ELEC-A7200

Signals and Systems

Professor Riku Jäntti Fall 2022

Lecture 5 & 6 Fourier transform

Content

- Fourier transform
- Fourier transform vs Laplace transform
- Rayleigh's energy theorem and energy spectrum
- Some properties of Fourier transform
- Bandwidth
- Fourier transform of special signals

From Fourier series to Fourier transform

 Exponential Fourier series of a periodic signal x(t) = x(t + T₀)

$$x(t) = \sum_{k=-\infty}^{\infty} \frac{1}{T_0} \int_{T_0} x(t) e^{-i\frac{2\pi k}{T_0}t} dt e^{i\frac{2\pi k}{T_0}t}$$

$$X(k)$$

Coefficients of Exponential Fourier Series

• Aperiodic energy signal x(t)

$$x(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t) e^{-i2\pi f t} dt e^{i2\pi f t} df$$

$$X(f)$$

Fourier transform and inverse transform

Fourier transform

 $X(f) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi f t} dt \stackrel{\text{def}}{=} \mathbf{F}[x(t)]$

Inverse transform

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{i2\pi ft} df \stackrel{\text{def}}{=} \mathrm{F}^{-1} \left[x(t) \right]$$

The signal must satisfy $\int_{-\infty}^{\infty} |x(t)| dt < \infty$ in order the transform to exist

Fourier transform

Inner product of the pulse with the phasor

 $X(f) = \left\langle x(t), e^{i2\pi ft} \right\rangle \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt$

Laplace transform vs Fourier Transform

One-sided Laplace transform

$$\hat{X}(s) = \int_{0}^{\infty} x(t)e^{-st}dt \stackrel{\text{\tiny def}}{=} L[x(t)]$$

 $s = \gamma + i2\pi f$

Fourier transform

 $X(f) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt \stackrel{\text{\tiny def}}{=} F[x(t)]$

$$= \hat{X} (i2\pi f) \quad \text{If signal is causal } x(t)=0 \ t<0$$

and
$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

Aalto University School of Electrical Engineering

Inverse transform

$$x(t) = \int_{\gamma + -i\infty}^{\gamma + i\infty} \widehat{X}(s) e^{-st} ds \quad \stackrel{\text{\tiny def}}{=} \operatorname{L}^{-1}[x(t)]$$

a.k.a. Fourier-Mellin integral

Inverse transform

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{i2\pi ft} df \stackrel{\text{\tiny def}}{=} \mathrm{F}^{-1}\left[x(t)\right]$$

Set γ =0 and perform change of variables $s = i2\pi f$

Laplace transform vs Fourier Transform

Consider a signal $x(t) = e^{at}u(t)$

$$\int_{-\infty}^{\infty} |x(t)| dt = \int_{0}^{\infty} e^{at} dt = \lim_{t \to \infty} \frac{1}{a} e^{at} - \frac{1}{a} e^{a0} = \begin{cases} -\frac{1}{a} & a < 0\\ \infty & a \ge 0 \end{cases}$$

 $X(f) = \frac{1}{i2\pi f - a}, \quad a < 0$ $\hat{X}(s) = \frac{1}{s - a}, \quad -\infty < a < \infty$

Fourier transform does not exist is $a \ge 0$ Laplace transform exists for all a

Laplace transform vs Fourier Transform

Consider a linear time invariant system

 $\frac{d}{dt}y(t) = ay(t) + x(t), \quad y(t) = 0, t \le 0$

Impulse response $h(t) = e^{at}u(t)$

Response to complex phasor input $x(t) = e^{i2\pi ft}$ is of the form $y(t) = H(f) e^{i2\pi ft}$

$$\frac{d}{dt}y(t) = ay(t) + x(t)$$

$$i2\pi f H(f)e^{i2\pi ft} = aH(f)e^{i2\pi ft} + e^{i2\pi ft}$$

$$= > H(f) = \frac{1}{i2\pi f - a}$$

Frequency response of the system = Fourier transform H(f) of h(t) if a < 0=Laplace transform $\hat{H}(i2\pi f)$ for all a

In this course, we really do not need to care if Fourier transform exists or not!

