
ELEC-E8740 — Gauss-Newton with Line
Search and Levenberg-Marquardt Algorithm
Simo Särkkä
Aalto University

October 11, 2022



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

2 / 35

Contents

1 Intended Learning Outcomes and Recap

2 Gauss–Newton with Line Search

3 Levenberg–Marquardt Algorithm

4 Regulazed Problems, Convergence Criteria, and
Quasi–Newton

5 Summary



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

4 / 35

Intended Learning Outcomes

After this lecture, you will be able to:
understand the principle of line search in Gauss–Newton
method;
understand the principle of Levenberg–Marquardt
algorithm;
apply Gauss–Newton method with line search and
Levenberg–Marquardt algorithm to sensor fusion problems.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

5 / 35

Recap (1)

Sensor fusion problems are often nonlinear.
General nonlinear model has the form:

y = g(x) + r,

General cost function that we considered:

JWLS(x) = (y− g(x))TR−1(y− g(x)).

Gradient descent algorithm takes steps towards the
direction of negative gradient.
Gauss–Newton iteratively linearizes the model and solves
the linear optimization problem.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

6 / 35

Recap (2)

Algorithm 1 Gradient Descent

Require: Initial parameter guess x̂(0), data y, function g(x), Jacobian
Gx(x)

Ensure: Parameter estimate x̂WLS
1: Set i ← 0
2: repeat
3: Calculate the update direction

∆x(i+1) = GT
x(x̂(i)) R−1(y− g(x̂(i)))

4: Select a suitable γ(i+1)

5: Calculate
x̂(i+1) = x̂(i) + γ(i+1)∆x(i+1)

6: Set i ← i + 1
7: until Converged



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

7 / 35

Recap (3)

Algorithm 2 Gauss–Newton Algorithm

Require: Initial parameter guess x̂(0), data y, function g(x), Jacobian
Gx

Ensure: Parameter estimate x̂WLS
1: Set i ← 0
2: repeat
3: Calculate the update direction

∆x(i+1) = (GT
x(x̂(i))R−1Gx(x̂(i)))−1GT

x(x̂(i))R−1(y− g(x̂(i)))

4: Calculate
x̂(i+1) = x̂(i) + ∆x(i+1)

5: Set i ← i + 1
6: until Converged
7: Set x̂WLS = x̂(i)



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

9 / 35

Gauss–Newton Algorithm with Line Search:
Motivation

Gauss–Newton uses linearization to determine the next
iterate.
As linearization is a local approximation, taking the full step
might over/undershoot.
Instead, we can use scaled Gauss–Newton step:

x̂(i+1) = x̂(i) + γ∆x̂(i+1),

∆x̂(i+1) = (GT
x(x̂(i))R−1Gx(x̂(i)))−1GT

x(x̂(i))R−1(y− g(x̂(i))),

Here γ is the scaling factor – typically γ ∈ [0,1].
How should we select the scaling factor?



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

10 / 35

Gauss–Newton Algorithm with Line Search:
Derivation

One way to select the scaling parameter γ is to use a line
search.
Given the Gauss–Newton increment ∆x̂(i+1), we can
consider cost as function of the scale parameter:

J(i)
WLS(γ) = JWLS

(
x̂(i) + γ∆x̂(i+1)

)
.

Then the idea of line search is to locally optimize the above
function in the range [0,1].
In the exact line search we simply find the minimum e.g. by
evaluating it in grid.
We could also use bisection algorithm or interpolation
methods to find the minimum.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

11 / 35

Exact Line Search on Grid

Algorithm 3 Line Search on Grid

Require: Previous iterate x̂(i), the update direction ∆x̂(i+1), the cost
function JWLS(x), and the grid size Ng .

