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Intended Learning Outcomes

After this lecture, you will be able to:
@ understand the principle of line search in Gauss—Newton
method;
@ understand the principle of Levenberg—Marquardt
algorithm;
@ apply Gauss—Newton method with line search and
Levenberg—Marquardt algorithm to sensor fusion problems.
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Recap (1)

@ Sensor fusion problems are often nonlinear.
@ General nonlinear model has the form:

y=9(x)+r,

@ General cost function that we considered:

dwes(X) = (y — 9(x))" R~ (y — g(x)).

@ Gradient descent algorithm takes steps towards the
direction of negative gradient.

@ Gauss—Newton iteratively linearizes the model and solves
the linear optimization problem.
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Recap (2)

Algorithm 1 Gradient Descent

Require: Initial parameter guess X(%), data y, function g(x), Jacobian
Gx(x)
Ensure: Parameter estimate Xy s
1: Seti«+ 0
2: repeat
3: Calculate the update direction

AX(+D = GLRD) R (y — (%)

»

Select a suitable ~(+1)
Calculate

a

RO+ = g0) | (1) Ay (i+1)

6: Seti« i+ 1
7: until Converged
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Recap (3)

Algorithm 2 Gauss—Newton Algorithm

Require: Initial parameter guess X(%), data y, function g(x), Jacobian
Gix
Ensure: Parameter estimate Xys
1: Seti«+ 0
2: repeat
3: Calculate the update direction

AXD = (GX(%)R~1G(X?)) ' GI(RO)R(y - g(%))

4: Calculate

%O — %) 1 Ax(+1)
5: Seti«i+1
6: until Converged

N

: Set ﬁWLS = ﬁ(’)
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Gauss—Newton Algorithm with Line Search:
Motivation

@ Gauss—Newton uses linearization to determine the next
iterate.

@ As linearization is a local approximation, taking the full step
might over/undershoot.

@ Instead, we can use scaled Gauss—Newton step:
KD = g0 4 A AR,
AR = (GR(RD)R1G (X)) Gy (xR (y — g(x1)),

@ Here ~ is the scaling factor — typically v € [0, 1].
@ How should we select the scaling factor?
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Gauss—Newton Algorithm with Line Search:
Derivation

@ One way to select the scaling parameter ~ is to use a line
search.

@ Given the Gauss—Newton increment AX(*"), we can
consider cost as function of the scale parameter:

Jts(1) = s ()A((i) + ’YA)A((M)) :

@ Then the idea of line search is to locally optimize the above
function in the range [0, 1].

@ In the exact line search we simply find the minimum e.g. by
evaluating it in grid.

@ We could also use bisection algorithm or interpolation
methods to find the minimum.
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Exact Line Search on Grid

Algorithm 3 Line Search on Grid

Require: Previous iterate X(, the update direction AX(+"), the cost
function Jwis(X), and the grid size N,.
Ensure: Optimal step size ~*.
1: Sety* + 0 and J* + Jwis (ﬁ(i))
2: forje{1,2,...,Ny} do

3: Sety « j/Ny

40 if duis (X0 +7A%0FD) < J* then
5 Set v* «+ ~

6: Set J* + Jwis (X + *AXUHD)
7 end if

8: end for
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Inexact Line Search (1/2)

@ The line search does not need to be exact to guarantee to
find the minimum.

@ In backtracking we decrease the parameter ~ until it
provides a sufficient decrease in the cost.

@ One way is to halve the step size until the cost decreases.

@ In Armijo backiracking we demand that the cost is
decreased at least with an amount that is predicted by a
first order Taylor series expansion.

@ The first order Taylor series expansion for the cost as
function of scale parameter gives:

duns (R0 +4A%D)

~ dws (X0) — 28 ITTGEEO) (v - 93 ).
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Inexact Line Search (2/2)

@ Then we demand that the cost decrease should satisfy the
Armijo condition

Jwis (’A((i) + 7Aﬁ(i+1)) — Jwis (f((i))
< —28~[AxITGR (x0) (y — g(x1)).

@ Here 3 is a parameter that we can choose freely on range
[0,1) (e.g. B =0.1).

@ We then decrease ~ by multiplying it with a parameter
(e.g., 7 = 0.5) on the range (0, 1) until the condition is
satisfied:

Y — T7.
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Line Search with Armijo Backtracking

Algorithm 4 Line Search with Armijo Backtracking

Require: Previous iterate X(), the update direction AX(+"), the cost
function Jwis(x), and parameters Band T.

Ensure: Suitable step size ~.

