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From Fourier series to Fourier
transform

« Exponential Fourier series of + Aperiodic energy signal x®

a periodic signal x® =x(+T)

—'ﬁ ﬂ( (%> 0 _i2 ¢ 2 "
X(t) = 220:_00 %fTox(t)e l T, tdtel T t x(t) — f_oo f—oox(t)e i2nf dt el f df
L0 ) L . )

X(f)

Fourier transform

X(k)

Coefficients of Exponential Fourier Series
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Fourier transform and inverse
transform

 Fourier transform  Inverse transform

x(6) = j X(F)e?mtdf = F=1 [x(t))]

X(f) = j_oox(t)e“'z’fftdt © Flx(t)]

oo
The signal must satisfy j |x(t)|dt < ooin order the transform to exist

Alternative definitions used in the literature
1 ® . o o ]
X(@) = J x(t)e Vtdt L= =2nf x(t) = j X(@)e Vidt
X(w) = g | xweerar x(£) = —— j X(w)eltdt

Aalto Un
School of Elect ical
l Engineerin



Fourier transform

Inner product of the pulse with the phasor pi2nft
w Im
X(f) = (x(t),eiz”ft)f x(t)e~i2nft ¢ v
LU
t X
Re
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Laplace transform vs Fourier

Transform

One-sided Laplace transform

X(s)= foox(t)e‘“dt e Llx(t)]
0

s=y+i2nf

Fourier transform

X(f) = [ x()e~?™tdt = Flx(t)]

= X (i2rf) If signal is causal x(t)=0 t<0

and (>
f |x(t)|dt < oo
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Inverse transform

Y +ioo
x(t) =f X (s)e Stds = L 1[x(t)]

y+—ioo

a.k.a. Fourier-Mellin integral

Inverse transform

x(6) = f X(Fe2mtdf s Bt [x(¢)]

Set y=0
and perform change of variables s = i2nf



Laplace transform vs Fourier

Transform

Consider a signal x(t) = e*tu(t) | -_
| ;.
=0
f |x(t)|dt= f e“tdt—hmae ;eao:{—i a<o0 a
t—oo . aZO 7 a<0

X(f) =- ! a<0 Fourier transform does not exist is a>0
i2rnf—a

X(s)=—, — 00 <8< o0 Laplace transform exists for all a
Ss—a
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Laplace transform vs Fourier
Transform

Consider a linear time invariant system Zy® =ay® +x(0, y(E) =0,t<0
Impulse response  r(®) = e%u(v)

Response to complex phasor input x@) =27t is of the form y(®) = H(f) v

d

pred —ay(®)  +x(®)
lZT[f H(f)eiznft — aH(f)eiZTEft + eiant
=> H(f) = —

i2nf—a

Frequency response of the system = Fourier transform H(f) of h(t) if a<0
=Laplace transform H (i2nf) for all a

In this course, we really do not need to care if Fourier transform exists or not!

Aalto University
School of Electrical
|

Engineering



Fourier transform example 1:

Rectangle pulse

Rectangle pulse x(f)=rect(t)

Fourier transform

1
J2 x(t)e~2mftdt = f_zl le~i2mftqt

2

_ 1 1 ( lZTL'fZ e—ian(—%))

vvvvvvvvvvvvvvvvvvvvvv

.......................

lZT[f
1
=— = = sinc(f)
f T[f |
; — 1 ix —-X fxleaxdx = leax1 — leaxo
sinx = l_—(e —e ) X, P 2
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Rayleigh’s energy theorem &
energy spectrum (a.k.a spectral density)

Signal energy | =" lx@®?dt=[" X(H)?df

|X(f)|? Energy density [J/Hz]
Energy spectrum describes |

the division of the signal energy on
different frequency components | |

sity [J/Hz]

nergy spectral
o o
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Single-sided and two-sided energy
spectrum

Rayleigh’s energy theorem

E = fjooo |x(t)|2 dt = fjooo |XTwo—sided (f)lz df =2 fooo |XTwo—sided (f)lz df = f0°° |XSingle—sided (f)'z df

