1. Derive an expression for the conductance of a cylindrical pipe in the case of viscous laminar flow.

Hint: Use the Navier-Stokes equation in a steady state to solve the velocity field inside the cylinder.

2. The ³He circulation of a dilution refrigerator is maintained by a booster pump (with a pumping speed $S = 4 \text{ m}^3/\text{s}$ below 10 Pa pressure). The pumping line consists of cylindrical pipe sections, which have the following lengths and average temperatures:

part #	length l (m)	$T(\mathbf{K})$
1	0.1	1
2	0.3	4.2
3	0.6	77
4	5	293

The temperature of the evaporation chamber (still) is kept at 0.6 K, so that only ³He is evaporated. At this temperature, the vapor pressure of helium mixture is 4.6 Pa. The desired flow rate is 2 mmol/s. Determine the diameters of the pipe sections so that the pressure difference over each section is the same. Use the experimental temperature dependence $\eta_3 = 4.22 \cdot 10^{-7} (T/K)^{0.647}$ s Pa for the viscosity of ³He gas (compare to ideal gas: $\eta = 9.2 \cdot 10^{-7} (T/K)^{0.5}$ s Pa).

- 3. A dewar is filled with liquid ⁴He at normal pressure and 4.2 K temperature. The bath is cooled by pumping. What fraction of the liquid is evaporated before it becomes superfluid (T = 2.17 K)? The latent heat is $L \approx 22 \text{ J/g}$. The ⁴He enthalpy is H(4.2 K) = 9.25 J/g and H(2.17 K) = 3.5 J/g.
- 4. A ³He evaporation cryostat, which has separate ³He and ⁴He evaporators, is pumped by mechanical pumps, which have a pumping speed $S = 35 \text{ m}^3/\text{h}$. See Fig. 1 for a schematic. The conductance of the pumping lines is $C = 25 \text{ m}^3/\text{h}$. The heat load of the ⁴He evaporator consists of the ⁴He enthalpy arriving into the evaporator, the thermally anchored ³He return capillary, and a 0.1 mW external load. The ³He evaporator is loaded by the ³He arriving through the ⁴He evaporator and an external load of 0.1 mW. What are the

equilibrium temperatures of the two evaporators? Use $L_4 = 85 \text{ J/mol}$ and $L_3 = 25 \text{ J/mol}$ for the heats of evaporation, $C_3 = (2.1 + 2.2 T/\text{K}) \text{ J/(mol K})$ for the ³He specific heat, and assume that 40% of the cooling power of the ⁴He evaporator goes into cooling the ⁴He liquid itself ($4.2 \text{ K} \rightarrow T_4$). The ⁴He and ³He vapor pressures behave in the temperature range in question approximately as $P_4 = 640e^{-10.6 \text{ K/T}}$ kPa and $P3 = 46e^{-3.7 \text{ K/T}}$ kPa, respectively. The parts of the piping marked with flow impedances Z_{43} and Z_{04} are considered thin in order to uphold some pressure differences across the system.

Figure 1: Schematic of a ³He evaporation cryostat.