Aalto University School of Electrical Engineering

Fourier transform example 1: Rectangle pulse

Rectangle pulse x(t)=rect(t)

Fourier transform

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} 1 e^{-i2\pi ft} dt$$

$$= -\frac{1}{i2\pi f} \left(e^{-i2\pi f \frac{1}{2}} - e^{-i2\pi f \left(-\frac{1}{2}\right)} \right)$$
$$= \frac{1}{i2\pi f} \left(e^{i\pi f} - e^{-i\pi f} \right) = \frac{\sin(\pi f)}{\pi f} = \operatorname{sinc}(f)$$

$$\sin x = \frac{1}{i2} \left(e^{ix} - e^{-x} \right) \qquad \qquad \int_{x_0}^{x_1} e^{ax} dx = \frac{1}{a} e^{ax_1} - \frac{1}{a} e^{ax_0}$$

Rayleigh's energy theorem & energy spectrum (a.k.a spectral density)

Signal energy $E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$

 $|X(f)|^2$ Energy density [J/Hz]

Energy spectrum describes

the division of the signal energy on different frequency components

Single-sided and two-sided energy spectrum

Rayleigh's energy theorem

Energy specrum

Properties of the Fourier-transform Part I

Superposition

$$\mathscr{F}\left[\sum_k a_k x_k(t)
ight] = \sum_k a_k \mathscr{F}[x_k(t)]$$

Time and frequency scaling

$$\mathscr{F}[x(at)] = rac{1}{|a|} X\left(rac{f}{a}
ight)$$
 $\mathscr{F}^{-1}[X(af)] = rac{1}{|a|} x\left(rac{t}{a}
ight)$

Duality

$$\mathscr{F}[X(t)] = x(-f)$$

$$\mathscr{F}^{-1}[x(f)] = X(-t)$$

Time and frequrncy shift

$$\mathscr{F}[x(t- au)] = e^{-\jmath 2\pi f au}X(f)$$
 $\mathscr{F}[x(t)e^{j2\pi f_0t}] = X(f-f_0)$

Linear modulation

 $F[s(t)\cos(2\pi f_c t)]$ = $\frac{1}{2}S(ff_c) + \frac{1}{2}S(f - f_c)$

Convolution

$$\mathscr{F}[x(t)\otimes y(t)]=X(f)Y(f)$$

Derivative

$$\mathscr{F}\left[rac{d}{dt}x(t)
ight]=j2\pi f\cdot X(f)$$

$$\mathscr{F}\left[rac{d^n}{dt^n}x(t)
ight] = (j2\pi f)^n\cdot X(f)$$

Anti-derivative (integral)

$$F\left[\int_{-\infty}^{t} x(\tau)d\tau\right] = \frac{1}{j2\pi f}X(f) + \bar{x}\delta(f)$$
$$\bar{x} = \int_{-\infty}^{t} x(\tau)d\tau$$

Example 2: Pulse

Pulse

$$x(t) = \operatorname{Arect}\left(\frac{t+\frac{1}{2}}{T}\right) - \operatorname{Arect}\left(\frac{t-1/2}{T}\right)$$

Fourier transform

$$X(f) = AT \operatorname{sinc}(fT) e^{i2\pi f \frac{1}{2}T} - AT \operatorname{sinc}(fT) e^{-i2\pi f \frac{1}{2}T} \left[\begin{array}{c} F[\operatorname{rect}(t)] = \operatorname{sinc}(f) \\ \hline \mathscr{F}[x(at)] = \frac{1}{|a|} X\left(\frac{f}{a}\right) \end{array} a = 1/T$$
$$\mathscr{F}[x(t-\tau)] = e^{-j2\pi f \tau} X(f)$$
$$\mathscr{F}[x(t-\tau)] = e^{-j2\pi f \tau} X(f)$$
$$\operatorname{sin}(x) = \frac{1}{i2} (e^{ix} - e^{-ix})$$

Α

-T

Aalto University School of Electrical Engineering

Example: Triangle pulse vs rect pulse

Spectral density of tria pulse

 $|Xtri_a(f)|^2 = A^2 T^2 \operatorname{sinc}^4(fT)$

Spectral density of rect pulse

 $|Xrec_t(f)|^2 = A^2T^2\operatorname{sinc}^2(fT)$

Rect changes faster than tria. Hence, it has wider spectrum.

Inverse Fourier transform example

Bandwith limted signal $X(f) = \sqrt{\frac{E}{B}} \operatorname{rect}(\frac{f}{B})$

Inverse Fourier transform

$$x(t) = \int_{-\infty}^{\infty} x(t) e^{i2\pi ft} df = \int_{-\frac{1}{2}B}^{\frac{1}{2}B} \sqrt{\frac{E}{B}} e^{i2\pi ft} df$$

Aalto University School of Electrical Engineering

r----

Inverse Fourier transform example (again)

Bandwith limted signal $X(f) = \sqrt{\frac{E}{B}} \operatorname{rect}(\frac{f}{B})$