. . 2
Two-sided energy spectrum Xmwo-sizea ()I>  Single-sided energy spectrum  |Xsingie—siaea (f)]
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Energy specrum




Properties of the Fourier-transform
Part |

Superposition Time and frequrncy shift Convolution
F [Z am(t)] =Y azm@)| [Flet-ni=e’ TX(H| [Z®) 2yt) = XY ()
. : F [z(t)e’>™ ] = X(f — fo)| Derivative

Time and frequency scaling 4
Fz(at)] = ix (i) Linear modulation 7 _EI(”] =J2mf - X(J)

o ) a a
5G] - L (L) i[s(ézf‘f)(fﬂiﬂ " 7 _%rm] ~ (j2rf)" - X(f)
Duality f‘[‘t_i'_dt_e[i‘_’?ti"_e_(_"lt_egﬂa_') _________ .
FIX@®) =2(-1) FU X(@dr| = X+ 7))
7 a(f) = X(~t) o= [ @

Aalto University . TTTmmTmEmTT T T T e e T
School of Electrical

| Engineering



Example 2: Pulse

Pulse T

x(t)= Arect (l%) — Arect (t_l/z)
T T

Fourier transform

v

F[rect(t)] = sinc(f)

. 1 . 1
X(f) = ATsinc(fT)e"*™ 2" — ATsinc(fT)e*™2"
N»}f(anj - X (i) a=1/T

Fla(t - )] = e *X(f)
X(f) = 2iATsinc(fT)sin(mfT)

sin(x) = %(e"x — e )
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Example 3: Triangle pulse

Triangle pulse /\

X(t)= Atria (%) K '

Time derivative d
A %x(t)

%X(l‘)= Arect (H;/Z) — Arect (t_;/z) 4
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Example 3: Triangle pulse

Pulse

% x(t)= Arect (H;/Z) — Arect (t_;/z)

Fourier transform

. 1 . 1
j2nfX(f) = ATsinc(fT)e*™2"- ATsinc(fT)e ™"

!

/|

d . .
E‘l"”] — jonf - X(f)

© j2ufX(f) = 2iATsinc(fT)sin(rfT)

sin(fT)

© X(f) = ATsinc(fT) -

< X(f) = ATsinc?(fT)
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4

v

Flrect(t)] = sinc(f)

7.

Fz(at)] = LY (£>

a

a /

a=1/T

Fx(t - 7)) = e PTTX(f)

sinc(x) =

Sin(mx)

X




Example: Triangle pulse vs rect
pulse

100
Spectral density of tria
-1
pulse _ 10
|Xtrla(f) |2 % 1072
= A?T?sinc*(fT) g
. O 1073
Spectral density of rect =
pulse 8 10
| Xrec,(f)|? = A*T?sinc?(fT) ©
Rect changes faster than tria. 107
Hence, it has wider spectrum.
10
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Inverse Fourier transform example

Bandwith limted signal
X(f= \/i;rect(g)
Inverse Fourier transform

x(t) = f_oooox(t)eiZHftdf — f_lB\/geiZTEftdf

_ |E_1 (izmt _ei2nt(—%B))
Bi2nf
_\/Ei(ein’tB_e—intB):,/EB%:,/EBSHN(B@

~ \/Bi2nfB

v

B/2

. 1, . _
sinx = E(e‘x—e x)

a

X 1 1
[Tte%dx = =e®1 — = %o
Xg a
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Inverse Fourier transform example

(again)
Bandwith limted signal E

X(f= \E rect(Z)

v

Inverse Fourier transform _B/2 B/2
F(rect(t)) = sinc(f)

F~(rect(f)) = sinc(—t) /%
P ( Jgrect(g)>: F X (af)) = e (5) |

\EBsinc(—tBF VEBsinc(Bt) sinc(t) = sinc(—t)
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Time-frequency localization

Signal cannot be localized both in time and frequency domain

A
A
time (VARE SV frequency
A
/N A i
\/ \/ time frequency
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Linear modulation

* In electronics and telecommunications,
modulation is the process of varying one or
more properties of a periodic waveform,
called the carrier signal (cos(27f,t)), with a
separate signal s(t) called the modulation
signal that typically contains information to
be transmitted.

