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From Fourier series to Fourier 
transform
• Exponential Fourier series of 

a periodic signal
• Aperiodic energy signal
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Fourier transform and inverse 
transform
• Fourier transform • Inverse transform
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Fourier transform

Inner product of the pulse with the phasor
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Laplace transform vs Fourier 
Transform
One-sided Laplace transform      Inverse transform

Fourier transform                          Inverse transform
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Laplace transform vs Fourier 
Transform
Consider a signal 𝑥 𝑡 = 𝑒!"𝑢(t)
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Laplace transform vs Fourier 
Transform
Consider a linear time invariant system
Impulse response
Response to complex phasor input                  is of the form
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Fourier transform example 1: 
Rectangle pulse
Rectangle pulse x(t)=rect(t)

Fourier transform
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Rayleigh’s energy theorem & 
energy spectrum (a.k.a spectral density)
Signal energy

𝑋(𝑓) % Energy density [J/Hz]
Energy spectrum describes
the division of the signal energy on 
different frequency components
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Single-sided and two-sided energy 
spectrum
Rayleigh’s energy theorem
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Properties of the Fourier-transform
Part I
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Example 2: Pulse

Pulse

x(t)= 𝐴rect
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Fourier transform
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Example 3: Triangle pulse

Triangle pulse
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Example 3: Triangle pulse

Pulse
2
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Example: Triangle pulse vs rect
pulse
Spectral density of tria
pulse

|𝑋𝑡𝑟𝑖𝑎 𝑓 |2
= 𝐴2𝑇2sinc4 𝑓𝑇

Spectral density of rect
pulse
|𝑋𝑟𝑒𝑐𝑡 𝑓 |2 = 𝐴2𝑇2sinc2 𝑓𝑇
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Rect changes faster than tria. 
Hence, it has wider spectrum.



Inverse Fourier transform example
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Inverse Fourier transform
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Inverse Fourier transform example 
(again)

-B/2 B/2

Bandwith limted signal

Inverse Fourier transform
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Time-frequency localization

Signal cannot be localized both in time and frequency domain

time frequency

time frequency



Linear modulation

• In electronics and telecommunications, 
modulation is the process of varying one or 
more properties of a periodic waveform, 
called the carrier signal (cos 2𝜋𝑓*𝑡 ), with a 
separate signal 𝑠 𝑡 called the modulation 
signal that typically contains information to 
be transmitted.

• In linear modulation, the modulating signal 
controls the amplitude of the carrier

𝑥 𝑡 = 𝑠 𝑡 cos 2𝜋𝑓*𝑡

This modulation method is also known as  
Double Sideband (DSB) modulation in 
communications engineering literature.

Modulating signal

Carrier

Double sideband modulated signal



Pulse

Linear modulation

Example: Double sideband 
modulation of a rect pulse

𝑠 𝑡 = 𝐴rect
𝑡
𝑇

⇔ S 𝑓 = 𝐴𝑇sinc 𝑓𝑇
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Two-sided spectra density
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Bandwidth

A frequency domain signal X(f) is said to be bandlimited if 
there is two frequencies fL and fU such that |X(f)|>0 for fL≤f ≤ 
fU. The bandwith of the signal is then B=fU-fL

fUfL

B

𝑋7"89:6'4"565 (𝑓)
#



Bandwidht: Double sideband 
suppressed carrier modulation

B

𝑆(𝑓) #

𝑋(𝑓) #

2B

Bandwidth limited signal s(t)

Modulated signal x(t)=s(t)cos(2pfct)

fc-fc

Shift in 
frequency

Upper sidebandLower sideband



Bandwidth

Most practical signals are not bandlimited, hence a more general 
definition is needed. Even though signals analyzed in the real world are 
not exactly bandlimited, they are often “essentially bandlimited” in a way 
that the energy spectrum of them is mostly concentrated on a finite 
frequency interval. Common definitions for bandwidth
• 95%-Bandwidth: Frequency range containing 95% of the signal 

energy
• 3dB-Bandwidth: Frequency range, where the spectral density is at 

most 3dB less than its peak value



Example 3dB-Bandwidth of 
rectangle pulse
Single-sided spectrum

Bandwidth 𝐵 ≈ #
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3 dB

20log10(|S(f)|)-maxf{20log10(|S(f)|)}

fT

𝑠 𝑡 = 𝐴rect
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⇔ S 𝑓 = 𝐴𝑇sinc 𝑓𝑇

|S(f)|2/maxf{|S(f)|2)}

1/2



Example 3dB-Bandwidth of 
modulated rectangle pulse
Linearly modulated rectangle pulse

Bandwidth 𝐵 ≈ #
&

Modulated signal has twice the 
bandwidth of the base band signal

𝑥 𝑡 = 𝑠 𝑡 cos 2𝜋𝑓;𝑡

⇔ 𝑋 𝑓 =
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S 𝑓 − 𝑓;
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(f-fc)T
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Example: Bluetooth signal 99% 
Bandwidth

Kavousi Ghafi, H., Spindelberger, C. and Arthaber, H., 2021. Modeling of co-channel interference 
in bluetooth low energy based on measurement data. EURASIP Journal on Wireless 
Communications and Networking, 2021(1), pp.1-17.



Spectral masks

• Frequency 
regulator sets 
limits on how 
much enery can 
be leaked to 
adjacent 
frequency bands.

• This limits the 
pulse waveforms 
that can be used.



