Calculus 1

Why, where, who, when, how. . . ?

Milo Orlich

October 12, 2022

Key point

If you want to remember just one thing from this course:
The derivative is the slope of the function.

Theorem

- $f^{\prime}\left(x_{0}\right)>0 \Rightarrow f$ is increasing at x_{0}
- $f^{\prime}\left(x_{0}\right)<0 \Rightarrow f$ is decreasing at x_{0}
- the local maxima and minima of f are found by seeing where $f\left(x_{0}\right)^{\prime}=0$ (and inspecting case by case).

If you need to maximize/minimize something, you can do it with derivatives.

Maximizing/minimizing stuff with derivatives

Example: Among all isosceles triangles of given perimeter p, the equilater triangle has the gratest area.
(In the book: Section 4.8)

Maximizing/minimizing stuff with derivatives

Example: Among all isosceles triangles of given perimeter p, the equilater triangle has the gratest area.

- Call x the base. Then the other sides have length $\frac{p-x}{2}$ each.
(In the book: Section 4.8)

Maximizing/minimizing stuff with derivatives

Example: Among all isosceles triangles of given perimeter p, the equilater triangle has the gratest area.

- Call x the base. Then the other sides have length $\frac{p-x}{2}$ each.
- The height is $\sqrt{\frac{(p-x)^{2}}{4}-\frac{x^{2}}{4}}=\frac{\sqrt{p^{2}-2 p x}}{2}$. The area is

$$
f(x)=\frac{x \sqrt{p^{2}-2 p x}}{4} .
$$

(In the book: Section 4.8)

Maximizing/minimizing stuff with derivatives

Example: Among all isosceles triangles of given perimeter p, the equilater triangle has the gratest area.

- Call x the base. Then the other sides have length $\frac{p-x}{2}$ each.
- The height is $\sqrt{\frac{(p-x)^{2}}{4}-\frac{x^{2}}{4}}=\frac{\sqrt{p^{2}-2 p x}}{2}$. The area is

$$
f(x)=\frac{x \sqrt{p^{2}-2 p x}}{4} .
$$

- Differentiate and set to zero:

$$
f^{\prime}(x)=\frac{1}{4}\left(\sqrt{p^{2}-2 p x}-\frac{p x}{\sqrt{p^{2}-2 p x}}\right)
$$

(In the book: Section 4.8)

Maximizing/minimizing stuff with derivatives

Example: Among all isosceles triangles of given perimeter p, the equilater triangle has the gratest area.

- Call x the base. Then the other sides have length $\frac{p-x}{2}$ each.
- The height is $\sqrt{\frac{(p-x)^{2}}{4}-\frac{x^{2}}{4}}=\frac{\sqrt{p^{2}-2 p x}}{2}$. The area is

$$
f(x)=\frac{x \sqrt{p^{2}-2 p x}}{4} .
$$

- Differentiate and set to zero:

$$
f^{\prime}(x)=\frac{1}{4}\left(\sqrt{p^{2}-2 p x}-\frac{p x}{\sqrt{p^{2}-2 p x}}\right) \quad=0 \quad \Rightarrow \quad x=\frac{p}{3} .
$$

(In the book: Section 4.8)

Maximizing/minimizing stuff with derivatives

Example: Among all isosceles triangles of given perimeter p, the equilater triangle has the gratest area.

- Call x the base. Then the other sides have length $\frac{p-x}{2}$ each.
- The height is $\sqrt{\frac{(p-x)^{2}}{4}-\frac{x^{2}}{4}}=\frac{\sqrt{p^{2}-2 p x}}{2}$. The area is

$$
f(x)=\frac{x \sqrt{p^{2}-2 p x}}{4}
$$

- Differentiate and set to zero:

$$
f^{\prime}(x)=\frac{1}{4}\left(\sqrt{p^{2}-2 p x}-\frac{p x}{\sqrt{p^{2}-2 p x}}\right) \quad=0 \quad \Rightarrow \quad x=\frac{p}{3} .
$$

(And check that it really is a minimum!)
(In the book: Section 4.8)

Calculus in science and real life

Interest on investments

(Sect. 3.4)

Money you invest: 10, 000 EUR
Annual rate of interest: 8\%

	After one year

Interest on investments

(Sect. 3.4)

Money you invest: 10, 000 EUR
Annual rate of interest: 8\%

	After one year
8% compounded annually	$10,800=10,000 \times(1+8 / 100)$

Interest on investments

(Sect. 3.4)

Money you invest: 10, 000 EUR
Annual rate of interest: 8\%

	After one year
8% compounded annually	$10,800 \quad=10,000 \times(1+8 / 100)$
4% every six months	$10,816 \quad=10,000 \times\left(1+\frac{8 / 100}{2}\right)^{2}$