* Inlinear modulation, the modulating signal
controls the amplitude of the carrier

x(t) = s(t) cos(2mf,t)

This modulation method is also known as
Double Sideband (DSB) modulation in
communications engineering literature.
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Example: Double sideband
modulation of a rect ppulse

Pulse
s(t) = Arect (%) =

Ftat) = =X (£)| a=1/T
Linear modulation

x(t) = s(t) cos(2nf,t)
— S(t) (%eiZcht + %e—iZTEfCt)

1 1
A Es(f+fc) Es(f_fc)

Z [2(0)” ] = X(f - fo)
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Bandwidth

A frequency domain signal X(f) is said to be bandlimited if
there is two frequencies fi and f; such that | X(f)|>0 for f . <f <
fu. The bandwith of the signal is then B=f,-f,

|XSingle—sided (f) |2

A

v

A
v
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Bandwidht: Double sideband
suppressed carrier modulation

e : Nk
Bandwidth limited signal s(t)
A
>
________________________________________ B
i = X(F)I2 Shift in
Modulated signal x(f)=s(t)cos(2nf.t) frequency

v
Lower sidebg% Upper sideband
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Bandwidth

Most practical signals are not bandlimited, hence a more general
definition is needed. Even though signals analyzed in the real world are
not exactly bandlimited, they are often “essentially bandlimited” in a way
that the energy spectrum of them is mostly concentrated on a finite
frequency interval. Common definitions for bandwidth

« 95%-Bandwidth: Frequency range containing 95% of the signal
energy

« 3dB-Bandwidth: Frequency range, where the spectral density is at
most 3dB less than its peak value
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Example 3dB-Bandwidth of

rectangle pulse

Single-sided spectrum

s(t) = Arect <%> & S(f) = ATsinc(fT)

Bandwidth B ~ —
2T
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Example 3dB-Bandwidth of
modulated rectangle pulse

Linearly modulated rectangle pulse

x(t) = s(t) cos(2mf,t)
1 1
& X(f) = 35 +£) +55(F = £

Bandwidth B =~

N

Modulated signal has twice the
bandwidth of the base band signal
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Example: Bluetooth signal 99%
Bandwidth

0 ‘ - :
w—09% Occupied Bandwidth: 1.07 MHz

power spectrum (dB)

-50 1 L L 1 . 1 1 I 1 1 J
5 4 -3 2 -1 0 1 2 3 RS 5
frequency (MHz)
. ) Kavousi Ghafi, H., Spindelberger, C. and Arthaber, H., 2021. Modeling of co-channel interference
A? Is\ta::it:otlh:;fvg::t‘:'ical in bluetooth low energy based on measurement data. EURASIP Journal on Wireless
B Engineering Communications and Networking, 2021(1), pp.1-17.



Spectral masks

* Frequency
regulator sets
limits on how
much enery can
be leaked to
adjacent

frequency bands.

* This limits the
pulse waveforms

that can be used.
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Realtive Emissions Limits (dB)

Broadband Emissions Mask Comparison
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Spectral emissions can matter...

Impact of 5G mmWave on
weather radars

NIV
RyEsdE

e < ﬁ
\,. A

dyniang
e

i | Adjacent 5G band

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Power Spectral Density (dBW/Hz)

1.‘!! 7

< = W A

JHIT
I ACI Signal I
| (5G Leakage) ! ‘l IS p—
i i M v
[ i B )

T T Difference in Forecast (with and without 5G) (°C)

23.53 GHz 23.8 GHz 24.07 GHz 24.34 GHz 24.61 GHz <—l 3 -0.8 0.8 11’
Frequency (GHz)
Aalto University .
Ao School of Electrical Yousefvand, M., Wu, C.T.M., Wang, R.Q, Brodie, J. and Mandayam, N.,
B Engineering 2020, September. Modeling the Impact of 5G Leakage on Weather Prediction.

