Mathematics for Economists

Mitri Kitti

Aalto University

Quadratic Forms

Quadratic forms

- Quadratic forms are a class of functions that, much like concave or convex functions, have nice properties in optimization problems
- ▶ A **quadratic form** on \mathbb{R}^n is a function $Q: \mathbb{R}^n \to \mathbb{R}$ of the form

$$Q(x_1,\ldots,x_n)=\sum_{i\leq j}a_{ij}x_ix_j,$$

where $j \in \{1, ..., n\}$, and a_{ij} are real numbers

▶ In words, a quadratic form is the sum of monomials of degree two

Quadratic forms

ightharpoonup The general quadratic form on \mathbb{R}^2 is

$$a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2$$

▶ The general quadratic form on \mathbb{R}^3 is

$$a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3$$

and so on...

Quadratic forms in matrix form

▶ The quadratic form $Q(x_1, x_2) = a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2$ can be written in matrix form:

$$Q(x_1, x_2) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

ightharpoonup Equivalently, we can use the following representation in which the 2 imes 2 matrix is symmetric:

$$Q(x_1, x_2) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} \\ \frac{1}{2}a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Quadratic forms in matrix form

Similarly, we can represent

$$Q(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3$$

in the following matrix form:

$$Q(x_1, x_2, x_3) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} & \frac{1}{2}a_{13} \\ \frac{1}{2}a_{12} & a_{22} & \frac{1}{2}a_{23} \\ \frac{1}{2}a_{13} & \frac{1}{2}a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Quadratic forms in matrix form

► The general quadratic form

$$Q(x_1,\ldots,x_n)=\sum_{i\leq j}a_{ij}x_ix_j$$

can be written as

$$(x_1 \quad x_2 \quad \dots \quad x_n) \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} & \dots & \frac{1}{2}a_{1n} \\ \frac{1}{2}a_{12} & a_{22} & \dots & \frac{1}{2}a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2}a_{1n} & \frac{1}{2}a_{2n} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix},$$

that is, as

$$\mathbf{x}^T A \mathbf{x}$$

where A is a unique symmetric matrix.

Conversely, if A is a symmetric $n \times n$ matrix, then the function $Q(x_1, ..., x_n) = \mathbf{x}^T A \mathbf{x}$ is a quadratic form

- **•** Every quadratic form satisfies $Q(\mathbf{0}) = 0$, where $\mathbf{0} = (0, \dots, 0)$
- ▶ By studying the *definiteness* of the matrix *A*, we can determine whether **0** is a global maximizer or a global minimizer or neither of the quadratic form under consideration
- ▶ Recall the following definitions from Lecture 8. An $n \times n$ symmetric matrix A is:
 - **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
 - **positive semidefinite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
 - **negative definite** if $\mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
 - ▶ negative semidefinite if $\mathbf{x}^T A \mathbf{x} \leq 0$ for all $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n
 - ▶ indefinite if $\mathbf{x}^T A \mathbf{x} > 0$ for some $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y}^T A \mathbf{y} < 0$ for some $\mathbf{y} \neq \mathbf{x}$ in \mathbb{R}^n .

- Positive definite quadratic form $Q(x, y) = x^2 + y^2$
- \triangleright (0,0) is the unique global minimizer

- ▶ Negative definite quadratic form $Q(x,y) = -(x^2 + y^2)$
- \triangleright (0,0) is the unique global maximizer

- Positive semidefinite quadratic form $Q(x, y) = (x + y)^2$
- ▶ Every point in \mathbb{R}^2 such that x + y = 0 is a global minimizer

- ▶ Negative semidefinite quadratic form $Q(x, y) = -(x + y)^2$
- Every point in \mathbb{R}^2 such that x + y = 0 is a global maximizer

- ▶ Indefinite quadratic form $Q(x, y) = x^2 y^2$
- \triangleright (0,0) is a saddle point
- ► There are no local or global extrema

► Consider the following quadratic form in which A is a **diagonal** matrix:

$$Q(x_1,\ldots,x_n)=\begin{pmatrix}x_1&x_2&\ldots&x_n\end{pmatrix}\begin{pmatrix}a_1&0&\ldots&0\\0&a_2&\ldots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\ldots&a_n\end{pmatrix}\begin{pmatrix}x_1\\x_2\\\ldots\\x_n\end{pmatrix},$$

which can be written as

$$Q(x_1,...,x_n) = a_1x_1^2 + a_2x_2^2 + \cdots + a_nx_n^2$$

- ► The definiteness of the diagonal matrix *A* is easy to check:
 - ightharpoonup A is positive definite if and only if all the a_i 's are positive
 - ightharpoonup A is negative definite if and only if all the a_i 's are negative
 - ightharpoonup A is positive semidefinite if and only if all the a_i 's are non-negative
 - ► A is negative semidefinite if and only if all the a_i's are non-positive
 - ► A is *indefinite* if and only if there are two a_i's of opposite signs