Inverse Fourier transform

$$F(\operatorname{rect}(t)) = \operatorname{sinc}(f)$$

$$F^{-1}(\operatorname{rect}(f)) = \operatorname{sinc}(-t)$$

$$\mathcal{F}^{-1}\left(\sqrt{\frac{E}{B}}\operatorname{rect}\left(\frac{f}{B}\right)\right) =$$

$$\mathcal{F}^{-1}\left(\sqrt{\frac{E}{B}}\operatorname{rect}\left(\frac{f}{B}\right)\right) = \frac{1}{|a|}x\left(\frac{t}{a}\right)$$

$$\mathcal{F}^{-1}[X(af)] = \frac{1}{|a|}x\left(\frac{t}{a}\right)$$

$$\operatorname{sinc}(t) = \operatorname{sinc}(-t)$$

Aalto University School of Electrical Engineering

Time-frequency localization

Signal cannot be localized both in time and frequency domain

Linear modulation

- In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal $(\cos(2\pi f_c t))$, with a separate signal s(t) called the modulation signal that typically contains information to be transmitted.
- In linear modulation, the modulating signal controls the amplitude of the carrier

 $x(t) = s(t)\cos(2\pi f_c t)$

This modulation method is also known as **Double Sideband (DSB) modulation** in communications engineering literature.

Example: Double sideband modulation of a rect pulse

Bandwidth

A frequency domain signal X(f) is said to be *bandlimited* if there is two frequencies f_{L} and f_{U} such that |X(f)| > 0 for $f_{L} \le f \le f_{U}$. The *bandwith* of the signal is then $B = f_{U} - f_{L}$

Bandwidht: Double sideband suppressed carrier modulation

Bandwidth

Most practical signals are not bandlimited, hence a more general definition is needed. Even though signals analyzed in the real world are not exactly bandlimited, they are often "essentially bandlimited" in a way that the energy spectrum of them is mostly concentrated on a finite frequency interval. Common definitions for bandwidth

- 95%-Bandwidth: Frequency range containing 95% of the signal energy
- **3dB-Bandwidth**: Frequency range, where the spectral density is at most 3dB less than its peak value

Example 3dB-Bandwidth of rectangle pulse

Single-sided spectrum

$$s(t) = Arect\left(\frac{t}{T}\right) \Leftrightarrow S(f) = ATsinc(fT)$$

Bandwidth
$$B \approx \frac{1}{2T}$$

Example 3dB-Bandwidth of modulated rectangle pulse

Linearly modulated rectangle pulse

 $x(t) = s(t)\cos(2\pi f_c t)$ $\Leftrightarrow X(f) = \frac{1}{2}S(f + f_c) + \frac{1}{2}S(f - f_c)$

Bandwidth $B \approx \frac{1}{T}$

Modulated signal has twice the bandwidth of the base band signal

Example: Bluetooth signal 99% Bandwidth

Kavousi Ghafi, H., Spindelberger, C. and Arthaber, H., 2021. Modeling of co-channel interference in bluetooth low energy based on measurement data. *EURASIP Journal on Wireless Communications and Networking*, 2021(1), pp.1-17.

Spectral masks

- Frequency regulator sets limits on how much enery can be leaked to adjacent frequency bands.
- This limits the pulse waveforms that can be used.

Aalto University School of Electrical Engineering

Spectral emissions can matter...

Impact of 5G mmWave on weather radars

Yousefvand, M., Wu, C.T.M., Wang, R.Q., Brodie, J. and Mandayam, N., 2020, September. Modeling the Impact of 5G Leakage on Weather Prediction. In *2020 IEEE 3rd 5G World Forum (5GWF)* (pp. 291-296). IEEE.

Power Spectral Density (dBW/Hz)

Aalto University

Engineering

School of Electrical

Convolution example: Two RC filters in series

Impulse response of two RC filters in series

- Impulse response of the first stage $h_1(t) = e^{-\frac{1}{T_1}t}u(t) \Leftrightarrow H_1(f) = \frac{T_1}{T_1 + j2\pi f}$
- Impulse response of the second stage $h_2(t) = e^{-\frac{1}{T_2}t}u(t) \Leftrightarrow H_2(f) = \frac{T_2}{T_2 + j2\pi f}$
- Impulse response of the filter

$$h(t) = \int_{-\infty}^{\infty} h_1(\tau) h_2(t-\tau) d\tau$$

• Frequency response of the filter

Aalto University School of Electrical Engineering

$$H(f) = H_1(f)H_2(f) = \frac{T_1T_2}{(T_1 + j2\pi f)(T_2 + j2\pi f)}$$

Convolution example: Two RC filters in series

- First stage $H_1(f) = \frac{1}{1+j2\pi f}$
- 2^{nd} stage $H_2(f) = \frac{1}{1+j2\pi f}$
- Overall 2^{nd} order filer H(f) = H(f)H(f) =

