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Quadratic forms

» Quadratic forms are a class of functions that, much like concave or convex
functions, have nice properties in optimization problems

> A quadratic form on R" is a function @ : R” — R of the form

Q(x1,y...,xn) = Z ajjXix;,
i<j

where j € {1,...,n}, and aj; are real numbers

» In words, a quadratic form is the sum of monomials of degree two
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Quadratic forms

» The general quadratic form on R? is

2 2
ai1xy + aipxixe + anx;

» The general quadratic form on R3 is

2 2 2
a11xy + axnXx; + azzxz + apxyx2 + a13x1x3 + axzxex3

» and so on...
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Quadratic forms in matrix form

» The quadratic form Q(x1,x2) = a11x? + a1ax1x2 + axx4 can be written in matrix

form:
ail  ar X1
Q(x1,x2) = (Xl X2) < 0 322> <X2>

» Equivalently, we can use the following representation in which the 2 x 2 matrix is
symmetric:

1
a1l 5412 X1
Q(x1,x) = (x1 x ( 2 )< )
(1’ 2) (1 2) %812 ano X2
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Quadratic forms in matrix form

» Similarly, we can represent
_ 2 2 2
Q(x1, X2, x3) = a11x] + a2X5 + a33x3 + apx1X2 + a13x1X3 + ax3xox3

in the following matrix form:

1 1
a11 5412 54913 X1
1 1
Qlxi,x2,x3) = (x1 x x3) 92 a2 gam | | X
1
5313 333 a3 X3
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Quadratic forms in matrix form
» The general quadratic form

Q(x1,y ..., xn) = Z ajjXiX;
i<j

can be written as

1 1
ai1 3412 54d1n X1
1 1
5412 dan?o <. 3d2p X
(a x2 oo oxa) | 7. S . :
1 1
5d1n  3@2n ann Xn
that is, as
x| Ax,

where A is a unique symmetric matrix.

» Conversely, if Ais a symmetric n X n matrix, then the function

Q(x1,...,xy) = x" Ax is a quadratic form
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Quadratic forms and unconstrained optimization
» Every quadratic form satisfies Q(0) = 0, where 0 = (0,...,0)

» By studying the definiteness of the matrix A, we can determine whether 0 is a
global maximizer or a global minimizer or neither of the quadratic form under
consideration

» Recall the following definitions from Lecture 8. An n X n symmetric matrix A is:
> positive definite if x” Ax > 0 for all x # 0 in R”
> positive semidefinite if x” Ax > 0 for all x # 0 in R”
> negative definite if x” Ax < 0 for all x # 0 in R”
> negative semidefinite if x” Ax < 0 for all x # 0 in R”

> indefinite if x” Ax > 0 for some x € R"” and y" Ay < 0 for some y # x in R".
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Quadratic forms and unconstrained optimization

> Positive definite quadratic form Q(x,y) = x? + y?

» (0,0) is the unique global minimizer
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Quadratic forms and unconstrained optimization
» Negative definite quadratic form Q(x,y) = —(x? + y?)
» (0,0) is the unique global maximizer
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Quadratic forms and unconstrained optimization

> Positive semidefinite quadratic form Q(x,y) = (x + y)?
» Every point in R? such that x + y = 0 is a global minimizer
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Quadratic forms and unconstrained optimization

> Negative semidefinite quadratic form Q(x,y) = —(x + y)?
» Every point in R? such that x + y = 0 is a global maximizer

11/21



Quadratic forms and unconstrained optimization
2

> Indefinite quadratic form Q(x,y) = x> —y
» (0,0) is a saddle point
P> There are no local or global extrema
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Quadratic forms and unconstrained optimization

» Consider the following quadratic form in which A is a diagonal matrix:

=5 0 PN 0 X1
Qlxt, .., xn) = (. x Xn) oo 0 e,
6 0 a-,7 Xn
which can be written as
Q(X1,. .., Xn) = a1xX} + aox3 + -+ - + apx?
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Quadratic forms and unconstrained optimization