Ensure: Optimal step size γ∗.
1: Set γ∗ ← 0 and J∗ ← JWLS

(
x̂(i)
)

2: for j ∈ {1,2, . . . ,Ng} do
3: Set γ ← j/Ng
4: if JWLS

(
x̂(i) + γ∆x̂(i+1)

)
< J∗ then

5: Set γ∗ ← γ
6: Set J∗ ← JWLS

(
x̂(i) + γ∗∆x̂(i+1)

)
7: end if
8: end for



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

12 / 35

Inexact Line Search (1/2)
The line search does not need to be exact to guarantee to
find the minimum.
In backtracking we decrease the parameter γ until it
provides a sufficient decrease in the cost.
One way is to halve the step size until the cost decreases.
In Armijo backtracking we demand that the cost is
decreased at least with an amount that is predicted by a
first order Taylor series expansion.
The first order Taylor series expansion for the cost as
function of scale parameter gives:

JWLS

(
x̂(i) + γ∆x̂(i+1)

)
≈ JWLS

(
x̂(i)
)
− 2γ[∆x̂(i+1)]TGT

x(x̂(i)) (y− g(x̂(i))).



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

13 / 35

Inexact Line Search (2/2)

Then we demand that the cost decrease should satisfy the
Armijo condition

JWLS

(
x̂(i) + γ∆x̂(i+1)

)
− JWLS

(
x̂(i)
)

≤ −2β γ[∆x̂(i+1)]TGT
x(x̂(i)) (y− g(x̂(i))).

Here β is a parameter that we can choose freely on range
[0,1) (e.g. β = 0.1).
We then decrease γ by multiplying it with a parameter τ
(e.g., τ = 0.5) on the range (0,1) until the condition is
satisfied:

γ ← τ γ.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

14 / 35

Line Search with Armijo Backtracking

Algorithm 4 Line Search with Armijo Backtracking

Require: Previous iterate x̂(i), the update direction ∆x̂(i+1), the cost
function JWLS(x), and parameters β and τ .

Ensure: Suitable step size γ.
1: Set γ ← 1 and J0 ← JWLS

(
x̂(i)
)
.

2: Set d ← −2β [∆x̂(i+1)]TGT
x(x̂(i)) (y− g(x̂(i)))

3: while JWLS
(
x̂(i) + γ∆x̂(i+1)

)
> J0 + γ d do

4: Set γ ← τ γ
5: end while



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

15 / 35

Gauss–Newton Algorithm with Line Search
Algorithm 5 Gauss–Newton Algorithm with Line Search

Require: Initial parameter guess x̂(0), data y, function g(x), Jacobian
Gx(x)

Ensure: Parameter estimate x̂WLS
1: Set i ← 0
2: repeat
3: Calculate the update direction

∆x(i+1) = (GT
x(x̂(i))R−1Gx(x̂(i)))−1GT

x(x̂(i))R−1(y− g(x̂(i)))

4: Compute optimal γ(i+1) with line search (Algorithm 3 or 4)
5: Calculate

x̂(i+1) = x̂(i) + γ(i+1)∆x(i+1)

6: Set i ← i + 1
7: until Converged
8: Set x̂WLS = x̂(i)



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

16 / 35

Gauss–Newton Algorithm with Line Search:
Example (1/3)

We measure the range to
each landmark:

yR
1 =

√
(sx

1 − px )2 + (sy
1 − py )2 + rR

1 ,

...

yR
M =

√
(sx

M − px )2 + (sy
M − py )2 + rR

M .

This is a non-linear model

y = g(x) + r

We can find x = (px ,py ) by
minimizing the cost function

JWLS(x) = (y−g(x))TR−1(y−g(x)).



