Mathematics for Economists

Mitri Kitti
Aalto University
Quadratic Forms

Quadratic forms

- Quadratic forms are a class of functions that, much like concave or convex functions, have nice properties in optimization problems
- A quadratic form on \mathbb{R}^{n} is a function $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the form

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \leq j} a_{i j} x_{i} x_{j}
$$

where $j \in\{1, \ldots, n\}$, and $a_{i j}$ are real numbers

- In words, a quadratic form is the sum of monomials of degree two

Quadratic forms

- The general quadratic form on \mathbb{R}^{2} is

$$
a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}
$$

- The general quadratic form on \mathbb{R}^{3} is

$$
a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{23} x_{2} x_{3}
$$

- and so on...

Quadratic forms in matrix form

- The quadratic form $Q\left(x_{1}, x_{2}\right)=a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}$ can be written in matrix form:

$$
Q\left(x_{1}, x_{2}\right)=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

- Equivalently, we can use the following representation in which the 2×2 matrix is symmetric:

$$
Q\left(x_{1}, x_{2}\right)=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \frac{1}{2} a_{12} \\
\frac{1}{2} a_{12} & a_{22}
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Quadratic forms in matrix form

- Similarly, we can represent

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{23} x_{2} x_{3}
$$

in the following matrix form:

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ccc}
a_{11} & \frac{1}{2} a_{12} & \frac{1}{2} a_{13} \\
\frac{1}{2} a_{12} & a_{22} & \frac{1}{2} a_{23} \\
\frac{1}{2} a_{13} & \frac{1}{2} a_{23} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Quadratic forms in matrix form

- The general quadratic form

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \leq j} a_{i j} x_{i} x_{j}
$$

can be written as

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right)\left(\begin{array}{cccc}
a_{11} & \frac{1}{2} a_{12} & \ldots & \frac{1}{2} a_{1 n} \\
\frac{1}{2} a_{12} & a_{22} & \ldots & \frac{1}{2} a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{2} a_{1 n} & \frac{1}{2} a_{2 n} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right),
$$

that is, as

$$
\mathbf{x}^{T} A \mathbf{x}
$$

where A is a unique symmetric matrix.

- Conversely, if A is a symmetric $n \times n$ matrix, then the function $Q\left(x_{1}, \ldots, x_{n}\right)=\mathbf{x}^{T} A \mathbf{x}$ is a quadratic form

Quadratic forms and unconstrained optimization

- Every quadratic form satisfies $Q(\mathbf{0})=0$, where $\mathbf{0}=(0, \ldots, 0)$
- By studying the definiteness of the matrix A, we can determine whether $\mathbf{0}$ is a global maximizer or a global minimizer or neither of the quadratic form under consideration
- Recall the following definitions from Lecture 8 . An $n \times n$ symmetric matrix A is:
- positive definite if $\mathbf{x}^{\top} A \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^{n}
- positive semidefinite if $\mathbf{x}^{T} A \mathbf{x} \geq 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^{n}
- negative definite if $\mathbf{x}^{T} A \mathbf{x}<0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^{n}
- negative semidefinite if $\mathbf{x}^{\top} A \mathbf{x} \leq 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^{n}
- indefinite if $\mathbf{x}^{T} A \mathbf{x}>0$ for some $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{y}^{T} A \mathbf{y}<0$ for some $\mathbf{y} \neq \mathbf{x}$ in \mathbb{R}^{n}.

Quadratic forms and unconstrained optimization

- Positive definite quadratic form $Q(x, y)=x^{2}+y^{2}$
- $(0,0)$ is the unique global minimizer

Quadratic forms and unconstrained optimization

- Negative definite quadratic form $Q(x, y)=-\left(x^{2}+y^{2}\right)$
- $(0,0)$ is the unique global maximizer

Quadratic forms and unconstrained optimization

- Positive semidefinite quadratic form $Q(x, y)=(x+y)^{2}$
- Every point in \mathbb{R}^{2} such that $x+y=0$ is a global minimizer