Fourier transform of special functions

Fourier transform of Dirac's delta function

|F|

$$F[\delta(t)] = \int_{-\infty}^{\infty} \delta(t) e^{-j2\pi ft} dt = e^{-j2\pi f0} = 1$$

Fourier transform of a constant (by duality from the above)

$$F[1] = \delta(-f) = \delta(f)$$

$$\mathscr{F}^{-1}[x(f)] = X(-t)$$

Fourier transform of a phasor = Frequency shift (by duality from the time shift)

$$e^{j2\pi f_0 t}] = \delta(f - f_0)$$
 $F[\delta(t - t_0)] = e^{-j2\pi f t_0}$

Fourier transform of sinusoidal

Fourier transform of a cosine

 $\mathsf{F}[\mathsf{A}\mathsf{cos}(2\pi f_0 t)] = F\left[A\frac{1}{2}\left(e^{i2\pi f_0 t} + e^{-i2\pi f_0 t}\right)\right] = \frac{A}{2}F[e^{i2\pi f_0 t}] + \frac{A}{2}F\left[e^{-i2\pi f_0 t}\right] = \frac{A}{2}\delta(f - f_0) + \frac{A}{2}\delta(f + f_0)$ $\frac{A}{2} \int_{-f_0}^{-f_0} \int_{0}^{f_0} f_0 f_0$

Fourier transform of an exponential Fourier series

Exponential Fourier series of a periodic signal $x(t) = x(t+T_0)$

$$x(t) = \sum_{k=-\infty}^{\infty} x_k e^{i\frac{2\pi k}{T_0}t} \Leftrightarrow X(f) = \sum_{k=-\infty}^{\infty} x_k \delta\left(f - \frac{k}{T_0}\right)$$

Truncating a continuous time signal 0.8 0.6

Let us take a time interval $-T/2 \le t \le T/2$ of a periodic signal

 $x(t) = A\cos(2\pi f_0 t)$

This can be written as

 \tilde{x} (t)=Acos $(2\pi f_0 t)$ rect $\left(\frac{t}{\tau}\right)$

Multiplication in time domain => Convolution in frequency domain

$$X(f) = \left\{ \frac{A}{2} \left(\delta(f - f_0) + \delta(f + f_0) \right) \right\} \otimes \left\{ \frac{T \operatorname{sinc}(fT)}{2} \right\}$$
$$= \frac{AT}{2} \left(\operatorname{sinc}\left((f - f_0)T \right) + \operatorname{sinc}\left((f + f_0)T \right) \right)$$

$${\mathscr F}[x(t)\otimes y(t)]=X(f)Y(f)$$
 ${\mathscr F}[X(t)]=x(-f)$

Aalto Universitv School of Electrical Enaineerina

$$\mathscr{F}[X(t)] = x(-f)$$

Truncating a continuous time signal

Let us take a time interval –T/2≤ t≤ T/2 of a periodic signal

 $x(t) = A\cos(2\pi f_0 t)$

But this time weight the signal while cutting

 \tilde{x} (t)=Acos $(2\pi f_0 t)$ tria $\left(\frac{t}{\tau}\right)$

Multiplication in time domain => Convolution in frequency domain

$$X(f) = \left\{ \frac{A}{2} \left(\delta(f - f_0) + \delta(f + f_0) \right) \right\} \otimes \{ T \operatorname{sinc}^2(fT) \}$$
$$= \frac{AT}{2} \left(\operatorname{sinc}^2((f - f_0)T) + \operatorname{sinc}^2((f + f_0)T) \right)$$

Truncating a continuous time signal

Rectangular window and triangular window

Windowing

When truncating the signal, we can select the window function w(t) truncating the signal

 \tilde{x} (t)=x(t)w(t)

This is typically done after sampling the signal

 $\tilde{x}_{s}(nT_{s})=x(nT_{s})w(n)$

Aalto University School of Electrical Engineering

Freguency [Hz]

Time-frequency analysis & Spectrogram

In signal processing, time– frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously.

A spectrogram is a visual representation of the spectrum of frequencies of a signal as it varies with time. Example: NB-IoT base station signal

Real-time spectrum analyzer

 Real-time spectrum analyzers are utilized to do the spectrum and timefrequency analysis of signals.

f 🖸 y 🖻 🌲 in.

aalto.fi

