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Motivation

• Policy gradient (PG) methods may be often ineffective in

terms of requiring lots (and lots and lots) of data

because of high variance of gradient estimates
Similar to MC approaches for value function estimation

• Temporal difference (TD) approaches have smaller 
variance compared to MC but they cannot handle

stochastic policies or continuous action spaces like PG

• Can we combine PG with something like TD?

https://www.youtube.com/watch?v=xyJAvghtqIM

https://www.youtube.com/watch?v=xyJAvghtqIM


 

Today

• Combining policy gradient with value functions

→ actor-critic methods



 

Learning goals

• Understand basis of actor-critic approaches



 

Value-based vs policy-based RL

VALUE FUNCTION POLICY

Value-based
• Learnt value function
• Implicit policy

Policy-based
• No value function
• Learnt policy

Actor-critic
• Learnt value function
• Learnt policy



 

Actor-critic approach – overview 

• Critic estimates value 
function

• Actor updates policy in 
direction of critic

• For example, policy 
gradient where critic 
estimates value function
– See previous lectures 



 

Policy gradient – recap
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2. 

3. 
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Note: Discount omitted 
to get shorter notation



 

Policy gradient – recap

REINFORCE

1. Run policy, collect  

2. 

3. θ←θ+α∇ θ R(θ)
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Policy gradient – recap

REINFORCE

1. Run policy, collect  

2. 

3. θ←θ+α∇ θ R(θ)

What’s this?
Does it look familiar?

Qπ (st , at)=∑t=t '

T
E [ r (s t '

i , at '
i
)∣st , a t ]

Q is true expected reward, unlike the estimate in step 2.
This would reduce variance of the gradient estimate.
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Remember the baselines?
∇ θR (θ)=E θ [∇θ log pθ( τ)(R (τ)−b) ]

How to find a good baseline for                 ?

Baseline: a function that does not affect the expected gradient, that is,
one that does not depend on the action or new policy parameters.

∇ θ R (θ)≈
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J
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T
∇θ log πθ(at

i
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i
) (Q (s t

i ,a t
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Remember the baselines?
∇θ R (θ)=Eθ [∇θ log pθ (τ )(R(τ )−b) ]

How to find a good baseline for                 ?

Baseline: a function that does not affect the expected gradient, that is,
one that does not depend on the action or new policy parameters.

We can use value function           as baseline!
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Remember the baselines?
∇θ R (θ)=Eθ [∇θ log pθ (τ )(R(τ )−b) ]

How to find a good baseline for                 ?

Baseline: a function that does not affect the expected gradient, that is,
one that does not depend on the action or new policy parameters.

We can use value function           as baseline!
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Value of a compared to
the expected value



 

Determining the advantage

∇θ R(θ)≈
1
J∑i=1

J

(∑t=0

T
∇ θ log πθ(a t

i
∣s t
i
)A (s t

i ,a t
i
))

How to find a good
estimate for this?

Estimate Q, V, or A?

V has the fewest parameters, so let’s estimate it (from data).
But how to then get A?

A(st ,a t)=Q (st ,a t)−V (st)

Q (s t , at )=r (s t , at )+γ E st +1∼π( s t+1∣s t , a t) [V (s t+1) ]

A (s t ,at )≈r(s t ,a t)+γV (s t+1)−V (s t)

Does this look familiar?

Thus, knowing V allows approximating A.

How to fit V?



 

Fitting value functions (mostly recap)

• Episodic batch fitting: (1) gather data, (2) fit (least 
squares) over gathered data 

• Data = state-value pairs 

• Requires episodic environments to get the value
• Fitting criterion L(ϕ)=∑i‖V ϕ(s i)− y i‖

2

{(sti ,∑t '=t

T
r t '
i )}

y t
i

Any parametric function
approximator

But what about non-episodic?
What do we do then?



 

Fitting value functions (mostly recap)

• Non-episodic batch fitting: (1) gather data, (2) fit (least 
squares) over gathered data 

• Data = state-value pairs 

• Identical fitting criterion
L(ϕ)=∑i‖V ϕ(s i)− y i‖

2

{( s t
i , r t

i
+V (s t+1

i
)) }

y t
i

Any parametric function
approximator



 

Wrap-up: A batch TD actor critic 

Batch actor-critic

1. Run policy, collect  

2. Fit  

3. Evaluate

4. Evaluate 

5. Update

6. Repeat

{τ i } τ i=(s0
i ,a0

i , r0
i , s1

i ,a1
i , r1

i ,…)

θ←θ+α∇ θ R(θ)

A (s t ,at )≈r (s t ,a t)+γV ϕ(s t+1)−V ϕ(s t )

∇θ R(θ)≈
1
J∑i=1

J
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T
∇ θ log πθ(a t

i
∣s t
i
)A (s t

i ,a t
i
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What about discount?