Quadratic forms and unconstrained optimization

- Negative semidefinite quadratic form $Q(x, y)=-(x+y)^{2}$
- Every point in \mathbb{R}^{2} such that $x+y=0$ is a global maximizer

Quadratic forms and unconstrained optimization

- Indefinite quadratic form $Q(x, y)=x^{2}-y^{2}$
- $(0,0)$ is a saddle point
- There are no local or global extrema

Quadratic forms and unconstrained optimization

- Consider the following quadratic form in which A is a diagonal matrix:

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right)\left(\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \\
0 & a_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right)
$$

which can be written as

$$
Q\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{n}^{2}
$$

Quadratic forms and unconstrained optimization

- The definiteness of the diagonal matrix A is easy to check:
- A is positive definite if and only if all the a_{i} 's are positive
- A is negative definite if and only if all the a_{i} 's are negative
- A is positive semidefinite if and only if all the a_{i} 's are non-negative
- A is negative semidefinite if and only if all the a_{i} 's are non-positive
- A is indefinite if and only if there are two a_{i} 's of opposite signs

Quadratic forms and unconstrained optimization

- The signs of the terms on the main diagonal are relevant for the definiteness of any matrix, not just for diagonal matrices
- For a given symmetric matrix A (not necessarily diagonal), a necessary condition for positive definiteness (positive semidefiniteness) is that all the diagonal entries of A be positive (non-negative)
- Similarly, a necessary condition for negative definiteness (negative semidefiniteness) is that all the diagonal entries of A be negative (non-positive)
- Note: the conditions above are necessary but not sufficient. They are necessary and sufficient for diagonal matrices (see the previous slide)

Quadratic forms and unconstrained optimization

- Let's prove that a positive definite matrix must have positive diagonal entries
- Suppose the $n \times n$ symmetric matrix A is positive definite, so that $\mathbf{x}^{T} A \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$
- For any $i=1, \ldots, n$, let $\mathbf{e}_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ be the vector in \mathbb{R}^{n} such that its i th entry is 1 and all its other entries are equal to 0
- For all i, we have $\mathbf{e}_{i}^{T} A \mathbf{e}_{i}=a_{i i}>0$
- Thus all the diagonal entries of A are positive
- Exercise. Prove the corresponding statement for positive semidefinite, negative definite, and negative semidefinite matrices

Quadratic forms and concavity

- What is the connection between quadratic forms and convexity/concavity? In other words, when is a quadratic form convex? When is it concave?
- Let $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ be a quadratic form. The Hessian of Q is

$$
D^{2} Q(\mathbf{x})=\left(\begin{array}{cccc}
2 a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{12} & 2 a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & 2 a_{n n}
\end{array}\right)=2 A
$$

- Therefore, Q is concave if and only if A is negative semidefinite, and Q is convex if and only if A is positive semidefinite

Unconstrained optimization

- Exercise. Study the definiteness of the following quadratic forms on \mathbb{R}^{3} :

1. $Q(x, y, z)=x^{2}+4 y^{2}+6 z^{2}+4 x y+10 y z$
2. $Q(x, y, z)=-x^{2}-y^{2}-2 z^{2}+2 x y$

Unconstrained optimization

- Exercise. Consider the following function defined over \mathbb{R}^{2} :

$$
f(x, y)=-3 x^{2}-3 y^{2}+x^{2} y+x y^{2}-9 x y+18 x+18 y-27
$$

1. Is f a quadratic form?
2. Find all the local and global extrema of f

Linear-quadratic problems

- How to solve $\max \mathbf{c}^{T} \mathbf{x}+\mathbf{x}^{T} A \mathbf{x}$?
- First order optimality conditions: $\mathbf{c}+\left(A^{T}+A\right) \mathbf{x}=\mathbf{0}$
- Solution is $\mathbf{x}=-\left(A^{T}+A\right)^{-1} \mathbf{c}$
- Is the objective function concave?
- Yes, if A is negative definite