Set Y 1 and Jo < JWLS ( V)

Set d + —23 [AXH]TGy (X (’))(v g9(x))

while Jy s ()A((I) + ’yA)A((i'H)) >Jp+yddo
Sety <« 774

end while

~

SANE AR A
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Gauss—Newton Algorithm with Line Search

Algorithm 5 Gauss—Newton Algorithm with Line Search

Require: Initial parameter guess X(), data y, function g(x), Jacobian
Gx(x)
Ensure: Parameter estimate Xy.s
1: Seti«+ 0
2: repeat
3: Calculate the update direction

AX (i+1) (GT(X ) 1G( )) 1GT(X ) _1(V—g(f((’)))

Compute optimal v(*+") with line search (Algorithm 3 or 4)
Calculate

a s

R0+ Z ) (1) px(i+1)

6: Seti« i+ 1
7: until Converged
8: Set ﬁWLS =x0
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Gauss—Newton Algorithm with Line Search:
Example (1/3)

@ We measure the range to
each landmark:

v = \(si =P+ (sf = p2 il )

i = tsi =P+ (sl PR O |
@ This is a non-linear model :ﬁ@
U /\/\/\/\/\Q

y=9(x)+r ®~PPF
@ We can find x = (p*, p¥) by H J

minimizing the cost function
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Gauss—Newton Algorithm with Line Search:
Example (2/3)

7 .~ N Y N 7 ry
/ < | —%— Gradient descent / —»— Gradient descent

- # - Gauss—Newton

- # = Gauss—Newton (LS)
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Gauss—Newton Algorithm with Line Search:
Example (3/3)

Gradient Descent

"N - = = Gauss—Newton
LA R

’ L Gauss—Newton (LS)
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Levenberg—Marquardt Algorithm: Motivation

@ Gradient descent: Quickly moves to low cost area, creeps
to minimum

@ Gauss—Newton: Straight to minimum, may take a detour
@ Can we have the best of both worlds?
@ ...kind of, the Levenberg—Marquardt algorithm.
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Levenberg—Marquardt Algorithm: Derivation

@ The Levenberg—Marquardt algorithm can be seen as a
regularized version of the Gauss—Newton algorithm.
@ Cost function approximation:

drats () ~ (¥~ 9(&7) — Ge(X)(x ~ 7))
xR (y - g(%?) - Gx(8")(x — %))
+ A(x — XN T(x — %)

@ We can now minimize this as a linear regularized problem:

x = X0 4+(G(XD)RGx (X)) +A) ' G (X )R (y—-g (X))
@ Using this as the next iterate gives the iteration:

KD = () 1 A0+
AxH) = (GFEMRT G (D) + A)TTGI xR (y — g(x)).
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Levenberg—Marquardt Algorithm: Damping (1/2)
@ The Levenberg—Marquardt update:
%01 = () 4 ARUH),
AR = (G RD)RTTGx (X)) + A TG RD)R™ (y — g(X)).
@ How should the damping parameter A be chosen?
@ IfA—0:

AKX 5 (GIR™'Gx) ' GIR(y — 9(%")

@ If A\ = oo

ARG %G;R*1 (y — g&")).

@ |deally, in flat regions of the cost function where the linear
approximation is good, A should be chosen small, whereas
in steep regions, it should be chosen large.
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Levenberg—Marquardt Algorithm: Damping (2/2)

@ A simple strategy is to start from some damping value A(®
(e.g. O = 1072) and select a fixed factor v (e.g. v = 10).
@ Then at each step we do the following:
o First compute a candidate """ using the previous
parameter value \(—1). Then proceed as follows:
o If dws(XV) < Jwis(X?) then accept X'+ and decrease
the damping parameter by A? = (=" /.,
@ Otherwise continue with X' = %) and increase the
damping parameter by A? = p AU=1).
@ This idea appears already in the original article of
Marquadt (1963).

@ More sophisticated adaptation schemes can also be found
in literature.
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Levenberg—Marquardt Algorithm: Scaling

@ The resulting algorithm is not scale invariant.

@ To make it scale invariant we can normalize the regularized
cost function approximation by using the diagonal values of
GI(XD)R™1 Gy (X)),

@ This is equivalent to replacing the regularization term Al
with A diag(GI (XD)R~1Gx(x())).

@ The scaled iteration then becomes:

K0+ — %) 4 Ag(+1),
AXH) = (GFERD)R™ G (%)) + A diag(GF (XD)R™1 G (1)) "
x Gx(XR™(y — g(x)).
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Levenberg—Marquardt Algorithm: Algorithm

Algorithm 4.6 Levenberg-Marquardt Algorithm with simple adaptation

Input: Initial parameter guess x(), data y, function g(x), Jacobian G, initial damping
A and parameter v.
Output: Parameter estimate Xwps
1: Seti + 0and A« A,

2: repeat
3 Compute the (candidate) parameter update:
4 if using scaled version then

AxEHD = (GI&(x))R—lGX(;‘(z)) +)\diag(GI(i(v))R—lGx(i(z))))—l
x Gr(EDR(y - g(x V)
5 else

A = (GIEDR Gy (x7) + A 'GIR Yy — g(x?))

