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Quadratic forms

▶ Quadratic forms are a class of functions that, much like concave or convex
functions, have nice properties in optimization problems

▶ A quadratic form on R
n is a function Q : Rn → R of the form

Q(x1, . . . , xn) =
∑

i≤j

aijxixj ,

where j ∈ {1, . . . , n}, and aij are real numbers

▶ In words, a quadratic form is the sum of monomials of degree two
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Quadratic forms

▶ The general quadratic form on R
2 is

a11x
2
1 + a12x1x2 + a22x

2
2

▶ The general quadratic form on R
3 is

a11x
2
1 + a22x

2
2 + a33x

2
3 + a12x1x2 + a13x1x3 + a23x2x3

▶ and so on...
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Quadratic forms in matrix form

▶ The quadratic form Q(x1, x2) = a11x
2
1 + a12x1x2 + a22x

2
2 can be written in matrix

form:

Q(x1, x2) =
(

x1 x2
)

(

a11 a12
0 a22

)(

x1
x2

)

▶ Equivalently, we can use the following representation in which the 2× 2 matrix is
symmetric:

Q(x1, x2) =
(

x1 x2
)

(

a11
1
2a12

1
2a12 a22

)(

x1
x2

)
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Quadratic forms in matrix form

▶ Similarly, we can represent

Q(x1, x2, x3) = a11x
2
1 + a22x

2
2 + a33x

2
3 + a12x1x2 + a13x1x3 + a23x2x3

in the following matrix form:

Q(x1, x2, x3) =
(

x1 x2 x3
)





a11
1
2a12

1
2a13

1
2a12 a22

1
2a23

1
2a13

1
2a23 a33









x1
x2
x3




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Quadratic forms in matrix form
▶ The general quadratic form

Q(x1, . . . , xn) =
∑

i≤j

aijxixj

can be written as

(

x1 x2 . . . xn
)











a11
1
2a12 . . . 1

2a1n
1
2a12 a22 . . . 1

2a2n
...

...
. . .

...
1
2a1n

1
2a2n . . . ann



















x1
x2
. . .

xn









,

that is, as
xTAx,

where A is a unique symmetric matrix.

▶ Conversely, if A is a symmetric n × n matrix, then the function
Q(x1, . . . , xn) = xTAx is a quadratic form
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Quadratic forms and unconstrained optimization

▶ Every quadratic form satisfies Q(0) = 0, where 0 = (0, . . . , 0)

▶ By studying the definiteness of the matrix A, we can determine whether 0 is a
global maximizer or a global minimizer or neither of the quadratic form under
consideration

▶ Recall the following definitions from Lecture 8. An n × n symmetric matrix A is:

▶ positive definite if xTAx > 0 for all x ̸= 0 in R
n

▶ positive semidefinite if xTAx ≥ 0 for all x ̸= 0 in R
n

▶ negative definite if xTAx < 0 for all x ̸= 0 in R
n

▶ negative semidefinite if xTAx ≤ 0 for all x ̸= 0 in R
n

▶ indefinite if xTAx > 0 for some x ∈ R
n and yTAy < 0 for some y ̸= x in R

n.
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Quadratic forms and unconstrained optimization

▶ Positive definite quadratic form Q(x , y) = x2 + y2

▶ (0, 0) is the unique global minimizer
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Quadratic forms and unconstrained optimization
▶ Negative definite quadratic form Q(x , y) = −(x2 + y2)

▶ (0, 0) is the unique global maximizer
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Quadratic forms and unconstrained optimization
▶ Positive semidefinite quadratic form Q(x , y) = (x + y)2

▶ Every point in R
2 such that x + y = 0 is a global minimizer
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Quadratic forms and unconstrained optimization

▶ Negative semidefinite quadratic form Q(x , y) = −(x + y)2

▶ Every point in R
2 such that x + y = 0 is a global maximizer
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Quadratic forms and unconstrained optimization
▶ Indefinite quadratic form Q(x , y) = x2 − y2

▶ (0, 0) is a saddle point
▶ There are no local or global extrema
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Quadratic forms and unconstrained optimization

▶ Consider the following quadratic form in which A is a diagonal matrix:

Q(x1, . . . , xn) =
(

x1 x2 . . . xn
)











a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an



















x1
x2
. . .

xn









,

which can be written as

Q(x1, . . . , xn) = a1x
2
1 + a2x

2
2 + · · ·+ anx

2
n
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Quadratic forms and unconstrained optimization

▶ The definiteness of the diagonal matrix A is easy to check:

▶ A is positive definite if and only if all the ai ’s are positive

▶ A is negative definite if and only if all the ai ’s are negative

▶ A is positive semidefinite if and only if all the ai ’s are non-negative

▶ A is negative semidefinite if and only if all the ai ’s are non-positive

▶ A is indefinite if and only if there are two ai ’s of opposite signs
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Quadratic forms and unconstrained optimization

▶ The signs of the terms on the main diagonal are relevant for the definiteness of
any matrix, not just for diagonal matrices

▶ For a given symmetric matrix A (not necessarily diagonal), a necessary condition

for positive definiteness (positive semidefiniteness) is that all the diagonal entries
of A be positive (non-negative)

▶ Similarly, a necessary condition for negative definiteness (negative
semidefiniteness) is that all the diagonal entries of A be negative (non-positive)

▶ Note: the conditions above are necessary but not sufficient. They are necessary
and sufficient for diagonal matrices (see the previous slide)
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Quadratic forms and unconstrained optimization

▶ Let’s prove that a positive definite matrix must have positive diagonal entries

▶ Suppose the n × n symmetric matrix A is positive definite, so that xTAx > 0 for all
x ̸= 0

▶ For any i = 1, . . . , n, let ei = (0, . . . , 0, 1, 0, . . . , 0) be the vector in R
n such that its

ith entry is 1 and all its other entries are equal to 0

▶ For all i , we have eTi Aei = aii > 0

▶ Thus all the diagonal entries of A are positive

▶ Exercise. Prove the corresponding statement for positive semidefinite, negative
definite, and negative semidefinite matrices
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Quadratic forms and concavity

▶ What is the connection between quadratic forms and convexity/concavity? In
other words, when is a quadratic form convex? When is it concave?

▶ Let Q(x) = xTAx be a quadratic form. The Hessian of Q is

D2Q(x) =











2a11 a12 . . . a1n
a12 2a22 . . . a2n
...

...
. . .

...
a1n a2n . . . 2ann











= 2A

▶ Therefore, Q is concave if and only if A is negative semidefinite, and Q is convex
if and only if A is positive semidefinite
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Unconstrained optimization

▶ Exercise. Study the definiteness of the following quadratic forms on R
3:

1. Q(x , y , z) = x2 + 4y2 + 6z2 + 4xy + 10yz

2. Q(x , y , z) = −x2 − y2 − 2z2 + 2xy
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Unconstrained optimization

▶ Exercise. Consider the following function defined over R2:

f (x , y) = −3x2 − 3y2 + x2y + xy2 − 9xy + 18x + 18y − 27

1. Is f a quadratic form?

2. Find all the local and global extrema of f
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Linear-quadratic problems

▶ How to solve max cTx+ xTAx ?

▶ First order optimality conditions: c+ (AT + A)x = 0

▶ Solution is x = −(AT + A)−1c

▶ Is the objective function concave?

▶ Yes, if A is negative definite
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Linear-quadratic problems: examples

▶ Solve
min
β

∥y − Xβ∥2

▶ Why is this an import problem?

▶ Portfolio problem min−c̄T x − axTV x such that x ≥ 0 and
∑

i xi = I
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Infinite series and the St. Petersburg paradox

▶ You learned in Intermediate Microeconomics that preferences over “lotteries” or
“gambles” can be represented by expected utility

▶ A lottery is a combination of mutually exclusive outcomes, each with a payoff and
a probability

▶ With n outcomes, a lottery L is a list

L = (x1, p1; x2, p2; . . . ; xn, pn) ,

where xi is the payoff of outcome i and pi is the corresponding probability
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Infinite series and the St. Petersburg paradox

▶ When there are finitely many outcomes (and when all the payoffs are bounded),
we can always calculate the expected value of the lottery: E (L) =

∑

n

i=1 pixi

▶ However, this is not always true for lotteries having infinitely many outcomes.
Consider the following lottery, which gave rise to the so-called St. Petersburg

paradox:

L = (x1, p1; x2, p2; . . . ) =

(

1,
1

2
; 2,

1

4
; 4,

1

8
; . . .

)

,

where xi = 2i−1 and pi = 2−i

▶ The expected value of this lottery is

E (L) = 1× 1

2
+ 2× 1

4
+ 4× 1

8
+ · · · = 1

2
+

1

2
+

1

2
+ · · · = ∞

2 / 12



Infinite series and the St. Petersburg paradox

▶ The key idea behind expected utility theory is to introduce a so-called Bernoulli
utility function u that maps payoffs/wealth to utility. In so doing, the expected
utility of a lottery L is EU(L) =

∑

∞

i=1 piu(xi )

▶ The curvature of u reflects the decision maker’s attitude toward risk: A decision
maker with a concave u is risk averse