Linear-quadratic problems: examples

- Solve

$$
\min _{\beta}\|\mathbf{y}-X \beta\|^{2}
$$

- Why is this an import problem?
- Portfolio problem min $-\overline{\mathbf{c}}^{T} x-a \mathbf{x}^{T} V \mathbf{x}$ such that $\mathbf{x} \geq \mathbf{0}$ and $\sum_{i} x_{i}=I$

Mathematics for Economists

Mitri Kitti

Applications to Decision Making Under Uncertainty

Infinite series and the St. Petersburg paradox

- You learned in Intermediate Microeconomics that preferences over "lotteries" or "gambles" can be represented by expected utility
- A lottery is a combination of mutually exclusive outcomes, each with a payoff and a probability
- With n outcomes, a lottery L is a list

$$
L=\left(x_{1}, p_{1} ; x_{2}, p_{2} ; \ldots ; x_{n}, p_{n}\right)
$$

where x_{i} is the payoff of outcome i and p_{i} is the corresponding probability

Infinite series and the St. Petersburg paradox

- When there are finitely many outcomes (and when all the payoffs are bounded), we can always calculate the expected value of the lottery: $E(L)=\sum_{i=1}^{n} p_{i} x_{i}$
- However, this is not always true for lotteries having infinitely many outcomes. Consider the following lottery, which gave rise to the so-called St. Petersburg paradox:

$$
L=\left(x_{1}, p_{1} ; x_{2}, p_{2} ; \ldots\right)=\left(1, \frac{1}{2} ; 2, \frac{1}{4} ; 4, \frac{1}{8} ; \ldots\right)
$$

where $x_{i}=2^{i-1}$ and $p_{i}=2^{-i}$

- The expected value of this lottery is

$$
E(L)=1 \times \frac{1}{2}+2 \times \frac{1}{4}+4 \times \frac{1}{8}+\cdots=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots=\infty
$$

Infinite series and the St. Petersburg paradox

- The key idea behind expected utility theory is to introduce a so-called Bernoulli utility function u that maps payoffs/wealth to utility. In so doing, the expected utility of a lottery L is $E U(L)=\sum_{i=1}^{\infty} p_{i} u\left(x_{i}\right)$
- The curvature of u reflects the decision maker's attitude toward risk: A decision maker with a concave u is risk averse
- Suppose $u(x)=\ln x$ and let's calculate the expected utility of the lottery in the St. Petersburg paradox

Infinite series and the St. Petersburg paradox

- We have:

$$
\begin{aligned}
E U(L) & =\frac{1}{2} \ln 1+\frac{1}{4} \ln 2+\frac{1}{8} \ln 4+\frac{1}{16} \ln 8+\frac{1}{32} \ln 16+\cdots \\
& =0+\frac{1}{4} \ln 2+\frac{2}{8} \ln 2+\frac{3}{16} \ln 2+\frac{4}{32} \ln 2+\cdots \\
& =\frac{1}{2} \ln 2\left(\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16}+\cdots\right) \\
& =\frac{1}{2} \ln 2\left(\sum_{k=1}^{\infty} \frac{k}{2^{k}}\right)
\end{aligned}
$$

Infinite series and the St. Petersburg paradox

- The term $\sum_{k=1}^{\infty} \frac{k}{2^{k}}$ is a arithmetico-geometric series
- In general, for $r \in(0,1)$ we have that $\sum_{k=1}^{\infty} k r^{k}=\frac{r}{(1-r)^{2}}$
- In our case, $r=\frac{1}{2}$. So we can finally write

$$
\begin{aligned}
E U(L) & =\frac{1}{2} \ln 2\left(\sum_{k=1}^{\infty} \frac{k}{2^{k}}\right) \\
& =\frac{1}{2} \ln 2(2) \\
& =\ln 2 .
\end{aligned}
$$

