Differential and Integral Calculus 1 - MS-A0111
Orlich / Ardiyansyah
Practice Exam

Every problem carries an equal weight. Similarly every part of a problem carries an equal weight. Note that there is a second page! You are not allowed to use a calculator, tables or notes.

Explain the reasoning behind your solutions, do not just write the final result.

Problem 1 Compute the following limits:
(a) $\lim _{x \rightarrow 0} \frac{1-e^{x}}{\sin (2 x)}$
(b) $\lim _{x \rightarrow 0} \frac{\left(e^{2 x}-1\right) \ln \left(1+x^{3}\right)}{(1-\cos (3 x))^{2}}$.

Problem 2 Find the derivative of $f(x)=e^{x}-1$ using the definition of derivative as a limit.

Problem 3 Compute the integrals
(a) $\int_{0}^{1}\left(x^{2}+1\right)\left(x^{2}-1\right) d x$
(b) $\int_{0}^{1} \frac{1}{2+e^{x}} d x$.

Problem 4 Find all the solutions of the equation $y^{\prime}=1-y^{2}$.
Problem 5 Two positive real numbers have sum equal to 7 . What is the largest possible value for their product?
Hint: If you don't know a number, call it x. (The other number here can be expressed in terms of x, knowing that its sum with x is equal to 7.)

Problem 6 Consider the function $f(x)=e^{x}+e^{-x}$
a) Compute the limits

$$
\lim _{x \rightarrow-\infty} f(x), \quad \quad \lim _{x \rightarrow+\infty} f(x)
$$

b) Compute the first derivative of f and study its sign: where is it positive, negative, zero? Where does f increase/decrease?
c) Compute the second derivative of f and study its sign: where is it positive, negative, zero? Where is f convex (happy)/concave (sad)?
d) Use the information above to draw a sketch of the graph of f.

Possibly useful formulas:

$$
\begin{aligned}
D \arcsin x & =\frac{1}{\sqrt{1-x^{2}}}, & D \arctan x & =\frac{1}{1+x^{2}} \\
\sin x & =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}, & \cos x & =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k} \\
e^{x} & =\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}, & \frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}
\end{aligned}
$$

General hint: If you have a fraction with a product in the denominator, for instance $\frac{1}{(x+1)(x-1)}$, it's a good idea to try to write it as a sum of two simpler fractions, in this example by finding two real numbers A and B such that $\frac{1}{(x+1)(x-1)}=\frac{A}{x+1}+\frac{B}{x-1}$.