Interest on investments

(Sect. 3.4)

Money you invest: 10, 000 EUR
Annual rate of interest: 8\%

	After one year	
8% compounded annually	$10,800 \quad=10,000 \times(1+8 / 100)$	
4% every six months	$10,816 \quad=10,000 \times\left(1+\frac{8 / 100}{2}\right)^{2}$	
$\frac{8}{12} \%$ every month	10,830	$=10,000 \times\left(1+\frac{8 / 100}{12}\right)^{12}$

Interest on investments

(Sect. 3.4)

Money you invest: 10, 000 EUR
Annual rate of interest: 8\%

	After one year
8% compounded annually	$10,800 \quad=10,000 \times(1+8 / 100)$
4% every six months	$10,816 \quad=10,000 \times\left(1+\frac{8 / 100}{2}\right)^{2}$
$\frac{8}{12} \%$ every month	$10,830 \quad=10,000 \times\left(1+\frac{8 / 100}{12}\right)^{12}$
$\frac{8}{365} \%$ every day	$10,832.78=10,000 \times\left(1+\frac{8 / 100}{365}\right)^{365}$

Interest on investments

(Sect. 3.4)

Money you invest: 10,000 EUR
Annual rate of interest: 8\%

	After one year	
8% compounded annually	$10,800 \quad=10,000 \times(1+8 / 100)$	
4% every six months	$10,816 \quad=10,000 \times\left(1+\frac{8 / 100}{2}\right)^{2}$	
$\frac{8}{12} \%$ every month	$10,830 \quad=10,000 \times\left(1+\frac{8 / 100}{12}\right)^{12}$	
$\frac{8}{365} \%$ every day	$10,832.78=10,000 \times\left(1+\frac{8 / 100}{365}\right)^{365}$	
\vdots		
$\frac{8}{n} \%$ compounded n times	$10,000 \times\left(1+\frac{8 / 100}{n}\right)^{n}$	

Interest on investments

(Sect. 3.4)

Money you invest: 10, 000 EUR
Annual rate of interest: 8\%

| | After one year |
| :---: | :--- | :--- |
| 8% compounded annually | $10,800 \quad=10,000 \times(1+8 / 100)$ |
| 4% every six months | $10,816 \quad=10,000 \times\left(1+\frac{8 / 100}{2}\right)^{2}$ |
| $\frac{8}{12} \%$ every month | $10,830 \quad=10,000 \times\left(1+\frac{8 / 100}{12}\right)^{12}$ |
| $\frac{8}{365} \%$ every day | $10,832.78=10,000 \times\left(1+\frac{8 / 100}{365}\right)^{365}$ |
| \vdots | |
| $\frac{8}{n} \%$ compounded n times | |

Famous limit
$\lim _{n \rightarrow+\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$

Interest on investments

Money you invest: 10, 000 EUR
Annual rate of interest: 8\%

	After one year	
8% compounded annually	$10,800 \quad=10,000 \times(1+8 / 100)$	
4% every six months	$10,816 \quad=10,000 \times\left(1+\frac{8 / 100}{2}\right)^{2}$	
$\frac{8}{12} \%$ every month	$10,830 \quad=10,000 \times\left(1+\frac{8 / 100}{12}\right)^{12}$	
$\frac{8}{365} \%$ every day	$10,832.78=10,000 \times\left(1+\frac{8 / 100}{365}\right)^{365}$	
\vdots		
$\frac{8}{n} \%$ compounded n times	$10,000 \times\left(1+\frac{8 / 100}{n}\right)^{n}$	

Famous limit
$\lim _{n \rightarrow+\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} \quad \Rightarrow \quad \lim _{n \rightarrow+\infty}\left(1+\frac{8 / 100}{n}\right)^{n}=e^{8 / 100}$.

Derivatives in physics

(Sect. 2.11)

You are running:
$f(t)=$ distance you have covered at time t.

Derivatives in physics

(Sect. 2.11)

You are running:

$$
f(t)=\text { distance you have covered at time } t .
$$

How fast are you on average?

$$
\text { "speed" }=\frac{\text { space }}{\text { time }}
$$

Derivatives in physics

(Sect. 2.11)

You are running:

$$
f(t)=\text { distance you have covered at time } t
$$

How fast are you on average?

$$
\text { "speed" }=\frac{\text { space }}{\text { time }}=\frac{f\left(t_{\text {end }}\right)-f\left(t_{\text {start }}\right)}{t_{\text {end }}-t_{\text {start }}} .
$$

Derivatives in physics

(Sect. 2.11)

You are running:

$$
f(t)=\text { distance you have covered at time } t
$$

How fast are you on average?