Infinite series and the St. Petersburg paradox

- Now suppose that the Bernoulli utility function is $u(x)=\sqrt{x}$
- The expected value of our lottery becomes:

$$
\begin{aligned}
E U(L) & =\frac{1}{2} \sqrt{1}+\frac{1}{4} \sqrt{2}+\frac{1}{8} \sqrt{4}+\frac{1}{16} \sqrt{8}+\frac{1}{32} \sqrt{16}+\cdots \\
& =\frac{1}{2}+\frac{1}{4} \sqrt{2}+\frac{1}{4}+\frac{1}{8} \sqrt{2}+\frac{1}{8}+\cdots \\
& =\frac{1}{2}\left(1+\frac{1}{2} \sqrt{2}+\frac{1}{2}+\frac{1}{4} \sqrt{2}+\frac{1}{4}+\cdots\right) \\
& =\frac{1}{2}\left[1+\sqrt{2}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right) \cdots\right]
\end{aligned}
$$

Infinite series and the St. Petersburg paradox

- The term $\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots$ is a geometric series
- In general, for $r \in(0,1)$ we have that $\sum_{k=1}^{\infty} r^{k}=\frac{r}{1-r}$
- In our case, $r=\frac{1}{2}$. So we can finally write:

$$
\begin{aligned}
E U(L) & =\frac{1}{2}\left[1+\sqrt{2}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right) \cdots\right] \\
& =\frac{1}{2}(1+\sqrt{2}+1) \\
& =1+\frac{\sqrt{2}}{2} .
\end{aligned}
$$

CRRA utility

- Consider the following version of the CRRA utility function:

$$
\begin{equation*}
u(c)=\frac{c^{1-\gamma}-1}{1-\gamma} \tag{1}
\end{equation*}
$$

with $\gamma \geq 0$ and $\gamma \neq 1$

- A limiting case when γ goes to one is $\ln (c)$ (log utility)
- BUT how to come up with the limit result?

L'Hôpital's rule

- When calculating limits of functions, you may encounter (among others) the indeterminate form $\frac{0}{0}$
- For example,

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}
$$

is an indeterminate form $\frac{0}{0}$

L'Hôpital's rule

- In cases like this, we can apply the l'Hôpital's rule, which says the following
- If $\lim _{x \longrightarrow c} f(x)=\lim _{x \longrightarrow c} g(x)=0$, if $g^{\prime}(x) \neq 0$ for $x \neq c$, and if $\lim _{x \rightarrow c} f^{\prime}(x) / g^{\prime}(x)=L$, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \longrightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

where L can be either a finite number or $\pm \infty$

- In the previous example, we have

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=\lim _{x \rightarrow 0} \frac{e^{x}}{1}=1
$$

Arrow-Pratt measure of absolute risk aversion

- Arrow-Pratt measure of risk aversion

$$
A R A(c)=-u^{\prime \prime}(c) / u^{\prime}(c)
$$

- Note: the measure of relative risk aversion is

$$
R R A(c)=-u^{\prime \prime}(c) c / u^{\prime}(c)
$$

- How to derive ARA? Start from the definition of certainty equivalent:

$$
\mathbb{E}[u(c+z)]=u(c-C E)
$$

where z is a random variable with mean zero and variance σ (tip: try second order approximation on the left hand side and first order on the right hand side, then derive a formula for CE)

CARA utility and portfolio choice

- CARA (constant absolute risk aversion) utility $u(c)=1-e^{-a c}$
- Multivariate normal distribution of returns $\mathbf{c} \sim N(\overline{\mathbf{c}}, V)$
- Assume that \mathbf{x} is the vector of amount of money invested in different assets, total return is $\mathbf{c}^{T} \mathbf{x}$, the expected value is $\overline{\mathbf{c}}^{T} \mathbf{x}$ and the variance $\mathbf{x}^{T} V \mathbf{x}$
- Expected utility of z :

$$
\mathbb{E}\left[u\left(\mathbf{c}^{T} \mathbf{x}\right)\right]=1-e^{-a\left(\mathbf{c}^{T} \mathbf{x}\right)+(1 / 2) a^{2}\left(\mathbf{x}^{T} V \mathbf{x}\right)}
$$

- What kind of monotone transformations can you apply to $\mathbb{E}\left[u\left(\mathbf{c}^{T} \mathbf{x}\right)\right.$ to get a more tractable objective function for an optimization problem?

