Mathematics for Economists

Problem Set 4

Due date: Wednesday 12.10 at 12.15

Exercise 1

Find all the local and global maximizers of $f\left(x_{1}, x_{2}\right)=3 x_{1} x_{2}-x_{1}^{3}-x_{2}^{3}$.

Exercise 2

The following two functions are defined on \mathbb{R}^{2} and \mathbb{R}^{3}, respectively. Determine whether each of them is a concave or a convex function.

1. $f(x, y)=-2 x+y+x^{2}-2 x y+y^{2}$
2. $f(x, y, z)=100-2 x^{2}-y^{2}-3 z-x y-e^{x+y+z}$

Exercise 3

Assume that a monopoly sells a good that has the demand function $D(P, A)=(\alpha-P) A^{\beta}$ (quantity demanded), where $\alpha>0$ and $\beta \in(0,1)$ are exogenous parameters, P is the price of the good, and A is the money invested in marketing. Assume that $c>0$ is the unit cost of producing the good.

1. Write down the firms profit function.
2. Find the price P and the money spent on advertising A that satisfy the first order optimality conditions.
3. Verify that the second order sufficient optimality conditions are satisfied.

Exercise 4

A firm produces two commodities whose quantities are denoted as q_{1} and q_{2}. The corresponding commodity prices are p_{1} and p_{2}, respectively. The cost of producing quantities $\left(q_{1}, q_{2}\right)$ is given by the cost function $C\left(q_{1}, q_{2}\right)=2 q_{1}^{2}+q_{1} q_{2}+2 q_{2}^{2}$. The firm's profit maximization problem is

$$
\max _{q_{1}, q_{2}} \pi=p_{1} q_{1}+p_{2} q_{2}-\left(2 q_{1}^{2}+q_{1} q_{2}+2 q_{2}^{2}\right)=\mathbf{p}^{T} \mathbf{q}-\mathbf{q}^{T} A \mathbf{q}
$$

where $\mathbf{p}=\left(p_{1}, p_{2}\right)^{T}, \mathbf{q}=\left(q_{1}, q_{2}\right)^{T}$ and $A=\left[\begin{array}{cc}2 & \frac{1}{2} \\ \frac{1}{2} & 2\end{array}\right]$.

Find the profit-maximizing quantities q_{1}^{*} and q_{2}^{*}.

Exercise 5

Consider a problem of fitting a linear model $y_{i}=\alpha+\beta x_{i}$ into a data with observations $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$, where $x_{i}, y_{i} \in \mathbb{R}$:

$$
\min _{\alpha, \beta} \sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2} .
$$

a) Use the first order optimality conditions to find the optimal $\hat{\alpha}$ and $\hat{\beta}$:

$$
\begin{aligned}
& \hat{\alpha}=\bar{y}-\hat{\beta} \bar{x}, \\
& \hat{\beta}=\frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-n \bar{x} \bar{y}}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}} .
\end{aligned}
$$

Here \bar{x} and \bar{y} are the arithmetic mean of x_{i} and y_{i}, respectively.
b) Find the Hessian matrix of the objective function and use it to show that the objective function is strictly convex.

Exercise 6

a) Consider the following budget set $B=\left\{(x, y) \in \mathbb{R}^{2}: p_{x} x+p_{y} y \leq w, \quad x, y \geq 0\right\}$ where $p_{x}, p_{y}, w>0$. Show that this set is convex and compact. Tip: you may use the result that $\left\{x \in \mathbb{R}^{n}: f(x) \leq 0\right\}$ is closed for any continuous function f and that any intersection of closed sets is closed.
b) Assume that $U(x, y)=x^{a} y^{b}, a, b>0$. Argue why the maximizers of U over B are the same as maximizers of $\ln (U(x, y))$ over $\hat{B}=\left\{(x, y) \in \mathbb{R}^{2}: p_{x} x+p_{y} y \leq w, \quad x, y>0\right\}$.
c) What can you say about the existence and uniqueness of the solutions of

$$
\max _{(x, y) \in B} U(x, y)
$$