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

17 / 35

Gauss–Newton Algorithm with Line Search:
Example (2/3)

x1

x2 Gradient descent

Gauss–Newton

x1

x2 Gradient descent

Gauss–Newton (LS)



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

18 / 35

Gauss–Newton Algorithm with Line Search:
Example (3/3)

0 2 4 6 8 10 12

10−1

101

103

Iteration i

C
os

tJ
(x
)

Gradient Descent

Gauss–Newton

Gauss–Newton (LS)



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

20 / 35

Levenberg–Marquardt Algorithm: Motivation

Gradient descent: Quickly moves to low cost area, creeps
to minimum
Gauss–Newton: Straight to minimum, may take a detour
Can we have the best of both worlds?
. . . kind of, the Levenberg–Marquardt algorithm.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

21 / 35

Levenberg–Marquardt Algorithm: Derivation
The Levenberg–Marquardt algorithm can be seen as a
regularized version of the Gauss–Newton algorithm.
Cost function approximation:

JReLS(x) ≈
(

y− g(x̂(i))−Gx(x̂(i))(x− x̂(i))
)T

× R−1
(

y− g(x̂(i))−Gx(x̂(i))(x− x̂(i))
)

+ λ(x− x̂(i))T(x− x̂(i))

We can now minimize this as a linear regularized problem:

x = x̂(i)+(GT
x(x̂(i))R−1Gx(x̂(i))+λI)−1GT

x(x̂(i))R−1(y−g(x̂(i)))

Using this as the next iterate gives the iteration:

x̂(i+1) = x̂(i) + ∆x̂(i+1),

∆x̂(i+1) = (GT
x(x̂(i))R−1Gx(x̂(i)) + λI)−1GT

x(x̂(i))R−1(y− g(x̂(i))).



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

22 / 35

Levenberg–Marquardt Algorithm: Damping (1/2)
The Levenberg–Marquardt update:

x̂(i+1) = x̂(i) + ∆x̂(i+1),

∆x̂(i+1) = (GT
x(x̂(i))R−1Gx(x̂(i)) + λI)−1GT

x(x̂(i))R−1(y− g(x̂(i))).

How should the damping parameter λ be chosen?
If λ→ 0:

∆x̂(i+1) → (GT
xR−1Gx)−1GT

xR−1(y− g(x̂(i)))

If λ→∞:

∆x̂(i+1) → 1
λ

GT
xR−1(y− g(x̂(i))).

Ideally, in flat regions of the cost function where the linear
approximation is good, λ should be chosen small, whereas
in steep regions, it should be chosen large.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

23 / 35

Levenberg–Marquardt Algorithm: Damping (2/2)

A simple strategy is to start from some damping value λ(0)

(e.g. λ(0) = 10−2) and select a fixed factor ν (e.g. ν = 10).
Then at each step we do the following:

First compute a candidate x̂(i+1) using the previous
parameter value λ(i−1). Then proceed as follows:

If JWLS(x̂(i+1)) < JWLS(x̂(i)) then accept x̂(i+1) and decrease
the damping parameter by λ(i) = λ(i−1)/ν.
Otherwise continue with x̂(i+1) = x̂(i) and increase the
damping parameter by λ(i) = ν λ(i−1).

This idea appears already in the original article of
Marquadt (1963).
More sophisticated adaptation schemes can also be found
in literature.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

24 / 35

Levenberg–Marquardt Algorithm: Scaling

The resulting algorithm is not scale invariant.
To make it scale invariant we can normalize the regularized
cost function approximation by using the diagonal values of
GT

x(x̂(i))R−1Gx(x̂(i)).
This is equivalent to replacing the regularization term λI
with λ diag(GT

x(x̂(i))R−1Gx(x̂(i))).
The scaled iteration then becomes:

x̂(i+1) = x̂(i) + ∆x̂(i+1),

∆x̂(i+1) = (GT
x(x̂(i))R−1Gx(x̂(i)) + λ diag(GT

x(x̂(i))R−1Gx(x̂(i))))−1

×GT
x(x̂(i))R−1(y− g(x̂(i))).



