization

▶ Exercise. Which of the following functions defined on Rn are concave or convex?

1. f (x) = 3ex + 5x4 − ln x

2. f (x , y) = −3x2 + 2xy − y2 + 3x − 4y + 1

3. f (x , y , z) = 3ex + 5y4 − ln z
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Constrained optimization with concave functions

▶ The result stated at the beginning of this lecture that critical points of concave or
convex functions are global extrema holds for functions having an open domain

▶ If the domain of a concave or convex function is not an open set, it could be the
case that global extrema are on the boundary of the domain, e.g. maxx∈[0,1] x

2.
In those cases, critical points need not be global extrema

▶ The following result will give us conditions to identify global extrema even when
they are possibly located on the boundary of the domain
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Constrained optimization with concave functions

Proposition

Let f : U → R be a C 1 function, where U ⊆ Rn is a convex (and not necessarily open)
set.

1. If f is a concave function, x∗ ∈ U is a global maximizer of f if and only if
∇f (x∗)T (x− x∗) ≤ 0 for all x ∈ U.

2. If f is a convex function, x∗ ∈ U is a global minimizer of f if and only if
∇f (x∗)T (x− x∗) ≥ 0 for all x ∈ U.

Note: ∇f (x)T is the 1× n matrix whose columns are the partial derivatives of f with
respect to xi .

∇f (x)T =
(

∂f
∂x1

(x) ∂f
∂x2

(x) . . . ∂f
∂xn

(x)
)
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Constrained optimization with concave functions
▶ Example. Let the concave function f (x , y) = x

1
4 y

1
4 be defined on the following

compact and convex domain

U =
{
(x , y) ∈ R2 : x + y ≤ 2

}
.

▶ The global maximizer of f on U is the point (1, 1). Indeed, for any (x , y) ∈ U we
have (

∂f
∂x (1, 1)

∂f
∂y (1, 1)

)(x − 1
y − 1

)
=

∂f

∂x
(1, 1)(x − 1) +

∂f

∂y
(1, 1)(y − 1)

=
1

4
(x − 1) +

1

4
(y − 1)

=
1

4
(x + y − 2)

≤ 0,

where the inequality follows from x + y ≤ 2 in the definition of U.
27 / 30



Constrained optimization with concave functions

▶ Assume that f is a concave function defined on a convex set U
▶ Does maxx∈U f (x) have a solution?

concavity of f and convexity of U do not guarantee the existence of a solution
(continuity and compactness are needed)
note: a concave/convex function is continuous on the interior of its domain
(discontinuities are possible on the boundary)

▶ If there is a solution, is it unique?

no, but the set of maximizers is a convex set
for uniqueness strict concavity is needed
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Concavity and transformations

▶ Assume that f : U 7→ R is a concave function, and U ⊆ Rn is a convex set

▶ Let g : R 7→ R be a strictly increasing function

▶ Reminder: x∗ is a solution of maxx∈U f (x) is and only if it is a solution of
maxx∈U g(f (x))

▶ Assume that x∗ satisfies first order optimality conditions of maxx∈U g(f (x)), and
g(f (x)) is a concave function

▶ What can you say about the optimality of x∗?
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Log-concavity

▶ f : U 7→ R++ is said to be log-concave if ln(f (x) is concave

note that ln(x) is strictly increasing function

▶ Example: f (x , y) = Axayb, where A, a, b > 0
▶ this function is log-concave
→ even if a Cobb-Douglas function does not satisfy constant or decreasing returns to

scale, we may be able to say something about the optimality of points that satisfy
the first order optimality conditions
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