» The definiteness of the diagonal matrix A is easy to check:
» A is positive definite if and only if all the a;'s are positive
» A is negative definite if and only if all the a;'s are negative
> Ais positive semidefinite if and only if all the a;'s are non-negative
» A is negative semidefinite if and only if all the a;’s are non-positive

» A is indefinite if and only if there are two a;'s of opposite signs
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Quadratic forms and unconstrained optimization

» The signs of the terms on the main diagonal are relevant for the definiteness of
any matrix, not just for diagonal matrices

» For a given symmetric matrix A (not necessarily diagonal), a necessary condition
for positive definiteness (positive semidefiniteness) is that all the diagonal entries

of A be positive (non-negative)

» Similarly, a necessary condition for negative definiteness (negative
semidefiniteness) is that all the diagonal entries of A be negative (non-positive)

> Note: the conditions above are necessary but not sufficient. They are necessary
and sufficient for diagonal matrices (see the previous slide)
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Quadratic forms and unconstrained optimization
P Let's prove that a positive definite matrix must have positive diagonal entries

> Suppose the n x n symmetric matrix A is positive definite, so that x” Ax > 0 for all

x#0

» Foranyi=1,...,n lete;=(0,...,0,1,0,...,0) be the vector in R" such that its
ith entry is 1 and all its other entries are equal to 0

> For all i, we have e/ Ae; = a;; > 0

» Thus all the diagonal entries of A are positive

» Exercise. Prove the corresponding statement for positive semidefinite, negative
definite, and negative semidefinite matrices
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Quadratic forms and concavity

» What is the connection between quadratic forms and convexity/concavity? In
other words, when is a quadratic form convex? When is it concave?

> Let Q(x) = x” Ax be a quadratic form. The Hessian of Q is

2311 a2 NN din

5 a2 2322 e aon
DXQx)=| . 7 . T |=2A

ain  ay ... 2apn

» Therefore, Q is concave if and only if A is negative semidefinite, and @ is convex
if and only if A is positive semidefinite
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Unconstrained optimization

» Exercise. Study the definiteness of the following quadratic forms on R3:
1. Q(x,y,z) = x*> + 4y? + 62% + 4xy + 10yz

2. Q(x,y,2) = —x% —y? —22% + 2xy
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Unconstrained optimization

» Exercise. Consider the following function defined over R?:

f(x,y) = —3x* — 3y? + x?%y + xy® — 9xy + 18x + 18y — 27

1. Is f a quadratic form?

2. Find all the local and global extrema of f
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Linear-quadratic problems

» How to solve maxc’x +x" Ax ?

> First order optimality conditions: ¢+ (AT 4+ A)x = 0
» Solution is x = —(AT + A)~lc

» [s the objective function concave?

> Yes, if Ais negative definite
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Linear-quadratic problems: examples

» Solve
min ly — XB|?

» Why is this an import problem?
> Portfolio problem min —€7 x — ax” V'x such that x > 0 and >, x; = /
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Infinite series and the St. Petersburg paradox

» You learned in Intermediate Microeconomics that preferences over “lotteries” or
“gambles” can be represented by expected utility

> A lottery is a combination of mutually exclusive outcomes, each with a payoff and
a probability

> With n outcomes, a lottery L is a list

L = (x1,p1; X2, P2; - - Xn, Pn)

where x; is the payoff of outcome i and p; is the corresponding probability
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Infinite series and the St. Petersburg paradox

» When there are finitely many outcomes (and when all the payoffs are bounded),
we can always calculate the expected value of the lottery: E(L) = >_7_; pix;

> However, this is not always true for lotteries having infinitely many outcomes.
Consider the following lottery, which gave rise to the so-called St. Petersburg

paradox:
11 1
L= ; e )=11,=2,—4,—;.
(X17p11X27p21 ) (721 74 781 >7
where x; =2/"1 and p; =2~/
> The expected value of this lottery is
1 1 1 1 1 1
E(L)=1X 42X 44X =4 ...=_ 4 424 ...—
(D=lxgtaxgtaxgt=57573 >
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Infinite series and the St. Petersburg paradox