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

25 / 35

Levenberg–Marquardt Algorithm: Algorithm



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

26 / 35

Levenberg–Marquardt Algorithm: Example

x1

x2 Gradient descent

Gauss–Newton (LS)

Levenberg–Marquardt

Levenberg–Marquardt-scaled



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

27 / 35

Decrease in Cost

0 2 4 6 8 10 12
10−2

10−1

100

101

102

103

104

Iteration i

C
os

tJ
(x
)

Gradient Descent

Gauss–Newton

Gauss–Newton (LS)

Levenberg–Marquardt

Levenberg–Marquardt-scaled



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

29 / 35

Regularized Non-Linear Models

The cost function that we considered:

JWLS(x) = (y− g(x))TR−1(y− g(x)).

However, sometimes we are interested in regularized cost
functions.
Luckily, we can use the following simple trick:

JReLS(x) = (y− g(x))TR−1(y− g(x)) + (m− x)TP−1(m− x)

=

([
y
m

]
−
[
g(x)

x

])T [R−1 0
0 P−1

]([
y
m

]
−
[
g(x)

x

])
.

This is now a non-regularized cost function and hence all
the algorithms presented are applicable.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

30 / 35

Quasi-Newton Methods (1/2)
Here we have only concentrated on least squares
problems.
There also exists a wider class of quasi-Newton methods.
Let us consider a generic cost function J(x) which we wish
to minimize.
Assume that our current guess for the minimum is x(i) – we
can now Taylor expand the cost function as follows:

J(x) ≈ J(x(i)) +

[
∂J(x)

∂x

]T
∣∣∣∣∣
x=x(i)

(x− x(i))

+
1
2

(x− x(i))T
[
∂2J(x)

∂x2

]∣∣∣∣
x=x(i)

(x− x(i)).

We can now minimize the right hand side with respect to x
and use the result as the next guess.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

31 / 35

Quasi-Newton Methods (2/2)
The resulting Newton’s method takes the following form:

x(i+1) = x(i) −
[
∂2J(x)

∂x2

]−1
∂J(x)

∂x

∣∣∣∣∣
x=x(i)

.

However, computation of the Hessian is often not desirable.
In so called quasi-Newton methods the Hessian is
approximated in various ways.
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
is a famous method for this.
Gauss–Newton method can also be seen as a
quasi–Newton method where we approximate the Hessian
by 2GT

xR−1Gx.
The line search procedure is typically an essential part of
quasi-Newton methods.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

32 / 35

Convergence Criteria
When should we terminate iterations in optimization
method?
Various criteria and their combinations are used:

The absolute or relative change in the parameter estimate
falls below a threshold, e.g.:

‖∆x(i)‖ < εp

.
The absolute or relative change in the cost falls below a
certain threshold, e.g.:∣∣∣∣ (J(xi )− J(x(i+1)))

J(xi )

∣∣∣∣ < εc

.
A maximum number of iterations is reached.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

34 / 35

Summary (1/2)
The Gauss–Newton update can be scaled with additional
parameter γ:

x̂(i+1) = x̂(i) + γ∆x̂(i+1).

The parameter can be found via line search that minimizes

J(i)
WLS(γ) = JWLS

(
x̂(i) + γ∆x̂(i+1)

)
.

We can also use inexact line search which ensures that the
cost is decreased a sufficient amount.
In Levenberg–Marquardt (LM) algorithm we replace the
linear approximation in Gauss–Newton with its regularized
version.
In LM algorithm, we find a suitable regularization
parameter λ via an iterative procedure.



Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Särkkä

35 / 35

Summary (2/2)

We can also consider regularized nonlinear problems with
a simple trick:

JReLS(x) = (y− g(x))TR−1(y− g(x)) + (m− x)TP−1(m− x)

=

([
y
m

]
−
[
g(x)

x

])T [R−1 0
0 P−1

]([
y
m

]
−
[
g(x)

x

])
.

Quasi-Newton methods are more general optimization
methods that approximate the Hessian in Newton’s
method.
Various convergence criteria are available for terminating
iterative optimization methods.


	Intended Learning Outcomes and Recap
	Gauss–Newton with Line Search
	Levenberg–Marquardt Algorithm
	Regulazed Problems, Convergence Criteria, and Quasi–Newton
	Summary