$$
\text { "speed" }=\frac{\text { space }}{\text { time }}=\frac{f\left(t_{\text {end }}\right)-f\left(t_{\text {start }}\right)}{t_{\text {end }}-t_{\text {start }}} .
$$

How fast are you at a specifict moment in time t_{0} ?

$$
\text { velocity at time } t_{0}=\lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}
$$

Derivatives in physics

(Sect. 2.11)

You are running:

$$
f(t)=\text { distance you have covered at time } t
$$

How fast are you on average?

$$
\text { "speed" }=\frac{\text { space }}{\text { time }}=\frac{f\left(t_{\text {end }}\right)-f\left(t_{\text {start }}\right)}{t_{\text {end }}-t_{\text {start }}} .
$$

How fast are you at a specifict moment in time t_{0} ?

$$
\text { velocity at time } t_{0}=\lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}=f^{\prime}\left(t_{0}\right)
$$

Derivatives in physics

(Sect. 2.11)

You are running:

$$
f(t)=\text { distance you have covered at time } t
$$

How fast are you on average?

$$
\text { "speed" }=\frac{\text { space }}{\text { time }}=\frac{f\left(t_{\text {end }}\right)-f\left(t_{\text {start }}\right)}{t_{\text {end }}-t_{\text {start }}} .
$$

How fast are you at a specifict moment in time t_{0} ?

$$
\text { velocity at time } t_{0}=\lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}=f^{\prime}\left(t_{0}\right)
$$

How does your speed change?
acceleration at time $t_{0}=\lim _{t \rightarrow t_{0}} \frac{v(t)-v\left(t_{0}\right)}{t-t_{0}}=v^{\prime}\left(t_{0}\right)=f^{\prime \prime}\left(t_{0}\right)$.

Integrals in physics - work

You are pushing an object along the x-axis with force $F(x)$.
work $=$ force \times distance .

Integrals in physics - work

You are pushing an object along the x-axis with force $F(x)$.

$$
\text { work }=\text { force } \times \text { distance. }
$$

Assume the force $F(x)$ varies continuously with x :

$$
\text { work for "short distance" } d x=F(x) d x
$$

Integrals in physics - work

You are pushing an object along the x-axis with force $F(x)$.

$$
\text { work }=\text { force } \times \text { distance. }
$$

Assume the force $F(x)$ varies continuously with x :

$$
\begin{aligned}
\text { work for "short distance" } d x & =F(x) d x \\
\text { total work from a to } b & =\int_{a}^{b} F(x) d x
\end{aligned}
$$

Taylor polynomials and calculators

A computer doesn't really know what angles are... Use Taylor approximations!

Probability - normal distribution

Special function that we saw a lot in the course: $f(x)=e^{-x^{2}}$.

Probability - normal distribution

Special function that we saw a lot in the course: $f(x)=e^{-x^{2}}$.

Standard normal probability density: $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.

Probability - normal distribution

Special function that we saw a lot in the course: $f(x)=e^{-x^{2}}$.

Standard normal probability density: $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.

BELL CURVE

Probability - normal distribution

Special function that we saw a lot in the course: $f(x)=e^{-x^{2}}$.

Standard normal probability density: $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.

BELL CURVE

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-x^{2} / 2} d x=1
$$

Taylor series to the rescue

$$
\int_{0}^{x} e^{-t^{2}} d t=\int_{0}^{2}\left(1-t^{2}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+\frac{t^{8}}{8!}-\ldots\right) d t
$$

Taylor series to the rescue

$$
\begin{aligned}
\int_{0}^{x} e^{-t^{2}} d t & =\int_{0}^{2}\left(1-t^{2}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+\frac{t^{8}}{8!}-\ldots\right) d t \\
& =\left.\left(t-\frac{t^{3}}{3}+\frac{t^{5}}{5 \times 2!}-\frac{t^{7}}{7 \times 3!}+\frac{t^{9}}{9 \times 4!}-\ldots\right)\right|_{0} ^{x}
\end{aligned}
$$

Taylor series to the rescue

$$
\begin{aligned}
\int_{0}^{x} e^{-t^{2}} d t & =\int_{0}^{2}\left(1-t^{2}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+\frac{t^{8}}{8!}-\ldots\right) d t \\
& =\left.\left(t-\frac{t^{3}}{3}+\frac{t^{5}}{5 \times 2!}-\frac{t^{7}}{7 \times 3!}+\frac{t^{9}}{9 \times 4!}-\ldots\right)\right|_{0} ^{x} \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5 \times 2!}-\frac{x^{7}}{7 \times 3!}+\frac{x^{9}}{9 \times 4!}-\ldots
\end{aligned}
$$

