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LINEAR AND MATRIX ALGEBRA

Vector signal description

Let the signal is represented by its values x1,...,z . Then, in vector

notation:

L]

%,

X =

LN

Vector transpose:
T
X =[r1,22,...,ZN]
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Sometimes, it is convenient to consider sets of vectors, for example:

r(n—1)

x(n) =

x(n—N+1)

Vector Euclidean norm:

N )
2
x|l = 9> lil®
i=1
Introducing Hermitian transpose

= (xT)" = [a},25,...,2}]

1/2
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we rewrite the norm as

Ix]] = Vx'x

The scalar (inner) product of two complex vectors a = |ay, ...

b=[b,...,on5]"

N
allb = Z a;b;
1=1
Cauchy-Schwarz inequality
H
a”'b| < [lal| - ||bl|
Orthogonal vectors:

a'b=b"a=0
Aalto University
Dept. Signal Processing and Acoustics
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The set of vectors x1,X9,...,Xy is said to be linearly independent it
a1X1 + aox9 + - -+ apxy =0 ()

implies that a; = O for all . If any set of nonzero «; can be found so that

(*) holds, then the vectors are linearly dependent. For example, for

nonzero Qv

X1 = B9x9 + - -+ + BnXn

Example of linearly independent vector set:

1 1
X1 =

Aalto University 5
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Adding to this linearly independent vector set a new vector x3, we obtain

that the new set

1 1 0
1 1 0

becomes linearly dependent because

X1 = X9 + 2X3

Aalto University 6
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Given N vectors X1,X9,...,X 7, consider the set of all vectors that may

be formed as a linear combination of the vectors x;,

N
X = Z ;X
1=1

This set forms a vector space and the vectors X; are said to span this
space. If the vectors x; are linearly independent, they are said to form a
basis for this space and the number of basis vectors IV is referred to as the

space dimension. The basis for a vector space is not unique!

Aalto University 7
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n X m matrix:

A ={a;,} =

Symmetric square matrix:

Hermitian square matrix:

Aalto University
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Some properties (apply to transpose ()T as well):
(A+B)T =A%+ B7 (A"HH =A, (AB)” =B7A"

Column and row representations of an n X m matrix:

- -
I
ry!

A =cq,c9,...,cp] = (%)

n

The rank of A is defined as a number of linearly independent columns in

(), or, equivalently, the number of linearly independent row vectors in ().
Important property:

rank{A} = rank{AAY} = rank{A" A}

Aalto University
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For any n X m matrix:
rank{A} < min{m,n}
The matrix A is said to be of full rank it
rank{A} = min{m, n}

If the square matrix A is of full rank, then there exists a unique matrix
AL called the inverse of A

A TA=AA1 =1

Aalto University
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The matrix I is the so-called identity matrix:

10 0 --- 0
01 0 --- 0
I=|00 1 0
00 -+ 0 1

The n x m matrix A is called singular if its inverse does not exist (i.e., if
rank{A} < n).

Some properties of inverse:

(AB)—l _ B—lA—l , (AH)—l _ (A—l)H

Aalto University 11
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Determinant of a square n X n matrix (for any 7):

n
detA =) (1) a;detAyy
k=1

2016

where A, is the (n — 1) x (n — 1) matrix formed by deleting the ith

row and the kth column of A.

Example:

detA = aqq

Aalto University
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Property: an n X m matrix A is invertible (nonsingular) if and only if its

determinant is nonzero
detA # 0

Some additional important properties of determinant:

det{AB} = detA detB, det{aA} =a'""detA

detA~ 1 = detAl = detA

~ detA’

Another important function of matrix is trace:

n
trace{A} = Z ajj
1=1

Aalto University 13
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Linear equations

Many practical DSP problems (such as signal modeling, Wiener filtering,

etc.) require the solution to a set of linear equations:
a1121 + @122 + - + a1pTm = b1
2121 + 2272 + -+ + a2mTm = b2
anl1T1 + ap2r2 + -+ + apmTm = by

In matrix notation

Aalto University 14
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Case 1: square matrix A (m = n). The nature of solution depends upon

whether or not A is singular. In the nonsingular case

x=A"1b

If A is singular, there may be no solution or many solutions.