In 2020 IEEE 3rd 5G World Forum (6GWF) (pp. 291-296). IEEE.



Convolution example: Two RC
filters in series

Impulse response of two RC filters in series

* Impulse response of the first stage R1 R2
_1, T (o MW MW » O
hi(6) = e ) & () = 0 T K
! x(t) &1 C2 y(t)
* Impulse response of the second stage N | || 4
_L X o & & ‘o)
hz (t) =€ thu(t) < HZ (f) = T2+7;2ﬂf First Stage Second Stage
« Impulse response of the filter
h(t) = [°. hi(2)hy(t — 7)dt
. Frequency response of the filter H(f) = H,(f)H,(f)= <T1+j2n;§32+12n .
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Convolution example: Two RC

filters in series

R1 . R2

0
T
x(t)
Ng
o

MWW MWW

C1 C2

0 =< -0

First Stage Second Stage

First stage H,(f) = 1+j12nf
2nd stage H,(f) = Y
Overall 2" order filer

H(f) = H,()H,(f)= ———

(1+j2mf)?
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Fourier transform of special
functions

Fourier transform of Dirac’s delta function

F[6(t)] = f §(t)e 12 tdr = /20 = 1

Fourier transform of a constant (by duality from the above)

Fl1]= 8(—f) = 6(f) F () =X(-1)

Fourier transform of a phasor = Frequency shift
(by duality from the time shift)

Fle/?™ )= §(f — fo) F[5(t — tg)]=e /27 to
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Fourier transform of sinusoidal

Fourier transform of a cosine

F[Acos(2nf,t)] = [A (ei2mfot 4 ¢~ lznfot)]— Fle®™¢) + 2 Fe~2mhot]= 28(f — f) + 5 A5(F + fo)

A

| |

_fo fo f

A
2
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Fourier transform of an
exponential Fourier series

Exponential Fourier series of a periodic signal x(t) = x(t+T))

X(0) = T o rie 7' & X(P) = T o028 (f — )
Amplitude spectrum Visualization of Fourier-transform
| %0l Xo
lx _ 4l |24 _1 X1
lx _ I I |, X _2 t t Xy
k f

Amplitude and power spectra are not well-defined
for Dirac’s delta function
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Truncating a contlnuous time

signal

Let us take a time interval —T/2< t< T/2 of a periodic
signal

x(t)=Acos(2mf,yt)
This can be written as
X (t)=Acos(2mfyt)rect G)

Multiplication in time domain => Convolution in
frequency domain

A
X() = 5 (8¢ = fo) + 5(F + o)} ® (Tsinc(FT}
A
= 7T(sinc((f — fo)T) + sinc((f + fO)T))
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Truncating a continuous time

signal !l

Let us take a time interval —T/2s t< T/2 of a 8.,
periodic signal 2 o

E—O.2-

x(t)=Acos(2mfyt) <.

But this time weight the signal while cutting

% (t)=Acos (2 fyt)tria (1) NI

Multiplication in time domain => Convolution

in frequency domain

X(f) %300

A = 250

= {500 ~ fo +6(f + fo)} @ Tsincx(fTy - 87

©

AT b 150

=5 (sinc2((f = fo)T) +sincX((f + f0T)) &

A? . 5:

. . . .
0 0.5 1 1.5 2

F_réquency [Hz]
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Truncating a continuous time

signal

1
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Windowing

When truncating the signal, we
can select the window function
w(t) truncating the signal

X (t)=x(t)w(t)
This is typically done after
sampling the signal

X (nTg)=x(nTg)w(n)
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Time-frequency analysis &

Spectrogram

In signal processing, time—
frequency analysis comprises those
techniques that study a signal in
both the time and frequency
domains simultaneously.

A spectrogram is a visual
representation of the spectrum of
frequencies of a signal as it varies
with time.
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Example: NB-loT base station signal
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Real-time spectrum analyzer

* Real-time spectrum
analyzers are utilized to
do the spectrum and time-
frequency analysis of
signals.
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