- ► The signs of the terms on the main diagonal are relevant for the definiteness of any matrix, not just for diagonal matrices
- ► For a given symmetric matrix A (not necessarily diagonal), a **necessary condition** for positive definiteness (positive semidefiniteness) is that all the diagonal entries of A be positive (non-negative)
- ► Similarly, a necessary condition for negative definiteness (negative semidefiniteness) is that all the diagonal entries of A be negative (non-positive)
- Note: the conditions above are necessary but not sufficient. They are necessary and sufficient for diagonal matrices (see the previous slide)

- Let's prove that a positive definite matrix must have positive diagonal entries
 - Suppose the $n \times n$ symmetric matrix A is positive definite, so that $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$
 - For any $i=1,\ldots,n$, let $\mathbf{e}_i=(0,\ldots,0,1,0,\ldots,0)$ be the vector in \mathbb{R}^n such that its ith entry is 1 and all its other entries are equal to 0
 - For all i, we have $\mathbf{e}_i^T A \mathbf{e}_i = a_{ii} > 0$
 - ► Thus all the diagonal entries of *A* are positive

Exercise. Prove the corresponding statement for positive semidefinite, negative definite, and negative semidefinite matrices

Quadratic forms and concavity

- ▶ What is the connection between quadratic forms and convexity/concavity? In other words, when is a quadratic form convex? When is it concave?
- Let $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ be a quadratic form. The Hessian of Q is

$$D^{2}Q(\mathbf{x}) = \begin{pmatrix} 2a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & 2a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & 2a_{nn} \end{pmatrix} = 2A$$

Therefore, Q is concave if and only if A is negative semidefinite, and Q is convex if and only if A is positive semidefinite

Unconstrained optimization

Exercise. Study the definiteness of the following quadratic forms on \mathbb{R}^3 :

1.
$$Q(x, y, z) = x^2 + 4y^2 + 6z^2 + 4xy + 10yz$$

2.
$$Q(x, y, z) = -x^2 - y^2 - 2z^2 + 2xy$$

Unconstrained optimization

Exercise. Consider the following function defined over \mathbb{R}^2 :

$$f(x,y) = -3x^2 - 3y^2 + x^2y + xy^2 - 9xy + 18x + 18y - 27$$

- 1. Is f a quadratic form?
- 2. Find all the local and global extrema of f

Linear-quadratic problems

- ► How to solve $\max \mathbf{c}^T \mathbf{x} + \mathbf{x}^T A \mathbf{x}$?
- First order optimality conditions: $\mathbf{c} + (A^T + A)\mathbf{x} = \mathbf{0}$
- Solution is $\mathbf{x} = -(A^T + A)^{-1}\mathbf{c}$
- ▶ Is the objective function concave?
- ► Yes, if *A* is negative definite

Linear-quadratic problems: examples

Solve

$$\min_{\beta} \|\mathbf{y} - X\beta\|^2$$

- ▶ Why is this an import problem?
- ▶ Portfolio problem min $-\bar{\mathbf{c}}^T x a\mathbf{x}^T V \mathbf{x}$ such that $\mathbf{x} \geq \mathbf{0}$ and $\sum_i x_i = I$

Mathematics for Economists

Mitri Kitti

Applications to Decision Making Under Uncertainty

- ➤ You learned in Intermediate Microeconomics that preferences over "lotteries" or "gambles" can be represented by *expected utility*
- ➤ A lottery is a combination of mutually exclusive outcomes, each with a payoff and a probability
- ▶ With *n* outcomes, a lottery *L* is a list

$$L = (x_1, p_1; x_2, p_2; ...; x_n, p_n),$$

where x_i is the payoff of outcome i and p_i is the corresponding probability

- When there are finitely many outcomes (and when all the payoffs are bounded), we can always calculate the expected value of the lottery: $E(L) = \sum_{i=1}^{n} p_i x_i$
- However, this is not always true for lotteries having infinitely many outcomes. Consider the following lottery, which gave rise to the so-called St. Petersburg paradox:

$$L = (x_1, p_1; x_2, p_2; \dots) = \left(1, \frac{1}{2}; 2, \frac{1}{4}; 4, \frac{1}{8}; \dots\right),$$

where $x_i = 2^{i-1}$ and $p_i = 2^{-i}$

The expected value of this lottery is

$$E(L) = 1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 4 \times \frac{1}{8} + \dots = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots = \infty$$

- ▶ The key idea behind expected utility theory is to introduce a so-called Bernoulli utility function u that maps payoffs/wealth to utility. In so doing, the expected utility of a lottery L is $EU(L) = \sum_{i=1}^{\infty} p_i u(x_i)$
- ► The curvature of *u* reflects the decision maker's attitude toward risk: A decision maker with a *concave u* is risk averse
- Suppose $u(x) = \ln x$ and let's calculate the expected utility of the lottery in the St. Petersburg paradox