6: end if
70 if Jwis (X0 4+ AXEFD) < Jyp (%) then
8: Accept the candidate and decrease A:
£+ — () 4 AxG+D

AN
9: Seti i+ 1
10: else
11: Reject the candidate and increase \:

A=vA

12: end if

13: until Converged
14: Set Xy = x(¥)

A

Aalto University
School of Electrical
Engineering

Y T T B T T Y B B T T T T\ rr Y e
Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Sarkka
25/35



Levenberg—Marquardt Algorithm: Example

7

—— Gradient descent
- - Gauss—Newton (LS)
T Levenberg-Marquardt

«» - - Levenberg-Marquardt-scaled

A
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Decrease in Cost

10*
10°
102

10!

Cost J(x)

10°
10!

1072

T T T

T TTTITm

T T T T

T T T

T T TTTIT

T T T

Gradient Descent

L1

W - = = Gauss—-Newton
AY =
AN .. Gauss—Newton (LS) E
-« = .« Levenberg-Marquardt E

- -« = Levenberg-Marquardt-scaled

Ll

Ll

Ll

Ll

o

N
N
(o))
(o]
—
o
-
N

lteration i

—
Aalto University
School of Electrical
Engineering

Y T T B T T Y B B T T T T\ rr Y e
Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
Simo Sarkka
27/35



Regularized Non-Linear Models

@ The cost function that we considered:

Jwis(x) = (¥ — 9(x)) TR (y — g(x)).

@ However, sometimes we are interested in regularized cost
functions.

@ Luckily, we can use the following simple trick:

Jrets(X) = (¥ = 9(x))'R™'(y — g(x)) + (m — x)'P~'(m — x)

~(n-PED TS ] (- P,

@ This is now a non-regularized cost function and hence all
the algorithms presented are applicable.
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Quasi-Newton Methods (1/2)

@ Here we have only concentrated on least squares
problems.

@ There also exists a wider class of quasi-Newton methods.

@ Let us consider a generic cost function J(x) which we wish
to minimize.

@ Assume that our current guess for the minimum is x() — we
can now Taylor expand the cost function as follows:

J(%) ~ J(xD) + [‘3’“’6(;‘)] ! (x — x()
x=x(
- 2 .
+ %(X —x)T [88{((2)()] - (x —x().

@ We can now minimize the right hand side with respect to x
and use the result as the next guess.
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Quasi-Newton Methods (2/2)

@ The resulting Newton’s method takes the following form:

1
D) — 5 () PJ(x)] " ad(x)
)G 194

x=x(/
@ However, computation of the Hessian is often not desirable.

@ In so called quasi-Newton methods the Hessian is
approximated in various ways.

@ The Broyden—Fletcher—Goldfarb—Shanno (BFGS) method
is a famous method for this.

@ Gauss—Newton method can also be seen as a
quasi—Newton method where we approximate the Hessian
by 2GJR'Gy.

@ The line search procedure is typically an essential part of
quasi-Newton methods.
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Convergence Criteria

@ When should we terminate iterations in optimization
method?
@ Various criteria and their combinations are used:

e The absolute or relative change in the parameter estimate
falls below a threshold, e.g.:

1AxO| < e
e The absolute or relative change in the cost falls below a
certain threshold, e.g.:

(J(x') = J(xUH1))
J(x)

< €c

e A maximum number of iterations is reached.
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Summary (1/2)

@ The Gauss—Newton update can be scaled with additional
parameter ~:

K0+ = %0 AR+,
@ The parameter can be found via line search that minimizes
Jis(r) = dus (X0 + 18501

@ We can also use inexact line search which ensures that the
cost is decreased a sufficient amount.

@ In Levenberg—Marquardt (LM) algorithm we replace the
linear approximation in Gauss—Newton with its regularized
version.

@ In LM algorithm, we find a suitable regularization
parameter A via an iterative procedure.
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Summary (2/2)

@ We can also consider regularized nonlinear problems with
a simple trick:

Jrets(X) = (¥ = 9(x))"R™'(y — g(x)) + (m — x)"P~'(m - x)

T ro—
_([y] _[e)]) [RT © y] _ [9(x)
m X 0 P! m X '
@ Quasi-Newton methods are more general optimization
methods that approximate the Hessian in Newton’s

method.

@ Various convergence criteria are available for terminating
iterative optimization methods.
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