> The key idea behind expected utility theory is to introduce a so-called Bernoulli
utility function u that maps payoffs/wealth to utility. In so doing, the expected
utility of a lottery L is EU(L) = > 2, piu(xi)

» The curvature of u reflects the decision maker’s attitude toward risk: A decision
maker with a concave u is risk averse

» Suppose u(x) = Inx and let's calculate the expected utility of the lottery in the
St. Petersburg paradox
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Infinite series and the St. Petersburg paradox

» We have:

EU(L) = flnl—i—f|n2+f|n4—|——|n8+—|n16+

8 16 32
1 2 3
= —In24+—=In24+ —1n2 —I2
=0+ n+8n +16n +32n+
Y - A
_2” 27278 16

:;mz(j‘j;)

k=1
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Infinite series and the St. Petersburg paradox

» The term > 72, 2% is a arithmetico-geometric series
> In general, for r € (0,1) we have that > 3% krk = ﬁ

» In our case, r = % So we can finally write
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Infinite series and the St. Petersburg paradox

» Now suppose that the Bernoulli utility function is u(x) = /x
» The expected value of our lottery becomes:
1 1 1 1 1
EU(L) = fﬁ+fﬂ+—ﬂ+—x/§+—\/16+-~
L. f+ + 2 f+ +-
<1 - f+ St f+ R >

[1+\f< + - +é+ >+<;+i+é+~->---]

I\J\I—‘ I\)\I—‘I\J\
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Infinite series and the St. Petersburg paradox

k . . .
> Theterm 330, (3) =3+ 1+ 3%+ is a geometric series

> In general, for r € (0,1) we have that ) 32, rk = ;&

» In our case, r = % So we can finally write:

1+xf< +- +;+ ) (;+1+;+)]
f+)

hJ\ = h)\

=2
3t

+
v2
2
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CRRA utility

» Consider the following version of the CRRA utility function:

cl=7 -1

— 1)

u(c) =
with v > 0 and v # 1

» A limiting case when v goes to one is In(c) (log utility)
» BUT how to come up with the limit result?
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L'Hopital’s rule

» When calculating limits of functions, you may encounter (among others) the
0

indeterminate form o

» For example,

is an indeterminate form

olo
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L'Hopital’s rule
P In cases like this, we can apply the I’'Hépital’s rule, which says the following

> If limy_c F(x) = limy—c g(x) =0, if g’(x) # 0 for x # ¢, and if
limy—c f'(x)/g'(x) = L, then

lim —= = lim — =1L,
x—c g(x x—c g (x)
where L can be either a finite number or o0
» In the previous example, we have
.o -1 e
[im = |lim — =1
x—0 X x—0 1
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Arrow-Pratt measure of absolute risk aversion
» Arrow-Pratt measure of risk aversion
ARA(c) = —u"(c)/u'(¢)
> Note: the measure of relative risk aversion is

RRA(c) = —u"(c)c/u'(c)

» How to derive ARA? Start from the definition of certainty equivalent:
Elu(c + z)] = u(c — CE),

where z is a random variable with mean zero and variance o (tip: try second order
approximation on the left hand side and first order on the right hand side, then
derive a formula for CE)
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CARA utility and portfolio choice

v

ac

CARA (constant absolute risk aversion) utility u(c) =1 — e~
Multivariate normal distribution of returns ¢ ~ N(&, V)

Assume that x is the vector of amount of money invested in different assets, total
return is ¢’ x, the expected value is € x and the variance x" Vx

Expected utility of z:

E {u(ch)] — 1 _ e—ale"™)+(1/2)a*(x" Vx)

What kind of monotone transformations can you apply to E[u(c”x) to get a more
tractable objective function for an optimization problem?
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