V ϕ (st)



 

An on-line TD actor critic (with discount) 

On-line actor-critic

1. Take action 

2. Update          using  

3. Evaluate

4. Evaluate 

5. Update

6. Repeat

a=π(a∣s)

θ←θ+α∇ θ R(θ)

A(st ,a t)≈r(st , at )+γV (s t )−V (s t+ 1)

∇θ R(θ)≈∇ θ log πθ (at
i∣s t

i)A (s t
i ,a t

i)

ϕ←ϕ+β (r t+γV ϕ(s t+ 1)−V ϕ (s t))∇ ϕV ϕ(s t)V ϕ (st)

learning
rate

From lecture 4!

In practice, even this works best in batches
(decreases variance in gradient estimates).

Note: TD estimate can be biased.



 

Deep Deterministic Policy Gradient (DDPG)

Off-policy actor-critic with batch updates and “slow” targets

1. Add data to replay buffer using

2. Update             using

3. Update           using

4. “Delayed” update of Q and policy parameter targets 
using run-time averaging:

a=πθ(s)+ϵ ,where ϵ∼N (0 ,σ 2
)

θ←θ+α∇ θQϕ( s t ,πθ(st ))

Qϕ(s t ,at )

[Lillicrap et al. 2016, ICLR]

ϕ←ϕ+β ( r t+γQ ϕtarg
(st+1 ,πθtarg

(s t +1))−Q ϕ(s t , at ))∇ ϕQ ϕ(st , at )

πθ(s t )

ϕtarg←ξϕtarg+(1−ξ)ϕ

θtarg←ξθtarg+(1−ξ)θ



 

Challenge: Gradient step sizes

θ←θ+α∇ θ R(θ)

Gradient step size affects convergence (speed) greatly
but is difficult to set.

Incorrect step size may lead to divergence or slow convergence.

How to guarantee policy improvement?



 

Reformulating policy gradient through 
surrogate advantage
• How to predict performance of updated policy (since we 

do not have data about it yet)?

• Surrogate advantage            approximates performance 
difference between previous and updated policies

Rθ old

IS
(θ)=Eτ∼πθold [

πθ (a t∣st)

πθ old
(a t∣st)

A
πθold (st , a t)]

Rθold

IS (θ)

See the importance sampling in effect!

Can we find a lower bound for this? 
Yes, using KL-divergence.



 

Bounding surrogate advantage

maxθ (Rθold

IS
(θ)−c DKL

max
(θold ,θ))

Result: Policy is guaranteed to improve by optimizing

where

is the maximum Kullback-Leibler divergence between the policies.

DKL
max (θold ,θ)

known constant

In practice leads to slow convergence, 
not easy to optimize.

Optimizing the lower bound function 
does not require step size!Intuition: The further

you go from
current policy,
the larger is the
penalty.



 

Trust region policy optimization
(Schulman et al. 2015)

maxθRθold

IS (θ)

Instead of lower bound, optimize surrogate advantage and constrain 
KL-divergence:

such that 

Intuition: Limit the policy parameter change such that the actions do 
not change too much in the relevant part of state space. 

For policies with many parameters, this is still (too) costly to compute 
and the constraint is approximated (details in the paper).

D̄KL(θold ,θ)≡E τ∼πθ old
[D KL(πθ(.∣s ) ,πθold

(.∣s)) ]≤δ

Next: another way to implement the same idea.



 

Proximal policy optimization
(Schulman et al. 2017)
Remember the surrogate advantage? 

Optimize instead

Rθ old

IS
(θ)=E τ∼πθold [

πθ (a t∣s t)

πθ old
(a t∣s t)

A
πθold(s t , a t)]

LCLIP(θ)=E τ∼πθold
[min(g t(θ)A ,clip(g t(θ) ,1−ϵ ,1+ϵ)A)]

g t (θ)

Looks horrible, look at the
figure instead.
In practice: limit influence
of policy change.



 

Proximal policy optimization
(Schulman et al. 2017)

PPO is a standard baseline at the moment.

Algorithm: PPO
for i = 1, 2, … do
    Run policy, collect trajectories
    Compute advantage estimates 
        using current value function
    Update policy by maximizing                  for K epochs of stochastic
        gradient ascent
    Fit              by minimizing                                         using gradient 
        descent

{ τ i } τ i=(s0
i ,a0

i , r0
i , s1

i ,a1
i , r1

i ,…)

V ϕ (st)
A(s t ,a t)≈r(st , at )+γV (s t )−V (s t+1)

LCLIP(θ)

V ϕ (st) L(ϕ)≡∑i‖V ϕ(si)− y i‖
2

Other variants
possible



 

Recent successful algorithms

• Twin Delayed DDPG (TD3), 2018
– Similar to DDPG but improves value function approximation
– Off-policy

• Soft Actor Critic (SAC), 2018
– Q-function learning encouraging policy randomness 

(exploration)
– Stochastic policy for continuous actions

– Off-policy



 

Summary

• Actor-critic approaches allow addressing continuing 
problems and continuous action spaces 

• They may also learn faster than policy gradient because 
variance of policy gradient estimate is reduced

• TRPO/PPO aim to control extent of policy update steps 
to avoid oscillation/divergence due to large updates



 

Next: Model-based RL

• Even with critic, policy-based approaches often require 
huge amounts of data 

• Can we somehow benefit even more from earlier 
experiences?

• Reading: Sutton & Barto 8 - 8.2
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