Spectral emissions can matter…

Impact of 5G mmWave on 
weather radars

Yousefvand, M., Wu, C.T.M., Wang, R.Q., Brodie, J. and Mandayam, N., 
2020, September. Modeling the Impact of 5G Leakage on Weather Prediction. 
In 2020 IEEE 3rd 5G World Forum (5GWF) (pp. 291-296). IEEE.



Convolution example: Two RC 
filters in series
Impulse response of two RC filters in series
• Impulse response of the first stage

ℎW 𝑡 = 𝑒(
C
DC
X𝑢(𝑡) ⇔ 𝐻W 𝑓 = YC

YCZ[\]^

• Impulse response of the second stage
ℎ\ 𝑡 = 𝑒(

C
DE
X𝑢(𝑡) ⇔ 𝐻\ 𝑓 = YE

YEZ[\]^

• Impulse response of the filter
ℎ 𝑡 = ∫()

) ℎ1 𝜏 ℎ2 𝑡 − 𝜏 𝑑𝜏

• Frequency response of the filter           𝐻 𝑓 = 𝐻1 𝑓 𝐻2 𝑓 = YCYE
YCZ[\]^ YEZ[\]^

x(t) y(t)



Convolution example: Two RC 
filters in series

x(t) y(t)

• First stage 𝐻% 𝑓 = %
%0F)*+

• 2nd stage 𝐻) 𝑓 = %
%0F)*+

• Overall 2nd order filer 
𝐻 𝑓 = 𝐻1 𝑓 𝐻2 𝑓 = %

%0F)*+ "

Single
RC filter

Two filters in 
series



Fourier transform of special 
functions
Fourier transform of Dirac’s delta function

𝐹 𝛿 𝑡 = !
()

)

𝛿 𝑡 𝑒([\]^X𝑑𝑡 = 𝑒([\]^_ = 1

Fourier transform of a constant (by duality from the above)
𝐹 1 = 𝛿 −𝑓 = 𝛿 𝑓

Fourier transform of a phasor = Frequency shift 
(by duality from the time shift)

𝐹 𝑒[\]^'X = 𝛿 𝑓 − 𝑓0 𝐹 𝛿(𝑡 − 𝑡0) =𝑒([\]^X'



Fourier transform of sinusoidal

Fourier transform of a cosine
F[Acos 2𝜋𝑓-𝑡 ] = 𝐹 𝐴 %
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Fourier transform of an 
exponential Fourier series
Exponential Fourier series of a periodic signal x(t) = x(t+T0)

𝑥 𝑡 = ∑AB'(( 𝑥𝑘 𝑒"
$%&
'!
& ⇔ 𝑋 𝑓 = ∑AB'(( 𝑥𝑘 𝛿 𝑓 − A

1!

Amplitude spectrum

𝑥 − 2

k

𝑥 − 1

𝑥0

𝑥1
𝑥2

f

𝑥 − 2

𝑥 − 1

𝑥0

𝑥1
𝑥2

Visualization of Fourier-transform

Amplitude and power spectra are not well-defined
for Dirac’s delta function



Truncating a continuous time 
signal
Let us take a time interval –T/2≤ t≤ T/2 of a periodic 
signal

𝑥(t)=Acos 2𝜋𝑓[𝑡
This can be written as

=𝑥 (t)=Acos 2𝜋𝑓_𝑡 rect
X
Y

Multiplication in time domain => Convolution in 
frequency domain 

𝑋 𝑓 =
𝐴
2
𝛿 𝑓 − 𝑓0 + 𝛿 𝑓 + 𝑓0 ⊗ 𝑇sinc 𝑓𝑇

=
𝐴𝑇
2

sinc 𝑓 − 𝑓0 𝑇 + sinc 𝑓 + 𝑓0 𝑇
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Truncating a continuous time 
signal
Let us take a time interval –T/2≤ t≤ T/2 of a 
periodic signal

𝑥(t)=Acos 2𝜋𝑓7𝑡
But this time weight the signal while cutting

!𝑥 (t)=Acos 2𝜋𝑓_𝑡 tria
X
Y

Multiplication in time domain => Convolution 
in frequency domain
𝑋 𝑓

=
𝐴
2
𝛿 𝑓 − 𝑓0 + 𝛿 𝑓 + 𝑓0 ⊗ 𝑇sinc2 𝑓𝑇

=
𝐴𝑇
2 sinc2 𝑓 − 𝑓0 𝑇 + sinc2 𝑓 + 𝑓0 𝑇

Time [s]
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Truncating a continuous time 
signal
Rectangular window and triangular window

Frequency [Hz]
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Time [s]



Windowing

When truncating the signal, we 
can select the window function 
w(t) truncating the signal

7𝑥 (t)=𝑥(𝑡)𝑤(𝑡)
This is typically done after 
sampling the signal

6𝑥 𝑠(nTs)=𝑥(nTs)𝑤(𝑛)

Freguency [Hz]
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  [
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]
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Samples

Welch window



Time-frequency analysis & 
Spectrogram
In signal processing, time–
frequency analysis comprises those 
techniques that study a signal in 
both the time and frequency 
domains simultaneously.
A spectrogram is a visual 
representation of the spectrum of 
frequencies of a signal as it varies 
with time. Frequency

Ti
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m
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Example: NB-IoT base station signal

Po
wer



Real-time spectrum analyzer

• Real-time spectrum 
analyzers are utilized to 
do the spectrum and time-
frequency analysis of 
signals.
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