Example:

r1+x9 = 1

x1+x9 = 2 no solution

However, if we modify the equations:

r1+x9 = 1
x1+xT9 = 1 many solutions

Aalto University
Dept. Signal Processing and Acoustics
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Case 2: rectangular matrix A (m < n). More equations than unknowns

and, in general, no solution exist. The system is called overdetermined.
In the case when A is a full rank matrix, and, therefore, AHA s
nonsingular, the common approach is to find least squares solution by

minimizing the norm of the error vector

le||” = |[b— Ax]||?

— (b— Ax)" (b - Ax)

— bib - xHAHp - bHHAX +xT AR Ax
- x—(AHA)_lAHb} (AHA) [x—(AHA)_lAHb
+ _be—bHA(AHA)_lAHb}

Aalto University
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The second term is independent of x. Therefore, the LS solution is
xpg = (ATA)"TAHp
The best (LS) approximation of b is given by
b=Ax;s=AA"A)'ATb =Pyb

where
Py =AA7TA)"1AH

s the so-called projection matrix with the properties

Ppa=a

Aalto University
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if the vector a belongs to the column-space of A and
PAa =0

it this vector is orthogonal to the columns of A

The minimum LS error
2 2
lellmin = |l — Axpg]|

min
— [(I—- AATA)TAT)p|?
— [[(I-P)b|? = [|Pxb]|> =blIPLb

2016

where Pf& = 1 — P A is the projection matrix on the subspace orthogonal

to the column-space of A.

Aalto University
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Alternatively, the LS solution is found from the normal equations
A Ax = Allp

Case 3: rectangular matrix A (n < m). Fewer equations than unknowns

and, provided the equations are consistent, there are many solutions. The

system is called underdetermined.

Aalto University 19
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Special matrix forms

Diagonal square matrix:

Exchange matrix:

Aalto University
Dept. Signal Processing and Acoustics
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Toeplitz matrix:

ik = Qj+1 k+1 for all 2,k <n

Example:
(1324
21 3 2
7213
1 721

Aalto University
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2 4 Quadratic and Hermitian forms

Quadratic form of a real symmetric square matrix A
Q(x) = x Ax

Similarly, Hermitian form of a Hermitian square matrix A
Q(x) = x Ax

Symmetric (Hermitian) matrices are positive semidefinite if Q(x) > 0 for
all nonzero x.

Example: the matrix A = yy* is positive semidefinite, where y is an

arbitrary complex vector:

Q(x) = x"yy"x = |x"y|* > 0

Aalto University 79
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Eigenvalues and eigenvectors

Consider the characteristic equation of an n X n matrix A
Au = \u
This is equivalent to the following set of homogeneous linear equations
(A= Au=0
Therefore, the matrix A — Al is singular. Hence,
p(A) =det(A —AI) =0

where p(\) is the so-called characteristic polynomial with n roots \;

(2 =1,2...,n) being the eigenvalues of A.

Aalto University 23
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For each eigenvalue A;, the matrix A — \;I is singular, and, therefore,

there will be at least one nonzero eigenvector that solves the equation
Auz- — )\Z-uz-

Since for any eigenvector u; any vector au; will be also an eigenvector,

the eigenvectors are often normalized.
u;l| =1, 1=1,2,...,n

Property 1: The eigenvectors uy, uo, ..., Uy, corresponding to distinct

eigenvalues are linearly independent.
Property 2: If rank{ A} = m, then there will be n — m independent

solutions to the homogeneous equation Au; = 0. These solutions form

the so-called null-space of A.

Aalto University o4
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Property 3: The eigenvalues of a Hermitian matrix are real.

Proof: From the characteristic equation Au; = \;ju;, we have
ul Au; = \uily; ()
Taking the Hermitian transpose of (x), we have
ull Ay, = Arufly, (%)
Since A is Hermitian (A = A™), (x%) becomes

uZ-HAu,,; = )\fuflui (5 * *)

Finally, comparison of (*) and (x % x) shows that \; are real.