► We have:

$$EU(L) = \frac{1}{2} \ln 1 + \frac{1}{4} \ln 2 + \frac{1}{8} \ln 4 + \frac{1}{16} \ln 8 + \frac{1}{32} \ln 16 + \cdots$$

$$= 0 + \frac{1}{4} \ln 2 + \frac{2}{8} \ln 2 + \frac{3}{16} \ln 2 + \frac{4}{32} \ln 2 + \cdots$$

$$= \frac{1}{2} \ln 2 \left(\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \cdots \right)$$

$$= \frac{1}{2} \ln 2 \left(\sum_{k=1}^{\infty} \frac{k}{2^k} \right)$$

- ► The term $\sum_{k=1}^{\infty} \frac{k}{2^k}$ is a arithmetico-geometric series
- ▶ In general, for $r \in (0,1)$ we have that $\sum_{k=1}^{\infty} kr^k = \frac{r}{(1-r)^2}$
- ▶ In our case, $r = \frac{1}{2}$. So we can finally write

$$EU(L) = \frac{1}{2} \ln 2 \left(\sum_{k=1}^{\infty} \frac{k}{2^k} \right)$$
$$= \frac{1}{2} \ln 2 (2)$$
$$= \ln 2.$$

- Now suppose that the Bernoulli utility function is $u(x) = \sqrt{x}$
- The expected value of our lottery becomes:

$$EU(L) = \frac{1}{2}\sqrt{1} + \frac{1}{4}\sqrt{2} + \frac{1}{8}\sqrt{4} + \frac{1}{16}\sqrt{8} + \frac{1}{32}\sqrt{16} + \cdots$$

$$= \frac{1}{2} + \frac{1}{4}\sqrt{2} + \frac{1}{4} + \frac{1}{8}\sqrt{2} + \frac{1}{8} + \cdots$$

$$= \frac{1}{2}\left(1 + \frac{1}{2}\sqrt{2} + \frac{1}{2} + \frac{1}{4}\sqrt{2} + \frac{1}{4} + \cdots\right)$$

$$= \frac{1}{2}\left[1 + \sqrt{2}\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots\right) + \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots\right) \cdots\right]$$

- ▶ The term $\sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$ is a **geometric series**
- lacksquare In general, for $r\in(0,1)$ we have that $\sum_{k=1}^{\infty}r^k=rac{r}{1-r}$
- ▶ In our case, $r = \frac{1}{2}$. So we can finally write:

$$EU(L) = \frac{1}{2} \left[1 + \sqrt{2} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \right) + \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \right) \cdots \right]$$
$$= \frac{1}{2} \left(1 + \sqrt{2} + 1 \right)$$
$$= 1 + \frac{\sqrt{2}}{2}.$$

CRRA utility

► Consider the following version of the CRRA utility function:

$$u(c) = \frac{c^{1-\gamma} - 1}{1 - \gamma},\tag{1}$$

with $\gamma \geq 0$ and $\gamma \neq 1$

- ▶ A limiting case when γ goes to one is ln(c) (log utility)
- ▶ BUT how to come up with the limit result?

L'Hôpital's rule

- When calculating limits of functions, you may encounter (among others) the indeterminate form $\frac{0}{0}$
- ► For example,

$$\lim_{x \longrightarrow 0} \frac{e^x - 1}{x}$$

is an indeterminate form $\frac{0}{0}$

L'Hôpital's rule

- ▶ In cases like this, we can apply the l'Hôpital's rule, which says the following
- ▶ If $\lim_{x \longrightarrow c} f(x) = \lim_{x \longrightarrow c} g(x) = 0$, if $g'(x) \neq 0$ for $x \neq c$, and if $\lim_{x \longrightarrow c} f'(x)/g'(x) = L$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} = L,$$

where L can be either a finite number or $\pm \infty$

In the previous example, we have

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} = 1$$

Arrow-Pratt measure of absolute risk aversion

Arrow-Pratt measure of risk aversion

$$ARA(c) = -u''(c)/u'(c)$$

Note: the measure of relative risk aversion is

$$RRA(c) = -u''(c)c/u'(c)$$

► How to derive ARA? Start from the definition of certainty equivalent:

$$\mathbb{E}[u(c+z)]=u(c-CE),$$

where z is a random variable with mean zero and variance σ (tip: try second order approximation on the left hand side and first order on the right hand side, then derive a formula for CE)

CARA utility and portfolio choice

- ► CARA (constant absolute risk aversion) utility $u(c) = 1 e^{-ac}$
- ▶ Multivariate normal distribution of returns $\mathbf{c} \sim N(\mathbf{\bar{c}}, V)$
- Assume that \mathbf{x} is the vector of amount of money invested in different assets, total return is $\mathbf{c}^T \mathbf{x}$, the expected value is $\mathbf{\bar{c}}^T \mathbf{x}$ and the variance $\mathbf{x}^T V \mathbf{x}$
- Expected utility of z:

$$\mathbb{E}\left[u(\mathbf{c}^T\mathbf{x})\right] = 1 - e^{-s(\mathbf{c}^T\mathbf{x}) + (1/2)s^2(\mathbf{x}^TV\mathbf{x})}$$

▶ What kind of monotone transformations can you apply to $\mathbb{E}[u(\mathbf{c}^T\mathbf{x})]$ to get a more tractable objective function for an optimization problem?