▶ Suppose u(x) = ln x and let’s calculate the expected utility of the lottery in the
St. Petersburg paradox

3 / 12



Infinite series and the St. Petersburg paradox

▶ We have:

EU(L) =
1

2
ln 1 +

1

4
ln 2 +

1

8
ln 4 +

1

16
ln 8 +

1

32
ln 16 + · · ·

= 0 +
1

4
ln 2 +

2

8
ln 2 +

3

16
ln 2 +

4

32
ln 2 + · · ·

=
1

2
ln 2

(

1

2
+

2

4
+

3

8
+

4

16
+ · · ·

)

=
1

2
ln 2

(

∞
∑

k=1

k

2k

)
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Infinite series and the St. Petersburg paradox

▶ The term
∑

∞

k=1
k

2k
is a arithmetico-geometric series

▶ In general, for r ∈ (0, 1) we have that
∑

∞

k=1 kr
k = r

(1−r)2

▶ In our case, r = 1
2 . So we can finally write

EU(L) =
1

2
ln 2

(

∞
∑

k=1

k

2k

)

=
1

2
ln 2 (2)

= ln 2.
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Infinite series and the St. Petersburg paradox

▶ Now suppose that the Bernoulli utility function is u(x) =
√
x

▶ The expected value of our lottery becomes:

EU(L) =
1

2

√
1 +

1

4

√
2 +

1

8

√
4 +

1

16

√
8 +

1

32

√
16 + · · ·

=
1

2
+

1

4

√
2 +

1

4
+

1

8

√
2 +

1

8
+ · · ·

=
1

2

(

1 +
1

2

√
2 +

1

2
+

1

4

√
2 +

1

4
+ · · ·

)

=
1

2

[

1 +
√
2

(

1

2
+

1

4
+

1

8
+ · · ·

)

+

(

1

2
+

1

4
+

1

8
+ · · ·

)

· · ·
]
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Infinite series and the St. Petersburg paradox

▶ The term
∑

∞

k=1

(

1
2

)k
= 1

2 + 1
4 + 1

8 + · · · is a geometric series

▶ In general, for r ∈ (0, 1) we have that
∑

∞

k=1 r
k = r

1−r

▶ In our case, r = 1
2 . So we can finally write:

EU(L) =
1

2

[

1 +
√
2

(

1

2
+

1

4
+

1

8
+ · · ·

)

+

(

1

2
+

1

4
+

1

8
+ · · ·

)

· · ·
]

=
1

2

(

1 +
√
2 + 1

)

= 1 +

√
2

2
.
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CRRA utility

▶ Consider the following version of the CRRA utility function:

u(c) =
c1−γ − 1

1− γ
, (1)

with γ ≥ 0 and γ ̸= 1

▶ A limiting case when γ goes to one is ln(c) (log utility)

▶ BUT how to come up with the limit result?
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L’Hôpital’s rule

▶ When calculating limits of functions, you may encounter (among others) the
indeterminate form 0

0

▶ For example,

lim
x−→0

ex − 1

x

is an indeterminate form 0
0
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L’Hôpital’s rule

▶ In cases like this, we can apply the l’Hôpital’s rule, which says the following

▶ If limx−→c f (x) = limx−→c g(x) = 0, if g ′(x) ̸= 0 for x ̸= c , and if
limx−→c f

′(x)/g ′(x) = L, then

lim
x−→c

f (x)

g(x)
= lim

x−→c

f ′(x)

g ′(x)
= L,

where L can be either a finite number or ±∞

▶ In the previous example, we have

lim
x−→0

ex − 1

x
= lim

x−→0

ex

1
= 1
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Arrow-Pratt measure of absolute risk aversion

▶ Arrow-Pratt measure of risk aversion

ARA(c) = −u′′(c)/u′(c)

▶ Note: the measure of relative risk aversion is

RRA(c) = −u′′(c)c/u′(c)

▶ How to derive ARA? Start from the definition of certainty equivalent:

E[u(c + z)] = u(c − CE ),

where z is a random variable with mean zero and variance σ (tip: try second order
approximation on the left hand side and first order on the right hand side, then
derive a formula for CE)
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CARA utility and portfolio choice

▶ CARA (constant absolute risk aversion) utility u(c) = 1− e−ac

▶ Multivariate normal distribution of returns c ∼ N(c̄,V )

▶ Assume that x is the vector of amount of money invested in different assets, total
return is cTx, the expected value is c̄Tx and the variance xTV x

▶ Expected utility of z :

E

[

u(cTx)
]

= 1− e−a(cT x)+(1/2)a2(xTV x)

▶ What kind of monotone transformations can you apply to E[u(cTx) to get a more
tractable objective function for an optimization problem?
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