Aalto University o5
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Property 4: A Hermitian matrix is positive definite if and only if the

eigenvalues of A are positive.

Similar property holds for positive semidefinite, negative definite, or

negative semidefinite matrices.

A useful relationship between matrix determinant and eigenvalues:
n
det{A} =[N
1=1

Therefore, any matrix is invertible (nonsingular) if and only if all of its

eigenvalues are nonzero.

Aalto University 26
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Property 5: The eigenvectors of a Hermitian matrix corresponding to

distinct eigenvalues are orthogonal, ie., if A\; # Ap., then u;

U = 0.
Proof: Let A\; and A\ be two distinct eigenvalues of A Then
Au,,; — )\/,;u,,; and 1&11;C — )\kuk
Multiplying these equations by ug and ufl, respectively, yields
ugAuZ- = )\iugui, HAuk. )\k.u uy. ()

Taking the Hermitian transpose of the second equation of () and

(
remarking that A is Hermitian (i.e., A = A and AL = Ap), vields

ugAuZ- = )\k.ué]ui ()

Aalto University 7
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Now, subtracting () from the first equation of () leads to
0= (>‘i — )\k)ugui

Since the eigenvalues are distinct (i.e., A\; # M), we have that

ugu,,; =0

which proofs the orthogonality of eigenvectors.

Remark: Although proven above for the distinct eigenvalue case, this

property can be extended to any n X n Hermitian matrix with arbitrary

(not necessarily distinct) eigenvalues.

Aalto University 8
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Eigendecomposition

For an n X m matrix A, we may perform an eigendecomposition:
A =UAU! (%)
To do this, let us write the set of equations
Au,=\u;, 1=1,2,...,n
in the form
Alug,ug, ..., uy| = [A\jug, A\us, ..., \yuy|, or, equivalentely

AU =UA with A =diag{Ai,\9,..., A\n} ()
and nonsingular U. Multiplying (x%) on the right by U™L we get (x).

Aalto University 29
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For a Hermitian matrix, the following property holds because of the

orthonormality of eigenvectors:
vlu=1

Hence, U is unitary (i.e., UH = U_l), and, therefore, the

eigendecomposition takes the form
A =UAUH

or, equivalently,

n
A = Z )\iuiufl
1=1

Aalto University
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Using the unitary property of U, it is easy to find matrix inverse via

eigendecomposition:
A~ = (uaut)~!
(UH)—lA—lU—l
- UA Ut

Equivalently
RN B
A :Zruiui
i=1""

Hence, the inverse does not affect eigenvectors but transforms eigenvalues

A; to 1/)\,,;.

Aalto University 31
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In many applications, matrices may be very close to singular
(ill-conditioned) and, therefore, their inverse may be unstable. We may
wish to stabilize the problem by adding a constant to each term along

diagonal (the so-called diagonal loading):
A=B+al
This operation leaves eigenvectors unchanged but changes eigenvalues:
Au; = Bu; + au; = (\; + a)u;
where \; and u; are the eigenvalues and eigenvectors of B:

Bui — )\Z-uz-

Aalto University 32
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We can reformulate the trace of A in terms of eigenvalues:

n
trace{A} =) "\, (%)
1=1
Similarly,
1 |
trace{A™ "} = Z »
i=1""

This property can be easily proven using the eigendecomposition and the
property trace{A 4+ B} = trace{A} + trace{B}. In several
applications (such as adaptive filtering), we need some simple and close

upper bound for the maximal eigenvalue Apax. From (), we obtain that

Amax < trace{A}

Aalto University 33
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Singular value decomposition

For a nonsquare n X m matrix A, we may perform the SVD instead of

eigendecomposition:
A =UAVY

or, equivalently
n
A:Z)‘iuivz’H if n<m
1=1
and
m
A:Z)\iuivzﬂ it n>m
1=1

where u; and v; are the n x 1 and m X 1 left and right singular vectors,

respectively, and \; are singular values.
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