Taylor series to the rescue

$$
\begin{aligned}
\int_{0}^{x} e^{-t^{2}} d t & =\int_{0}^{2}\left(1-t^{2}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+\frac{t^{8}}{8!}-\ldots\right) d t \\
& =\left.\left(t-\frac{t^{3}}{3}+\frac{t^{5}}{5 \times 2!}-\frac{t^{7}}{7 \times 3!}+\frac{t^{9}}{9 \times 4!}-\ldots\right)\right|_{0} ^{x} \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5 \times 2!}-\frac{x^{7}}{7 \times 3!}+\frac{x^{9}}{9 \times 4!}-\ldots \\
& =\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) n!}
\end{aligned}
$$

Differential equations in science

We put $y(0)$ rabbits on an island.
The island can grow enoufh food to supply a population of L rabbits indefinitely.
Denote by $y(t)$ the number of rabbits at time t.

Logistic equation

We put $y(0)$ rabbits on an island.
The island can grow enoufh food to supply a population of L rabbits indefinitely.

Denote by $y(t)$ the number of rabbits at time t.
This is modeled by

$$
\frac{d y}{d t}=k y\left(1-\frac{y}{L}\right) .
$$

Differential equations in physics

Newton's second law of motion:

$$
\text { force }=\text { mass } \times \text { acceleration }
$$

$$
F=m \frac{d^{2} y}{d t^{2}}
$$

Differential equations in physics

Newton's second law of motion:

$$
\text { force }=\text { mass } \times \text { acceleration }
$$

$$
F=m \frac{d^{2} y}{d t^{2}}
$$

Falling under gravity:

$$
-g=\frac{d^{2} y}{d t^{2}}
$$

Differential equations in physics

Newton's second law of motion:

$$
\text { force }=\text { mass } \times \text { acceleration }
$$

$$
F=m \frac{d^{2} y}{d t^{2}}
$$

Falling under gravity:

$$
-g=\frac{d^{2} y}{d t^{2}}
$$

Simple harmonic motion (mass suspended by a spring):

$$
\frac{d^{2} y}{d t^{2}}+\frac{k}{m} y=0
$$

where k is the spring constant.

History

The word "calculus"

"Calculus" = "little stone" in Latin

Calculus 1Why, where, who, when, how. . . ?

"Calculus" = "little stone" in Latin
When you study calculus from a more conceptual point of view, it's called "(mathematical) analysis".

History of calculus

- Ancient Greeks
- 17th century (Newton, Leibniz,...)

Newton vs. Leibniz

- Came up at the same time with similar ideas.
- Big fight for the title of First \& Coolest Developer of Calculus. They let the Royal Society in London decide.

Newton vs. Leibniz

- Came up at the same time with similar ideas.
- Big fight for the title of First \& Coolest Developer of Calculus. They let the Royal Society in London decide.
- Who won? Newton.

Newton vs. Leibniz

- Came up at the same time with similar ideas.
- Big fight for the title of First \& Coolest Developer of Calculus. They let the Royal Society in London decide.
- Who won? Newton.
- Who was big friends with the Royal Society? Also Newton.

Galileo Galilei

(Before Newton and Leibniz)

General stuff about math

Two kinds of math

- math that is developed because it is needed.
- math that is developed because it is fun.

What is truth?

- (In science) 99/100 experiments work \rightarrow True.
- (In math) It has to be always true. And you need to prove it. If you just believe that something is correct and it's not, you end up making mistakes.

The importance of proofs

Axioms of Euclidean geometry:
(1) A straight line may be drawn between any two points.

The importance of proofs

Axioms of Euclidean geometry:
(1) A straight line may be drawn between any two points.
(2) Any line segment may be extended indefinitely.

The importance of proofs

Axioms of Euclidean geometry:
(1) A straight line may be drawn between any two points.
(2) Any line segment may be extended indefinitely.
(3) A circle may be drawn with any given point as center and any given radius.

The importance of proofs

Axioms of Euclidean geometry:
(1) A straight line may be drawn between any two points.
(2) Any line segment may be extended indefinitely.
(3) A circle may be drawn with any given point as center and any given radius.
(4) All right angles are equal.

The importance of proofs

Axioms of Euclidean geometry:
(1) A straight line may be drawn between any two points.
(2) Any line segment may be extended indefinitely.
(3) A circle may be drawn with any given point as center and any given radius.
(4) All right angles are equal.
(5) If two straight lines in a plane are met by another line, and if the sum of the internal angles on one side is less than two right angles, then the straight lines will meet if extended sufficiently on the side on which the sum of the angles is less than two right angles.
(Translated: Two non-parallel lines will meet at some point.) Bla bla bla

